

On the existence of *P*-points in the Stone-Čech compactification of integers

by

Jussi Ketonen (Berkeley, Cal.)

Abstract. The object of this paper is to derive set-theoretic criteria for the existence of P-points in the Stone-Čech compactification of integers.

- 0. Introduction. Our notation and terminology conforms to that used in the most recent set-theoretic literature. For example, cardinals are initial ordinals. Ordinals are denoted by small greek letters α , β , ... The cardinality of the set X is denoted by |X|. We shall now state our fundamental definitions:
- 0.1. DEFINITION. An ultrafilter D over ω is a P-point if and only if for every partitioning $\{X_i|\ i<\omega\}$ of ω into ω pieces there exists a $X\in D$ so that for every $i<\omega$ $X\cap X_I$ is finite.
- 0.2. DEFINITION. An ultrafilter D over ω is selective if and only if for every partitioning $\{X_i|\ i<\omega\}$ of ω into ω pieces there exists a $X\in D$ so that for every $i<\omega\ |X\cap X_i|\leqslant 1$.

The notion of a P-point was first defined by W. Rudin in [1], where he proved that the continuum hypothesis implies the existence of P-points. It is not known whether the existence of P-points can be proved directly from the axioms of settheory. K. Kunen has shown, however, that it is consistent to assume the non-existence of selective ultrafilters. The purpose of this paper is to establish more general criteria for the existence of P-points and selective ultrafilters.

The author wishes to thank Professors Mary-Ellen Rudin and Kenneth Kunen for the many inspiring discussions he has had with them on this topic. This paper was written during the author's stay as a Miller Fellow at the University of California at Berkeley.

- 1. Some existence criteria. We shall show that the structure of P-points is intimately interconnected with the structure of functions $\omega \rightarrow \omega$.
- 1.1. Definition. (a) If $x, y \subseteq \omega$, then we say x is contained in y modulo finite sets, in symbols, $x \subseteq y$ (mf) iff there exists a $k < \omega$ so that $x k \subseteq y$;
- (b) If f, g are functions $\omega \to \omega$, then g dominates f; in symbols: $f \le g$, iff there exists a $k < \omega$ so that for all $i \ge k$ $f(i) \le g(i)$.

Now, let (H) be the following statement:

(H): No family of functions from ω to ω of power less than 2^{ω} dominates all functions $\omega \to \omega$; i.e. if $\lambda < 2^{\omega}$ and $\{f_{\alpha} | \alpha < \lambda\}$ is a family of functions $\omega \to \omega$, then there is a $f: \omega \to \omega$ so that for every $\alpha < \lambda$: $f \not \leq f_{\alpha}$.

It is easy to see that the continuum hypothesis implies (H) and that it holds in any model obtained from the constructible universe by adjoining any number of mutually Cohen-generic reals. The following theorem is then our fundamental result:

1.2. THEOREM. If (H) holds, then there are P-points. As a matter of fact, (H) holds if and only if every filter over ω generated by less than 2^{ω} sets can be extended to a P-point.

One direction of this statement easily follows by transfinite induction from the following proposition.

1.3. Proposition. Given a filter F over ω generated by less than 2^{ω} elements, and a sequence $\{A_i | i < \omega\}$ of elements of F, there exists a set $A \subseteq \omega$ so that $F \cup \{A\}$ has the finite intersection property and for every $i < \omega$, $A \subseteq A_i(\text{mf})$.

Proof. W. 1.o.g. assume that $A_1 \supseteq A_2 \supseteq ...$, and let $\lambda < 2^{\omega}$, $\{C_{\zeta} | \zeta < \lambda\} \subseteq F$ so that

$$X \in F \leftrightarrow \exists \zeta < \lambda : C_{\zeta} \subseteq F$$
.

For any function $f: \omega \rightarrow \omega$, let

$$X(f) = \bigcup \{A_i \cap \{j | j \leqslant f(i)\} | i \leqslant \omega\}.$$

Then for every function $f: \omega \to \omega$ we have: For every $i < \omega$, $X(f) \subseteq A_i(\text{mf})$. Now, for $\zeta < \lambda$, let

$$g_{\zeta}(i) = \text{least element of } A_i \cap C_{\zeta}$$
.

Then, by (H), there exists a function $f: \omega \to \omega$ so that for every $\zeta < \lambda$, the set $\{i \mid g_{\zeta}(i) < f(i)\}$ is infinite and therefore $X(f) \cap C_{\zeta} \neq 0$. It follows that the set A = X(f) then satisfies our requirements.

