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Two model theoretic ideas in independence proofs

by

David Pincus (Cambridge, Mass.)

Abstract. Some new Fraenkel-Mostowski models are built on universal homogeneous struc-
tures. Also a connection is established between indiscernability theorems and models for the com-
pactness theorem.

L. Tntroduction

This paper will illustrate the model theoretic ideas underlying some set theoretical
independence proofs. The results include conceptual simplifications of known inde-
pendence proofs, new independence proofs, and a new theorem in model theory.

In § I we discuss Fraenkel-Mostowski models built on universal homogeneous
structures. The idea dates back to Mostowski’s proof, [17], of the independence of
the axiom of choice, (AC), from the ordering principle. Mathias [16] reawakened
interest in the idea with his proof of the independence of the order extension principle
from the ordering principle. Others followed, notably Plotkin ([23] and [24]), and
Felgner ([3] and [4]) as well as the author. Except for [17] the work cited above
is set up in the language of forcing. Arguments here and in [13] demonstrate that
only Fraenkel-Mostowski ideas are involved.

In § ITA we indicate what, besides the universality and homogeneity of the
structure, is involved in proving the support intersection lemma of Mostowski [17].
These results are applied in the remainder of § II. § IIB contains a conceptual proof
of the combinatorial group-theoretic lemma of Lauchli [15]. The resulting Fraenkel-
Mostowski model is then used to settle a question of Halpern [9]. In § ITC we elimi-
nate forcing from Gauntt’s solution ([7]) to Mostowski’s problem on the axiom
of choice for finite sets. A by-product is that these results, and related ones of
Truss [27], transfer automatically to ZF set theory (*). § IID is a brief mention of
other applications. These are from the author’s thesis and are more fully exposited
by Jech in [13].

(%) Our set theories incorporate classes when desirable. ZF is the usual Zermelo Fraenkel
set theory. ZFA. is the usual weakening (see [17]) of ZF to permit a set of atoms. E is Godel’s axiom
of strong choice. ZFE is ZF-+E. ZFE is a conservative extension of ZF+AC. We assume that our
standard universe, Std, satisfies ZFE.
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In § IIT we demonstrate a heuristic equivalence between indiscernability theorems
in model theory and models illustrating the independence of AC from the compactness
theorem for logic. First the Erenfeucht-Mostowski theorem is used to give a straight~
forward proof of the compactness theorem in the model of Mostowski [17]. Hal-
pern [8], proved the Boolean prime ideal theorem (a set-theoretic equivalent to the
compactness theorem) using algebraic and combinatorial methods. The “equiva-
lence” of the two facts is next shown i.e. the Erenfeucht-Mostowski theorem is
deduced from the fact that the compactness theorem holds in Mostowski’s model.
Finally we apply this argument to the model of Halpern and Levy [12], where the
compactness theorem also holds. This gives a new indiscernability principle for
model theory (%).

II. Fraenkel-Mostowski models based on universal
homogeneous structures

IIA. Sufficient conditions for Mostowski’s intersection lemma. The conditions
given below are not appealing. They do seem to be what is involved.

TIAL. Assumptions on the category . We fix a category % of first order struc-
tures with all structure preserving homomorphisms. Notions such as embedding,
isomorphism, etc., are understood to be with reference to . For example if 4 & %
then Bis a substructure of A if B € % and Id B, the identity on B, is a @ homorphism
from B to A. The first assumption is a natural one.

a If Ae? the intersectiqn of a family of substructures of 4 is a substructure
of A. If 4 is isomorphic to a structure of ¥ then A4 € %.

Assumption a implies that if A is a structure and X<4 (the underlying set
of 4) then there is a unique substructure [ X, of A generated by X. The next 3 assump-
tions on are reasonable in view of [14].

b There is a unique (up to 1somorphlsm) structure which can be embedded in
every other structure.

4 and B are said to have coherent intersection if A ~ B is a substructure of
both 4 and B and if the operations and relations of 4 agree with those ol Bon 4 n B.

¢ I 4 and B have coherent intersection then both are substructurcs of a contmon
structure C.

d  The direct union of structures is a structure.

We now come to the ugly assumptjon. Fix the finitely generated structures
By, By, B,, and Bwith B, = B, n B, and B = [B, U B,]. A pair, (Q, ) is disposed
when @ is a structure and @ = [B U C] for a structure C such that 7 is an isomor-

(*) This result is abstracted in [22].
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phism from B to C which fixes B, pointwise. Two disposed pairs (@2, 7) and (2, ")
are singly linked it for some me{l,2}, IdB, un’'n~! extends to a well defined
isomorphism, @,: [B, U C]—=[B, u C']. The single linking relation is reflexive
and symmetric. The linking relation is the transitive closure of the single linking
relation. It is an equivalence relation. The assumption is:

e Let (2,7) and (@', 7") be disposed pairs with B n C = B n C" = B,. Then
(@, ) and (2, n') are linked.

In the present context a universal homogeneous (UH) structure, 4 is one which
satisfies:

1) Every finitely generated B can be embedded in A.

2) Every isomorphism of finitely generated substructures of A extends to an
automorphism of A.

Such a structure consequently also satisfies:

3) If B is finitely generated and C is a common substructure of B and 4 then
there is an embedding of B into 4 which is the identity of C.

1IA2. LemmA ([14]). Assumptions a, b, ¢, and d of ILA1 guarantee that € con-
tains a UH structure. )

IIA3. LEMMA. Under the assumptions of TIA1, if By, By, By, and B are fixed
(as before LA le) then any two disposed pairs are linked. ‘

Proof. One must show that any disposed (2, =) is linked to a disposed (@', n')
with B~ C' = B,. Let g: [B, U Clp—Z be an isomorphism to a structure Z with
Z n B = B, and let g be the identity of By. This is easily arranged via assumption a
of IIA 1. Z and B have the coherent intersection By so let Q* = [B, Z] be a common
extension of B and Z from assumptions ¢ and a of IIAl. Let n* = gn. g is the
required extension of IdB, and n*mn~! so (2,7) and (Q* n*) are linked.
BnC*=B,.

We now do a similar process to eliminate intersection with B;—B,.
u: [By v C*]n.—>E is an isomorphism where £ n B = B, and p is the identity on Bo.
This is possible since C* N B, = By. Q' = [B, 2] and 7’ = un* from the required
disposed pair linked to (@, n) and satisfying B n C’ = B,.

