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Equitable partitions of the continuum
by

W. Charles Holland (Bowling Green, Ohio)

Abstract. The real line contains no dense homogeneous subset which is isomérphic to its
complement. .

A partition of the real line R into two subsets Sand R\S'is equitable if Sis dense
in R, § is homogencous (in the sense of order-preserving permutations) and S= RS
(as ordered sets). It became of interest to find such a partition during the study of
automorphisms of certain ordered permutation groups [2]. However, it seems to
be of independent set-theoretic interest whether such a partition exists. It will be
shown in this paper that no such partition exists. -

Suppose then that S is such a subset. First note that R\S must also be a dense
subset of R. For consider a maximal real interval J contained in §; J cannot be open,
for then its end points are adjacent points of R\S, which implies R\S, and hence
also S, is discrete, an obvious impossibility. Thus, J must contain at least one of its
end points. Suppose that J is not just a single point. Then since S is homogeneous,
there must exist an order-preserving permutation f of .§ which maps an end point
of J into the interior of J. Because of the density of S in R, f has a unique extension
to an order-preserving permutation of R. Then J U Jf =1 js a real interval contained
in S, denying the maximality of J. Hence J is just a single point and R\S is
dense in R.

Let @: S-» R\S denote the assumed order isomorphism and observe that also
@: R\S— 8. Because of the density of § and R\S, ¢ has a unique extension to an
order-preserving permutation of R. The same is true of any order-preserving permuta-
tion of S or of R\S. No notational distinction will be made between a map and its
extension.

1t is now useful to study the group A(S) of all order-preserving permutations of 5.
A convex subsel B< S is an o-block if for each g € A(S), Bg = Bor Bg n Bis empty.
A(S) is o-primirive if there are no non-trivial o-blocks. Tt is known [1] that for an
o-primitive 4(S), there are just these two possibilities: (i) 4(8) is o-2-transitive;
for ecach x<y, z<w, x,¥,z, weS, there exists £ e A(S) such that xh = z and
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yh=w, or (i) A(S) is uniquely transitive; for each x,ze S, there exists exactly
one h & A(S) such that xh = z. In this second case, 4(S) is isomorphic (as a group)
to a subgroup of the additive group of real numbers, which in turn is isomorphic
(as an ordered set) to S (Ohkuma [3]).

It will be shown that the A(S) of this study falls in case (ii). First, 4(S) is
o-primitive. For consider any o-block BES. Let B be the convexification of B in R.
if B were a proper block, let @ € R be an end point of B. Whether ¢& S or ag R\S,
there exists f& 4(S) such that af is in the interior of B, so that Bf # B, yet Bfn B
is not empty, a contradiction. Hence there is no proper o-block, and A(S) is
o-primitive.

Next, if A(S) were 0-2-transitive choose points a<x<y<b with ¢, he R\S,
x,yeS. Then ap,bpeS and ap<bp. Hence there exists g&A(S) such that
apg = x and bepg = y. Then the continuous map g must have a real fixed point
in the interval [a, b], which is impossible since pg: S—R\S and @g: R\S-S.

Hence A(S) is uniquely transitive on S, and S is isomorphic (as an ordered set)
to a subgroup of the additive group of real numbers. If this isomorphism is v, then
since Sy is a rion-discrete subgroup of R, Sy is dense in R, so that y has an exten-
sion to an order-preserving permutation of R. Thus, Sy~ R\Sy, and it may be
assumed henceforth that Sy = S is a subgroup of R such that A(S) is uniquely
transitive and S= R\S.

For each s e S, let 1, denote the translation xt, = x+s5 of S. The only order-
preserving automorphism of S is the identity map, for if ¢ is such, then o and 7,
are members of 4(S) which agree at 0 and so must be equal; but the only 7, which
is a group homomorphism is the identity map.

Tt is clear that the map g+ ¢~ ‘g is an order-preserving group automorphism

of A(S). Therefore, g = ¢ g for all ge A(S).

If xp <xh for some x € S, he A(S), then yp <yh for all y € S; for by homoge-
neity, there exists geA(S) such that xg = y, which gives risc to yo = xg¢
= xpg<xhg = xgh = yh, using the fact that ¢ commutes with all g € 4(S) from
the previous paragraph, and that 4(S), being isomorphic to § as a group, is
abelian.

The map ¢. can now be described arithmetically. In fact s@ = s+-0p for every
s € S. For otherwise, say s¢ >s-+0¢ for some s & S. Then 0p <sp —s, and by density,
there exists ze S, 0p<z = Or,<sp—s. By the previous paragraph, sp<st,
= §+2z<s@, a contradiction. Similarly, it cannot be that sp<s-+0p, and so
50 = s+0¢.

The conclusion is that R\S = Sp = S+0¢ is a coset of S in the group R,
and in fact is the only other coset of S; that is, S has index two in R. But as R is
a divisible group, it has no subgroups of finite index, and so no such S can exist.

Two further unsolved questions of this sort may be posed.

Is there an equitable partition of R into three or more subsets?

Is there an equitable partition of R"?
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