The proof of the "only if" direction in Theorem 1.2 is also immediate: For suppose that (H) is false; i.e. there exists a $\lambda < c$ with a dominating family $\{f_{\alpha} | \alpha < \lambda\}$ of functions $\omega \to \omega$ indexed by λ . Let $\{C_i | i < \omega\}$ be a partitioning of ω into ω pieces of power ω . Let

$$X_{\alpha} = -\bigcup_{i \leq m} C_i \cap \{j | j \leq f_{\alpha}(i)\}.$$

Then $\{-C_i|\ i<\omega\}\cup\{X_\alpha|\ \alpha<\lambda\}$ generates a filter which cannot be extended to a P-point. \blacksquare

As an immediate consequence we get:

1.4. Proposition. If (H), then every ultrafilter generated by less than 2^{ω} elements is a P-point.

However, we have:

1.5. Proposition. If (H), then no ultrafilter generated by less than 2° elements is selective.

Proof. For suppose that $\{A_{\alpha} | \alpha < \lambda\}$ generates a selective ultrafilter D so that

$$X \in D \leftrightarrow \exists \alpha < \lambda : A_{\alpha} \subseteq X$$
.

Let $\theta_{\alpha} \colon \omega \to \omega$ enumerate A_{α} in order for $\alpha < \lambda$. Then the θ_{α} 's dominate every function $\omega \to \omega$: For let $f \colon \omega \to \omega$ be a strictly increasing function. Let

$$C_i = \left\{ j | \ f(i) \! \leqslant \! j \! < \! f(i \! + \! 1) \right\} \,.$$

By selectivity, we can find a set $S \in D$ and a strictly increasing function $\theta : \omega \to \omega$ so that $\{\theta(i)\} = S \cap C_i$ and range $(\theta) = S$. Pick $\alpha < \lambda$ so that $A_{\alpha} \subseteq S$. Then for every $i < \omega$:

$$\theta_{\alpha}(i) \geqslant \theta(i) \geqslant f(i)$$
.

We have a "converse" to Proposition 1.4:

1.6. PROPOSITION. If not (H), then if there exists an ultrafilter generated by less than 2^{ω} sets, there exists an ultrafilter generated by less than 2^{ω} sets which is not a P-point.

Proof. Suppose that not (H) holds and that $\lambda < 2^{\omega}$ so that there exists an ultrafilter D and a family $\{A_{\alpha} | \alpha < \lambda\} \subseteq D$ so that

$$X \in D \leftrightarrow \exists \alpha < \lambda : A_{\alpha} \subseteq X$$
.

W.l.o.g. assume that D is a P-point. We claim that $D \times D$ satisfies our requirements. Here $D \times D$ is the product filter over $\omega \times \omega$ defined by: For $X \subseteq \omega \times \omega$

$$X \in D \times D \leftrightarrow \{i | \{j | (i,j) \in X\} \in D\} \in D$$
.

By not (H), there exists a family $\{f_{\alpha}| \ \alpha < \mu\}$ of functions $\omega \to \omega$ dominating every function so that $\mu < 2^{\omega}$. Then it is easy to see that the sets of the form

$$(A_{\alpha} \times A_{\alpha}) \cap \{(i,j)| j > f_{\beta}(i), i > k\}$$

where $\alpha < \lambda$, $\beta < \mu$, $k < \omega$ generate $D \times D$. It is obvious that $D \times D$ is not a P-point.

The situation described in Proposition 1.6 occurs, for example, in the model obtained by adjoining ω_2 mutually generic Sacks-reals to the constructible universe: K. Kunen has shown that every selective ultrafilter in the ground-model generates a selective ultrafilter in the extension.

We can also derive a criterion for the existence of selective ultrafilters similar to Theorem 1.2: Let (K) stand for the following statement:

(K): The continuum is not the union of less than 2° sets of first category.

It is easy to see that (K) implies (H) and that (K) also implies that there are no ultrafilters generated by less than 2^{ω} sets. (K) holds, for example, in any model

J. Ketonen

94

obtained from the constructible universe by adjoining any number of mutually Cohen-generic reals.

1.7. Theorem. If (K), then every filter over generated by less than 2^{ω} sets can be extended to a selective ultrafilter.

This result follows easily from the following proposition:

1.8. Proposition. If (K) holds and F is a filter over ω generated by less than 2^{ω} sets, and $\{X_i|\ i<\omega\}$ is a partitioning of ω so that for every $i<\omega$

$$\bigcup \{X_j| j>i\} \in F,$$

then there exists a set $X \subseteq \omega$ so that $\{X\} \cup F$ has the finite intersection property and for every $i < \omega \colon |X \cap X_i| \le 1$.