IIA4. MOSTOWSKI’S INTERSECTION LEMMA GENERALIZED. Under the assump-
tions of TIA 1, let A € € be a UH structure. If B is a substructure let I (B) denote the
group of automorphisms of A which are the identity on B. Then for arbitrary finitely
generated substructures By and B, of A, '

F(Bl N Bz) = [F(Bl) v F(BZ)] .

Proof. Evidently [I'(By) v I'(B)]=I'(B; n B,). For the converse fix
aeF(BlnBl) Set B,=B,nB,, Q=B=I[B UB);,, n=IdB &
=[Buol| ]], and ' = o1dB. By Lemma ITA3 (@, 7) and (€', 7') are linked. This
means there is a singly linked sequence (Q,m) = (Qo. 7o), (R, 1), oo , (@, )
= (@', n'). We modify this sequence so that each Q;=A.

*
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Let Q,# 4. Use property 3) of UH structures (see Lemma ITA2) to give an
embedding o: ©,—~A4 which is the identity on B. Let Q¥ = o[Q,] and =} = gm;0™".
‘We establish that (¥, n¥) is singly linked with (@;_y, 7;-;) and (@4, 7;44). For
some m, ke{l,2} there are maps pu and v which extend IdB, u mm; Y, and
1d B, U m;, 7t respectively. gu and ve~™' respectively extend IdB, U m¥m.}
and IdB, U ;. ¥ . This is because ¢ is the identity on B hence gu and vg are
identities on B,, and B, respectively. On C;_ ou extends gninf_li = gm0~ mZY
= n¥n"Y, again because g is the identity on B. Similarly ve extends 7, 7m}™*
on C§. The new sequence obtained by replacing each (Q;, 7)), Q, £ 4, with (2F, n¥)
is as desired.

For i=2,..,nlet me{l,2} and y; be maps such that g, extends n,n,ﬁ.‘i
and IdB,,. Let &; be an extension of y; to an automorphism of A. Evidently
g€ I'(B,,) 8O Hyfi,_i ... By € [[(By) v (B A&, .. Hy extends :

(Tfnn;—lﬂ("nqn;—lz) (nznfl) ’

“which redilces to m,m;* = ¢IdB = ¢ on B. Therefore (4, ... 4;)” ‘o is the identily
on B so (i,... u) o e I'(B)) and o e [I'(B;) U I'(B,)].

IIB. On a question of Halpern. Halpern [9] answered a question of Tarski by
showing that SPI (“Every infinite set has a nonprincipal prime ideal in its power
set.”) is strictly weaker than PI, the prime ideal theorem for Boolean algebras. His
results show that SPI is really a statement about sets of small (Dedekind finite or
countable) cardinality. He then jntroduces the global form S, of SPI which follows:

“There is a function which associates every infinite set with a nonprincipal
prime ideal on its power set”.

S has considerably more strength than SPI. Halpern proves, using regularity,
that S implies the axiom of choice for families of finite sets. Howard and the author
have independently eliminated the use of regularity.

TIB1. THEOREM (ZF without regularity). S implies the axiom of choice for families
of finite sets.

‘Proof. For each finite set 4 let X, = wx 4. Let §, be the designated prime
ideal in ¥(X,). Choose from A the unique @ e A such that {a}xwel,.
Halpern asks whether S— PL. We state on the contrary:

IB2. TueoreMm. The ordering principle is independent of S in ZF.

We give in [21] Postscript IITa proof that S transfers from a Fracenkel-Mo-
stowski model to ZF in conjunction with class II statements from [20). Thus it
suffices to replace ZF by ZFA in Theorem TIB2 and use a Fraenkel-Mostowski
model. This is done below. Along the way we reprove:

MB3. Lemma (Léuchli [15]). There is a group, I', acting on a set A such that

icm
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a If GoA is finite there are my,m, € I'(G) and a, b, ¢, € A such that

Ty M w2 W2
a—-b—oc b—oc—a(®.

b If GoA is finite and ne I permutes G then m e I'(G).
¢ If G, and G, are finite subsets of A then I'(G, N Gy) = [C(Gy) v IT'(GY]L

1IB4. The theory of finite choice operators. FC is a first order theory with a par-
tial function symbol £, for each n € @, n3> 1. The axioms of FC state that f,(xy, ..., X,
is an n-ary choice operator. This means that f, is defined when il} x; # X,
2 %) = fo(Xn(1)» oes Xa(m) fOr any permutation m on {1,...,n}, a1‘1d vxihen
fi{%q, o, X,) is defined then f(xy, ..., X,) is some x;. These axioms are easily given
first order formulation. In the context of FC one can forget 7 and talk of f{x;, ..., X,}-

1IB5. LeMMA. Let € be the category of models of FC. € satisfies the assumptions
of AL

Proof. The assumptions a, b, ¢, and d of IIA1 are familiar and their proofs
are left to the reader. Fix By, By, B,, and B as in assumption e and let (2, =), (€', =)
be disposed pairs satisfying B n C = B n C’ = Bo. Since every subset of a model
of FCis a model of FCwe have @ = BUC, Q2 =BuC’.SinceBNC =BnC,
|9 = |Q]. C~C' via the map «’n~*. Thus it is no loss of generality to assume that
C=C,n=nQand & have the same underlying set, and that the (f,)o and e
disagree only on n-tuples which intersect both B~—B, and C—B,.

Let Q* have the same underlying set as © and Q. Let n* = n = n’. For distinct
Ayy sty Tet (F)as(@ys oes @) = (foltys --r @) if each a;eB,UC and‘ let
(Lalas, s ) = (faays - &) it some ;€ B, U C. (fy)ov is well defined since
B, nC = B,. Our construction guarantees that [B; UClg = [B; U Clp« and
[B, U Clov = [B, U Clg.. Therefore (Q* n*) is singly linked with (@, =) and
@', 7") so (2, x) and (', z') are linked. .

1IB6. Proof of Liuchli’s Lemma (IIB3).

Let A be a UH model of FC with underlying set A. Let T be the group of
automorphisms of A. I' and A satisfy the properties of TIB3.

Prootf. Every Go A is a submodel of 4 so property IIB3c follows from the
generalized intersection lemma (I[LA4). Property ITIB3b is clear since if |G| = n
and ne I, © preserves fy(G), fy—1(G—F(D)), .- etc. '

To establish property IIB3a fix a finite G=4 and let B<A have undt?rlymg
set G. Let € have underlying set G U {a, b, ¢} where {a, b, c} n G = @. It is easy
to define operations (f)¢ on G U {a, b, ¢} which satisfy:

(Ne(G*) = ()s(G* N G) G* nGl21,
fda, by =a, feb,ct=b, fele,a}=c.

(%) I'(G) is the subgroup of I" consisting of elements which are the identity on G.

when
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Property 3) of UH structures (preceding IIA2) makes it possible to embed C in A
by a map which fixed B. We thus assume CcA.

Letny: G U {a, b} = G U {b, c} be the identity on G, map 4 to b, and map b to c.
By Property 2) of UH structures 7 extends to an automorphism of 4. Similarly let 7,
be an automorphism of 4 which is the identity on G, maps b to ¢, and maps ¢ to a.
7; and m, are as desired in IIB3a.

IIB7. The Fraenkel-Mostowski model. We briefly review a special case of Mo-
stowski’s construction [17]. Let M be a universe satisfying ZFA+E with Std as its
subuniverse of well founded sets. Let I be the set of atoms of M and let I" be a group
of permutations on I. (i.e. automorphisms of M). If GeI is finite x is supported
by G if n(x) = x for all % € ['(G) (see footnote (*)). The Fraenkel-Mostowski model,
V, is the class of those sets which are hereditarily supported. V-classes are supported
subclasses of. V. V is a model of ZFA. As remarked in [19] there are &-supported V
classes V and T satistying:

a  GVXoG supports x. We let VG = {x: GPx}. If x is V-definable from pa-
rameters supported by G then xe VG.

b T(H,«)is a function where H is an ordering of a finite Ge I and o is an ordinal.
For fixed such H T(H, «) is a 1:1 map from the class of ordinals, On, onto VG.

Theorem IIB2 is proved by endowing I with the structure of a UH model, 4, of FC.
I' is taken to be the group of automorphisms of A. The sequence {(f,)a}uz, is seen
to be in ¥,, hence A€ .

YIBS. THEOREM. S and the axiom of choice for families of well orderable sets
hold in V. The ordering theorem is false in V.

Proof. That the axiom of choice for families of well orderable sets holds in V
and that the ordering theorem is false in V is exactly as in Lauchli-[15]. Tt remains to
prove S in V. '

For finite G let H(G) denote a fixed canonical ordering of G. The function
H(G) can be defined in V using choice for families of well orderable sets. Let 7%(G, )
denote T(H(G), «) for the th a such that G is the minimal G’ with T(H(G), o) & W',
It is standard that T*: 2_,(I)x On—V is 1:1, onto, and defined in V.

FC, denotes the theory with unary predicates D and E as well as choice opera-
tors f, f2, ... The axioms of FC, are those of FC together with (Hx)~E(x). A type
is the type of a finite model of FC,. The types are absolutely coded in the integers.
For each new there are finitely many models of FC, with cardinal n. If 7 is
a fixed type and G<I is finite define in V,

¥(z,6) = {FeP ()1 (FU G, F, G, (f)as (f2)a» ) has type 7} .
For xeV let G, be the minimal G with x e VG.

Cram. If xe P (1) is infinite there is at least one nonempty type t such
that y(z, G )cx.
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Proof of Claim. Since x is infinite there is an F, € x—#(G,). Let © be the type
of (Fyu Gy, Fy, Gy, (f1)a»--). T is the desired type. Suppose Fy ey(z,G,).
(F, v Gy, Fy, Gy, (fi)as ) has the same type as (Fp U Gy, Fo, G, (fi)as o)
The isomorphism 7, of these two systems is unique, mapping fy(F, U G,) to
Ju(Fo U G, fA(Fl U Go—{fu(Fy v G)}) to fulFo v Go—{fulFo v GJ)}), ete. m is
the identity on G, and, by the UH property of 4, extends to an automorphism,
n*, of V. = takes F| to Fy and x to x so F; € x. Therefore y(z, G,)=x.

Now let 7 and 4 be two types such that models B and C of CF; with types ¢
and 2 respectively have isomorphic CF subsystems (Eg, (f1)s ---) and (E¢, (fi)e» -+-)-
The combined type <4 is that of a structure B<C which is formed from systems B
and C as above with (Eg, (fO)s, ) = (Ec. (fi¢»..) and B C = Eg. The
underlying set of B<C is BU C, Dgec = Dy D¢, Ego¢c = Ey = E¢ and if K is
a finite subset of B U C fz<c(K) = fg(K n B) if this is nonempty and otherwise
fe<c(K) = fe(K). BLC extends both B and C because of the assumptions on
Ey = E.. Intuitively B<C is obtained by choosing from B first if possible. It is
clear that t</ is uniquely defined irrespective of the choice of B and C.

We now define a canonical prime ideal #(z, G) in 2(y(zr, ). We actually
define an ultrafilter U(z, G). # (7, G) is the set of complements to the members of
U(z, G). We say z € U(t, G) exactly when there is a Gy e 2. ,(I) and a type 4 such
that

GG, '
(G, v G, 9,G,fy...) has type 4,
{Fey(z, G): (Fu Gy, F, G) has type t<i}cz

U(z, G) must be shown to be an ultrafilter. U(z, G) is closed under supersef
since its definition asserts that z has a subset of a certain type. The UH property
of A guarantees that for any G, and 1 as above {Fey(t, G): (Fu G, F, G) has
type 1<A} # @ so U(z, G) does not contain the empty set. We now assert that for
an arbitrary z<y(t, G), if (G, v G,9, G, fy,...) has type A then

{Fey(z,G): (FuG,,F, G,fy,..) has type t<4}

is a subset of either z or y(tv, G)—z. This implies that either z or y(r, G)—z is in
Uz, G). Indeed let F, and F, be such that both (F, u G, F,, G, fy,...) and
(F, v G;, Fy, G, fy,..) have type t<A. The two systems are isomorphic by a map,
1T, which is quickly seen to be the identity on G, and to map Fy to Fy. Thus the UH
property together with the symmetry of V, yields that FyezeF; ez.