Proof. Suppose that no such X exists. Let $\{C_{\zeta} | \zeta < \lambda < 2^{\omega}\} \subseteq F$ so that

$$X \in F \leftrightarrow \exists \zeta < \lambda \colon X \supseteq C_{\zeta}$$
.

Let

$$T = \{ f \in {}^{\omega}\omega | \forall i < \omega : f(i) \in X_i \}.$$

We can w.l.o.g. assume that T is a perfect closed subset of ω in the usual product topology. Define for $\alpha < \lambda$

$$T_{\alpha} = \{ f \in T | \operatorname{range}(f) \cap C_{\alpha} = 0 \}$$
.

Then

$$T = \bigcup \{T_{\alpha} | \alpha < \lambda\}.$$

But then, by (K), there exists a $\alpha < \lambda$ so that the closure of T_{α} contains an open set relative to T; i.e. there exists a $n < \omega$ and a function $f \colon n \to \omega$ so that $f(i) \in X_i$ for i < n and if n < m and $h \colon m \to \omega$ s.t. $h(i) \in X_i$ for i < m and $h \supseteq f$, there exists a $g \in T_{\alpha}$ with $g \supseteq h$. But this implies that

$$\bigcup \left\{ \operatorname{range}(f) \middle| f \in T_{\alpha} \right\} \supseteq \bigcup \left\{ X_i \middle| i > n \right\}$$

and therefore

$$C_n \cap (\langle j | \{X_i | i > n\}) = 0;$$

a contradiction.

References

[1] W. Rudin. Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), pp. 409-420.

UNIVERSITY OF CALIFORNIA AT BERKELEY

Accepté par la Rédaction le 19. 8. 1974

On a method of constructing ANR-sets. An application of inverse limits

by

J. Krasinkiewicz (Warszawa)

Abstract. In the present paper we provide a method of constructing ANR-sets from a given ANR-sequence. We establish certain properties of the ANR-sets. Some applications are given. One of them is a simple proof of a theorem of H. Bothe which says that for every natural number n there exists an (n+1)-dimensional AR-set containing topologically every separable metric space of dimension $\leq n$. We prove that for every n-dimensional compactum X there exists an (n+1)-dimensional infinite polyhedron P disjoint from X such that $X \cup P$ is an absolute retract. This result generalizes a theorem of Professor K. Borsuk.

1. A characterization of ANR-sets. By a compactum we mean a compact metric space, and a mapping is understood to mean a continuous function from a topological space to another one. A mapping f from a metric space X into a space Y is called an ε -mapping provided that $\operatorname{diam} f^{-1}(y) \le \varepsilon$ for every $y \in f(X)$. If f maps the space X into itself and $\varrho(x, f(x)) \le \varepsilon$ for every $x \in X$, where ϱ is a metric in X, then we say that it is an ε -push of X. Clearly, an ε -push is an 2ε -mapping. If Y is a subset of X, then we say that X is ε -deformable into Y provided there exists a mapping $\varphi: X \times I \to X$ such that $\varphi(x, 0) = x$, $\varphi(x, 1) \in Y$ and $\operatorname{diam} \varphi(\{x\} \times I) \le \varepsilon$ for every $x \in X$. If moreover $\varphi(y, t) = y$ for every $(y, t) \in Y \times I$, then we say that Y is a strong ε -deformation retract of X. Note that in this case each mapping $\varphi_i: X \to X$ given by the formula $\varphi_i(x) = \varphi(x, t)$ is an ε -push of X.

The aim of this section is to prove the following theorem:

1.1. Let X be a compactum. Then it is an ANR-set if and only if for every $\varepsilon > 0$ there exists an ANR-set $Y \subset X$ such that X is ε -deformable into Y.

The necessity of the condition is obvious. To prove its sufficiency we need a characterization of ANR-sets due to S. Lefschetz. Recall that a positive number η is said to satisfy the condition of Lefschetz for a space Y and for $\varepsilon > 0$ provided that for every polyhedron W, every triangulation T of W, and every subpolyhedron W' of this triangulation containing all vertices of T, every mapping $f' \colon W' \to Y$, such that $\operatorname{diam} f'(\sigma \cap W') \leq \eta$ for each simplex $\sigma \in T$, has a continuous extension $f \colon W \to Y$ such that $\operatorname{diam} f(\sigma) \leq \varepsilon$ for each simplex $\sigma \in T$.