The last requirement U(r, G) must satisfy is that z;,z,e U(r, G)—z; N
n'zy € Uz, G). Accordingly for ie{l,2} let (G,,&, G, fy, ...) have type i; and
D, = {Fey(z,G): (FuG,, F,G,fy, ..) has type 1<;}cz;. Let A be the type
of (G, v G,,9,G,fy,...). We claim that

D= {Fey(z,G): (FuG UG, F, G,fy,..) has type t<l}cz; Nz,
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In fact of course DeD, n D, If Fe D then for any KcFu Gy U Gy, fulK)
=f4(Kn Fywhen Kn F#%@.In particular this holds when K<F u G; which is
what is needed to show (Fu Gy, F, G, fy, ...) has type 1<, 1.e FeD;.

A canonical prime ideal # (x) is now defined in an arbitrary #(x). For x = &
the definition is clear. Otherwise let a(x) be the least o with T*[#< (1) X {a}] # @
Let x; = {FeP.,(: T* (F,a(x)) ex}. x, Is canonically embedded in x so it
suffices to define # (x,) i.e. to assume x= 2 . ,(I). Now let = be the first (in the integer
code) type with y(z, Gex. f, = {zex: 2z y(z,G)ef(x, G,)} is a canonically
defined prime ideal in #(x).

Finally we define a canonical prime ideal #*(x) in P (x) such that #*(x) is
nonprincipal for infinite x. Fix a non-principal prime #(w) on #(w) (w & Std).
Define the sequence #'(x) of ideals in 2(x) via £°(x)=F(),F""'(x)
= #((x—{ag, -, a,}) Where £o%), ..., F(x) are principal primes generated by
dy, .., 8, Tespectively, and #7H(x) = £"(x) if #'(x) is nonprincipal. Let #*(x)
= #7(x) for some n with #"(x) nonprincipal where possible. In the remaining case
{ag, a;, ...} is an enumerated infinite subset of x. #(e) induces a nonprincipal
prime on {dy, 4y, ...}, hence on x. This is taken to be # *(x). S is now established in V.

IIC. Gauntt’s results on the axiom of choice for families of finite sets. For
new C" denotes the statement:

“BHyery collection of n element sets has a choice function.”

"I Z = {n,, ..., m} Cz denotes the statement C™ A ... A C™. Mostowski [18] originally
posed the question: “For what Z and n does C;—C"?” He also gave a sufficient
condition, D(Z, n), for this. Gauntt [7] answered the question by proving D(Z,n)
necessary (%),

Gauntt raised a technical question in [7]. His model of ZFA uses forcing rather
than the Mostowski construction. He conjectures that the Mostowski construction
- is insufficient for a necessity proof of D(Z, n). A related question arises from [7].
Gauntt states as a separate theorem that there is a ZF model for the necessity of
D(Z, n). If a Fraenkel-Mostowski model for the necessity of D(Z, n) existed then
the ZF necessity would be automatic by results of [20]. Tn this section we prove:

TICl. THEOREM.

If D(Z,n) fails there is a Fraenkel-Mostowski model for CptC",

Gauntt’s model for Cy++C" is an inner model of the Fraenkel-Mostowski model
of part a.

(%) The exact statement of D(Z, n) is;
“For every fixed point free permutation group G on n elements there is a subgroup
H CG and subgroups H; CH, i = 1, ..., m, such that

m

Y \Hi\\H] eZ.”

i=1

We do not refer to D(Z, n) here buf use instead Lemma 5 of [7].

e .
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The import of Theorem IICI is that Gauntt’s results for ZFA do not even
really use forcing, let alone require it. Similar considerations apply to Truss’ exten-
sion of Gauntt’s work (*).

IIC2. The category ;. Let Z = {n, ..., n,}cw. ; is the category of struc-
tures,

B = {B’ D’ E*’ {'}*5 Q*’f;ua "’-f;lk}
where:

e* is a well founded relation.

@* is a constant.

D v {@*} is the set of e*-minimal elements.

e* is extensional on B—D.

{ ¥* is an unordered n-tuple function with respect to e* Strictly it is an
w-sequence of functions { }.

B is the closure of D U {@*} under { }*.

£, is an np-ary choice operator (see IIB4) on the set D%, D? consists of all
elements with the form (i*, J)* where the *-elements of J are *-orderings of
a finite subset of D and i<max(ny, ..., n). Note. * indicates the relativization
of a set-theoretic concept to e*, @*, { }*.

o a6 TR

1C3. LeMMA. @, satisfies the assumptions of IIAL

Proof. Much of IIAl becomes clear once we make the following observation
in ZFA. Let Be % and let ¢: Dy— G where G is a set of individuals and ¢ is 1:1
and onto. Requirements a-f of TIC2 are exactly what is needed to show that ¢ ex-
tends uniquely to an isomorphism of (B;e* @ { }¥) with (HF(G),e,2,{})
where HF (G) is the collection of hereditarily finite sets over G. There is thus a unique
set of choice operators {£y, ..., fu} on HF(G)* such that ¢ is an isomorphism of B
and (HF(G), &, D, { }sSui» s Tm)-

The reader should have no trouble verifying assumptions a, b, ¢, and d of
IIAL for B’s of the form (HF(G), G, €,9,{ },fy» s f)) and translating the re-
sults to arbitrary B’s. In verifying IIAle one can assume that @ and Q' both have
the indicated form where Dq and Dy, are finite sets of individuals. As in Lemma
TIBS it develops that |Dg| = |Dg/| so that one can actually assume Do = Dgq.
and 7 = 7. In this situation the only difference between  and €' is in the defini-
tion of the f,,. Again as in LB D%, n Df = Dj, 0 Df = DE,. Thus the same 2-step
linking as in TIB5 (introduce an Q* with hybrid definitions of the f,) establishes
assumption e. ’

(% Truss considers a statement Cg which does not seem to have an automatic ZF transfer.
The methods of [20] do give an automatic transfer for the statement:

“Every linear ordering of a family whose members have cardinality in Z is associated
with a choice function on the family.”

‘ This and the work of [27], suffice to transfer all the results of [27] to ZF.
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TIC4. The Fraenkel-Mostowski model V,. We use the Mostowski construction
as reviewed in IIB7. Let M be a universe of ZFA+E with Std as its subuniverse
of well founded sets. Let I be the set of individuals in M and let

A* = (I; D, ¥, ﬂ*,{ }*7 ;1;, () nﬁ)

be a UH structure in %, with ground set I. Let I' be the group of automorphisms

of A* and let ¥, be the model obtained from I" be the Mostowski construction.

As in IIB7 A*e V. ‘ :
As is essentially argued in IIC3 there is a unique system

A = (HF(D), D, €., { }:us os)

such that the identity map on D extends to an isomorphism from 4* to A. The iso-
morphism is definable in V. From the standpoint of M one can state that a permuta~
tion 7 of D extends to an automorphism of A* if any only if it extends to an aulo~
morphism of A.

We remark that if G is finite and G* = D n TC*(G) (TC*(G) is the *-transi-
tive closure of G) then G* is finite and PG< FG*. We also note that for G D,
I'(G), is T([GY), the group of automorphisms of 4* which fix [G]. Mostowski’s
intersection lemma (IIA6) thus gives for Gy, Go=D:

[(Gy n Gy) = IT(IG, A Gy]) = [[IG4] v TIG,]] = [[(G)) v TGy
From this, as in [17], V(G; n G,) = VG n VG, for G, G, D.

IIC5. Proof of Theorem IICI Part a.

C" holds in Vy if and only if D(Z,n) is true.

Proof. Except for the absence of forcing the argument is as in [7]. We first
prove C" for neZ. The result of Mostowski [18] then concludes C" when D(Z, n)
is true.

We handle the case neZ by associating to each x with |x| = 7 a 1:1 map
¥,: x— D% Onecan then choose from x the element ¥ '(f,(¥,[x])). To define ¥, first

let G} = U G, where G, is the unique minimal G D with y e VG. For ye x let a, be
yeX

the least ordinal « such that for some ordering H of G%, y = T(H, ). Let J, be
the set of those orderings, H, of G} such that y = T(H, o). {a,: yex} is a set of
ordinals with cardinal <max{n; ..., n}. Let i, be such that a, is the ith member
of {u,;: yex}. ¥.(») = (i, J,) is the desired map. Tt is clearly [:1 und into D*.

If.D(Z, n) fails we must show that C" fails in V. In fact the collection of n-ele-
ment subsets of .D has no choice function in V. If such a function, ¢, existed g & VG,
would hold for a finite Go= D. We now cite:

TIC6. Lemma in ZFA (Gauntt [7], Lemma 5). Let D(Z, n) be false. Let GGy
be a finite set of atoms with [G—Gy| = n. Let f,_, ..., f,, be choice operators on Ga.
There are extensions of the f,, to G such-that if B is the corresponding object in @y,
and ae G—G, some automorphism of B fixes G, pointwise and moves a.

° :
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The argument is quickly concluded. By the UH property of A there is a G*< D
such that [G*]4 is isomorphic to the B of TIC6 via an isomorphism fixing G. It can
thus be assumed that G' = G*. Assume g(G~G,) = a and apply the automor-
phism, 7, of 1IC6 to obtain mg(xG—nG,) = n(a) # a. Since 7n(G) = G, n fixes
G, pointwise, and ¢ VG, the equation becomes g(G— Go)s¢a. This contradiction
completes the proof.

11C7. Proof of Theorem IICI Part b.
Gauntt's model can be described in V4 as (SW[D)[f] where f = U f, and Ulx]

neZ
denotes, in general, the smallest transitive subuniverse of M containing U and x.

Proof. Gauntt describes his model as (Std[D])[f] where f* is a generic choice
function on those subsets of D? with cardinal in Z. In defining “generic” Gauntt
uses the formulation of Cohen [1] which involves countable models and complete
sequences, The following reformulation of Gauntt’s definition is possible from the
reformulation of “generic™ in [25].

P denotes the inclusion ordered set of finite choice functions which are defined
on those subsets of some G% with cardinal in Z. Q<P is dense if every @ € P has
some extension in Q. Let f* be a choice function on those subsets of D* with cardi-
nalin Z. f' is generic if for every dense Q e Std[D] there is some ¢ € Q such that f*
exiends @.

(SA{DD(f) can be identified with Gauntt’s model once it is shown that fis
generic. Accordingly let Qe Std[D] be dense. 0 & P¥PIG for some finite G D.
Let ¢ be the restriction of fto G% Let * & Q be an extension of ¢. It is a well known
property of Std[D] (See e.g. [17]) that any permutation (in M) of D extends to an
automorphism of Std [D]. Tf ¢* is defined on G% then by the UH propetty of A there
is a 1:1 map i G- D such that 7 is the identity on G and n(¢p*) is a restriction
of /. Extend this n to an automorphism of Std [D]. ¢* e Q=7 (¢p*) enQ = Q since nis
the identity on G,. Thus n(p*) is a restriction of f'in Q so f is generic.

1ID. Other uses of the intersection lemma. We originally proved the intersection
lemma for the categories %, whose members ate structures with linear orderings
<y s <, and partial orderings =<, ..., <,. This proof is given in Jech [13].

The case n = 1, m = 0 gives the result of Mostowski [17]. The case n =1,
m = 1, gives an alternate roude to the result of Mathias [16]. The case n = 0, m =1
was originally used to give an independence proof of “Every infinite set contains
an infinite & -~chain.” from “Every infinite set is the disjoint union of infinite sets.”
This result is mentioned in [20]. Truss [26] proved this and a number of related
results by different methods (%), Jech and Felgner (see [5]) use our model to establish
the ZFA independence of Kurepa’s antichain principle from “Bvery linearly order-
able set is well orderable.”

(%) His methods are nol so very different. He uses Gauntt’s techniques t o produce, essentially,
our model of § 11B.
3 — Fundamenta Mathematicae t, XCII
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IIL. Indiscernability and models of the compactness theorem

We recall the notion of model theoretic indiscernability from Ehrenfeucht and
Mostowski [2]. Let 4 = (4; <, Ry, Ry, ...) be a first order structure where < is
a linear ordering. UcDomain < is a set of indiscernables if for any formula
B(xy, ..., %,) in the language of A () and any a; <...<a,, ay <. <al, Plag, ... ap)
<——><P(a1, wes @) holds in A.

II1. Treorem (Bhrenfeucht and Mostowski [2]). Let B = (B, <, Ry, ...) be
a first order structure where Domain <y is infinite. Let A be a lincar order type. Bis
elementarily equivalent to a structure A where Domain <A contains a set of indiscern-
able of type A.

Theorem III1 is shown to be essentially equivalent to the following independence
result.

102: Treorem (Halpern [8]). Let M satisfy ZFA+E and let < be a UM linear
ordering of the set I of individuals of M. Let I' be the automorphism group of (I, <)
and let V be the model obtained by the Mostowski construction (IIB7) from I'. The
following statement, essentially the compactness theorem, holds in V.

If e VG is a first order theory then some structure A € VG is a model for t.
3. Proof of a special case of Theorem III2 from Theorem IIL. In V the

following statement holds.

Let © be a first order theory satisfying:

© is consistent (%).

Every nonconstant function or predicate of « is in V@.

e V.

Every constant of © is in Vhu I

Ifa,bel and a + b then “a # b” is an axiom of 1.

Then t has a model in V.

o o6 T W

Proof. The UH property of < guarantees that I is a set of indiscernables for V,
i.e.if @(xy, ..., x,) is a formula of set theory with parameters in Vg and a; <...<aq,,

(") In set theory without choice or foundation a first order language can have arbitrary objects
(sets or individuals) among its operation and relation symbols. This is subject o the conditions that
these objects are digjoint from standard integer representations of the quantifiers, connectives, and
variables. The objects must also admit a well defined function which determines the number of
places in the operation or relation and distinguishes operations from relations.

A theory may be Godel numbered in the integers only in the presence of an enumeration of
the operation and relation symbols. This need not exist in the absence of choice. More to the point,
such an enumeration may exist in one model of ZFA but fail to exist in a submodel These points
should be borne in mind during the ensuing arguments.

By convention when @ (xy, ..., %,) is written it is assumed that its free variables are exactly
X1y aens Ko

(%) T is comsistent when every finite subset of 7 has a model.

©
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by<..<b, are in I then ®(ay, ..., a,)+> P(by, ..; b,) holds in V. This property
holds relative to V so the remainder of the argument takes place within V.

Theorem III1 (the EM Theorem) is first applied (in Std where AC is true)
to build a prototype, 4", for 4. A is then constructed from 4’". More specifically
let ¢’ be the following theory. The language of ¢’ is formed from that of t by deleting
the constants in 7 and adding a single binary relation symbol W e Vé. The axioms
of 7’ arc of the following sorts.

1. A single axiom states that W linearly orders its domain.

2. A list of axioms ¥, state that the domain of W has at least » elements.

3. For every axiom ®(ay,...,a,) of v with exactly the a,<...<a, in I an
axiom Zg of 1’ states (Vxy, .., X,) [, W..Wx,— ®(xy, ..., x)]-

‘We show that 7’ is consistent. Let ¢’ be a finite subtheory of 7". Let n, be the
largest n such that ¥, occurs in ¢’. Let a; <...<a,, in I. Let o be the subtheory of ©
with the following axioms:

a) all a; # a; ISi # j<ny,

b) all @by, ..,b,) where & is a formula of o, by<..<b,, {b1,...,b,}
c{ays s Gy

The axioms of type b) are in t since some ®(cy, ..., Gy, €1 <...<¢,€l,isin T
and 7 is a set of indiscernibles for V. Therefore ¢ has a model B. Build a model B’
of ¢’ by deleting as constants the (a;)p and letting (a)p(W)p(a))p <> a;<a;. Thus
7' is consistent.

All functions and relations of 7’ are in Fg so 7’ can be assumed to be coded
in Sid. Let 7' be the closure of 7’ by Skolem functions. ="/ is also consistent and coded
in Std so it has a model, C. (<)¢ has infinite domain because the axioms ¥, are
in ¢’’. Thus the EM Theorem is applied in Std to give a model A" with a set, #,
of < ~ indiscernibles with the order type of the rational numbers. Since "’ is closed
under Skolem functions we may assume that every a'’e d” is fg..(ry, ..., 1) for
some function f of 7" and some r{ (W) 75 ... (W)or, in #. We also remark that if
Iy wen 1y} i845 w0, S} f  then for some function g of 77, falry, .., r)
= gA”(Sl 3 eers S

The model 4 of z is built by “locally approximating” 4", This is to say that the
substructure of 4 generated by @, <...<a,in I'is isomorphic to the substructure of 4"
generated by #{(W)arr oo (W), in #. It does not matter which ry, ..., 7, is chosen
since 7 is a set of indiscernibles.

Once stated the idea is routine to execute. Start with the set:

= {(G,f): (Hn e w)[G=IA|G| = nAfis an n-ary function of 7’1}

For cach predicate p(xy, ..., %,) of 7 (or t") and n tuple (G, fp), -, (G, f;) from D
we define the “truth value” of p((Gy,f1)s s (G i) Let G= Gy U ... UG,.
Let ¢ be an order preserving embedding of G mto F. ©{G;> denotes the tuple of the
elements of ¢ [G] arranged in (W),.. order. The truth value of P((Gy, 1) ios (Gun f))

3%
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is defined as that of p((fi)ar@<G1Y s e (£ )ar@<G,) in A”. The indiscernibility
of ¢ guarantees that this definition is independent of the choice of o.

Let A be the set of equivalence classes of D under the relation d; ~d, if and only
if the truth value of d; = d, is T. For each predicate p of T suy pa(ldi1, ey [d])
is true when the truth value of p{(dy, ..., d)) is T. This definition is independent of
the representative of the [d;] chosen. For each n-ary function symbol f of ¢ and
[d,1, ..., [d,]in A we define the function f,. at ([d,], - [d,]). Since 7" is Sholem closed
we remarked earlier that there is a single G and function symbols /', w.., f of 7
such that (G,f)) represents [d;]. If |G| = m let h be the " function symbol of m
variables defined by

h(xlb ey m) =f(fl(x1a wary x,,,), --'5f;|(xl 2 vy xm)) M

Fulldy], ey [4,]) is defined to be [(G, h)]. This definition is independent of the
choice of G,fy, o> fy-

It is now straightforward to show that if ®(x;,..,x,) is a formula of
7, G fily ooes [Go f)l€A4, G = Gy U ... U Gy, and pisan order-preserving map of G
into # then & (([Gy, fi] .. [y, £i]) is true if and only if & 4.(fy 0G>5 e [ 0KGY)
is true. Thus in particular 4* and 4" are elementarily equivalent and 4* is a model
of <. ‘

A is just A* except that < is “forgotten” and a, is interpreted as [{a}, Identity].
Let &(ay, ..., a,) be an axiom of t where a; <...<&,. Let ¢: {ay, v, g} = F b
order preserving. The truth value of @ ([a;, Id]) is that of @4 (1d(p(ay), we, Td (0 (ar,))
= ®,.(¢(ay), ..., ¢(a,). The statement

Zp e (V1 wny %) [0y <ot <2, B (X4, wory X,)]

is an axiom of v 50 @4 (@(ay), ..., ¢ (a,)) is true. D(ay, ..., ) is therefore true in 4
and 4 is a model for 7. 4 is defined from © and 4" so 4 € V.

1II4. Proof of Theorem IN2 from the special case. Let 7, € VG be a consistent
theory in V. We will produce theories 7,, ..., Ts in V such that ¢, satisfies the first i
special properties of III3 and such that a model for 7, is definable from 7,.; and
a model for ;. Since a model for 75 exists in Vg (I113) a model for 7, exists in VG.

Every nonconstant function and predicate of 7, must be in P$. This is accom~
plished by condensing the n-ary predicates (operations) of 7, into a single (n-+1)-ury
predicate P, (operation F,..;) of 7,. The countably many relations and functions
can easily be coded in Pp. We also add a unary predicate £ (for “true element™)
and include the functions and relations of 7 as constants of 7,. If @ is a formula
of 7; let Zg be the formula of 7, obtained by the following inductive process.

1) Replace terms ft; ... f, of 7y with fi. 1/t ... 8, of 1,

2) Replace formulae pt, ... f, of ©, with p,.,pt; .. 1, of 1,.

3) Relativize all variables to E.

The axioms of 7, are the formulae of the following forms: ~ Ep for cach pred-
icate p of 4. ~Ef for every nonconstant function of 7, (Vx, ... x,) [Ex  A... A EX,
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- EF, fxy ... x,] for every n-ary function f of 7, and Z, for every axiom & of ;.
It is easy to show that 7, is consistent and to obtain a model for t, from one of 7,
(look at the extension of E, interpret fx;..x, = F,y1f¥%;... %, and px; .. x,
S Py P e Xy) )

7, must be in V¢ and satisfy the propesties of 7, and 7,. Let R, be the least rank
(over I) containing t,. Let Ue V¢ be the set of all consistent theories 7 & R, with
the given set of predicatés and nonconstant functions. t; is rigged so that a model
of 7, contains a U-indexed sum of models of the members of U. When this is done
the 7, component of the model is a model of 7,.

1, includes the given functions and predicates (of 7,), a binary predicate p(x, y),
4 new “true clement” predicate E*, and each 1 e U as a constant. For e U let EF
denote the defined predicate E¥x «» E*x A ptx. The axioms of 75 assert the disjoint-
ness of the £* for 7 & U, the closedness of EX under the operations, and the relativi-
zation, @%%, of each axiom @ of 1. 7, clearly satisfies a, b and ¢ of III3 and E gives
a model of 7,.

7, must satisfy the requirements on 73 and have constants only in Vpul
75 must have in addition all statements “a # b” for a # b in 1. We actually have
1, = 15 Recall ([15] or 1IB8) that there is a 1:1 function T* from Z.,(I)xOn
orito V. The language of 75 is obtained by deleting all constants of 73, adding the
elements of I as new constants, adding a new “true element” predicate E¥*, and
adding a new n-ary function symbol f;,(coded in V) for each constant of 7, with the
form T*(G, o) where |G| = n. The axioms of 15 consist of the “a # b” fora # bin I,
E**f (dy, o, dy) When ay<...<d, and T*({ay, ..., @,}, @) is a constant of 3, and
cach P (£l Gr s oes Funanl Gi>) Where & (TH(Gy, o), oo, TH(Gy, o)) is an axiom
of 7, (n; denotes |G, and {G;> denotes the tuple of G; arranged in increasing < — or-
der). The consistency of v5 and the existence of a model of 75 are clear because of
the 1:1 correspondence between the constants T#G, &) -of t; and the “true element
terms” f,,LG> of 1s. i i

The following argument expresses the heuristic equivalence of Theorems TIT1
and TII2.

III5. Derivation of the EM Theorem from Halpern’s Theorem ar2).

Prool. Let 1 be the given order type. Let p be a UH order type in which an
ordering of type A can be embedded. The existence of u is established using ultra-
powers (giving a much stronger result) or by a direct construction. Extend the
standard universe, Std, so that it becomes the well founded sets of a universe, M, of
ZFA-+E in which 7 admits an ordering, <, of type . Let V be the model obtained
from the Mostowski construction using the group of <-automorphisms ([17]).

Now let 7 & Std be the given theory with the ordering W. Let 7' € V be the theory
with the elements of I added as constants and with “qWb” added as axioms for those
pairs (z, b) with a<b. t' is consistent since W has an infinite domain in some model
of 7. v’ € Vi since I, <, and 7 are the parameters in its definition.

Let Ae Vg be a model of t (Theorem 1112). The mapping a— a, is necessa-
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rily 1:1 so we may assume a4 = 4. Let &, <...<4, and b, <..<b,. Since I'is a set
of <-indiscernibles for V we may say there “(ay, ..., a,) is true in 4” if and only if
“®(by, ..., b,) is true in A”. Thus By voes @) Dby, s b)) is true in A relative
to V. By the absoluteness of the satjsfaction relation /s a set of indiscernibles for 4
relative to M. Since E holds in M 4 is isomorphic to a structure, A* in the well
founded sets, Std. 4* is 2 model of 7 and has a set of indiscernibles with order type
4, hence it has one with order type 1.

It is natural to ask at this point whether other instances of the equivalence
between indiscernibility theorems and models for the compactness theorem exist.
There is another well known model of the compactness theorem due to Halpern
and Levy [12]. One could ask in particular whether an indiscernibility theorem
underlies the proof of the compactness theorem in this model. We exhibit such an
indiscernibility theorem below. It is similar to the EM Theorem but the EM Theorem
seems neither to generalize nor specialize it. An unfortunate feature of our theorem is
the restriction to countable 7. We do not know the:situation for uncountable <.

The theorem is phrased in the following context. Let © be a fixed theory and
let  be a fixed infinite set of unary predicates of 7. Let 4 be a model of 7. ( leads
to a natural topology on A as follows. For every finite function fep x {T', F} let

U} = {ae A: (Vp e Domainf)[Truth Value in 4 of p(a) = (P} .

The U, are a basis for the topology we call the @-topology on 4. The most common
example of this situation is when 4 = 2°, p = {p;: ic v}, and p(a)«=ra() = 1.
The topology is then the usual topology on 2°.

Let &(xy, ..., x,) be a formula of 7, let Je 4, and let 4y, ...,q,€7 be distinct
members of A. & holds locally on J at ay, ..., a, if there are disjoint neighborhoods
Uy,...U, of ay,..,a, such that whenever beUinlJ, i=1,..,n, then
(b, ..., b,) holds. JoA4 is a set of local indiscernibles if whenever ®(ay, ..., a,)
holds at distinct «, ..., a, €J then @(x, ... x,) holds locally on J at a;..,a,.

{ is said to be independent if every U, # & (®). The motivation for this is that
the truth value of p((4), ..., p,(a) does not determine that of p,..;(a). The predicates
pla)«<a(@ =1 in 2° are independent.

1T 6. TueOREM (see footnote (°)). Let © be & countable theory and let © be an
independent set of unary predicates of . © has a model with a dense set of local indis-
cernibles.

Proof. Extend Std to obtain the Halpern-Levy model, V of [12]. V = Std[/]
where [is an independent set of generic members of 2°. From within V this translates,
as in [12], to:

(%) One could replace this -with the weaker:

“If Us# @ and Uy # @ then either Uy Uy @ or fand g are incompatible”.
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(1) I=2%, V= Std[1].
(2) The predicates p(a)y«>ae Ina(i) = 1 are independent.

3 I @&(x;,..,x,) has parameters in Std U {I} and P(ay, ..
distinct ay, ..., @, in I then ®(x,, ...

, a,) holds for
, X,) holds locally on I at ay,...,a,.

3) says that Iis a set of local indiscernibles for V (together with €, I, and constants
for the elements of Std). We remark that Vand T are definable in V from I and satisfy
the standard properties (see [19] and IIB7). The main theorem of [12] is that a theory
in VG has a model in VG.

Let e Std be the given theory. Let {p;: i€ w} be an enumeration, in Std,
of p. Let 7’ be the extension of 7 with new constants from / and exactly the axioms
pia) where wel and a(i) = 1. ' is consistent since the p; are independent.
1" & Vo so 7’ has a model 4 € V. Arguing as in IIIS we can assume J= A and assert
that I is a set of locagl indiscernibles for 4 relative to V.

‘We do not see how to proceed from here without invoking the countability of <.
Begin the proof over again starting from the countable transitive model Std* in
which 7 is absolute and in which enough of ZFE holds in order to carry out the
specific arguments above. Extend Std* to V* via complete sequences. The absolute-
ness of the satisfaction relation establishes that I is a set of local indiscernibles rela~
tive to the true universe, Std.

I17. Final remarks.

a. Using Skolem functions one can refine Theorem III6 to insure that the @
topology is Hausdorff on J.

b. Using the notion of forcing in model theory and the combinatorial theorem
of Halpern and Lauchli, [11] one can give a proof of Theorem 1116 without using
set theory. This proof does not evade the countability of 7.

¢. Ramsey’s combinatorial theorem entered into the proof of the EM Theorem
and Halpern’s theorem (II12). Gaifman [6] eliminates it from the EM Theorem.
This and III4 eliminates it also from Halpern’s theorem. ‘

d. Theorem YII6 is equivalent to the theorem of Halpern and Levy [12] in the
sense that one can derive the combinatorial theorem of Halpern and Lauchli [11],
from Theorem TTT6. Halpern [10] gives some idea of how such an argument might go.
This was part of the inspiration for Theorem III6. We hope to say more on
this subject at a later date.
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Equitable partitions of the continuum
by

W. Charles Holland (Bowling Green, Ohio)

Abstract. The real line contains no dense homogeneous subset which is isomérphic to its
complement. .

A partition of the real line R into two subsets Sand R\S'is equitable if Sis dense
in R, § is homogencous (in the sense of order-preserving permutations) and S= RS
(as ordered sets). It became of interest to find such a partition during the study of
automorphisms of certain ordered permutation groups [2]. However, it seems to
be of independent set-theoretic interest whether such a partition exists. It will be
shown in this paper that no such partition exists. -

Suppose then that S is such a subset. First note that R\S must also be a dense
subset of R. For consider a maximal real interval J contained in §; J cannot be open,
for then its end points are adjacent points of R\S, which implies R\S, and hence
also S, is discrete, an obvious impossibility. Thus, J must contain at least one of its
end points. Suppose that J is not just a single point. Then since S is homogeneous,
there must exist an order-preserving permutation f of .§ which maps an end point
of J into the interior of J. Because of the density of S in R, f has a unique extension
to an order-preserving permutation of R. Then J U Jf =1 js a real interval contained
in S, denying the maximality of J. Hence J is just a single point and R\S is
dense in R.

Let @: S-» R\S denote the assumed order isomorphism and observe that also
@: R\S— 8. Because of the density of § and R\S, ¢ has a unique extension to an
order-preserving permutation of R. The same is true of any order-preserving permuta-
tion of S or of R\S. No notational distinction will be made between a map and its
extension.

1t is now useful to study the group A(S) of all order-preserving permutations of 5.
A convex subsel B< S is an o-block if for each g € A(S), Bg = Bor Bg n Bis empty.
A(S) is o-primirive if there are no non-trivial o-blocks. Tt is known [1] that for an
o-primitive 4(S), there are just these two possibilities: (i) 4(8) is o-2-transitive;
for ecach x<y, z<w, x,¥,z, weS, there exists £ e A(S) such that xh = z and
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