130 D. Pincus

- [4] U. Felgner, Independence of the prime ideal theorem from the order extension principle, to appear.
- [5] and T. Jech, Variants of the axiom of choice in set theory with atoms, Fund. Math. 79 (1973), pp. 79-85.
- [6] H. Gaifman, Uniform extension operators for models and their applications, Sets, Models and Recursion Theory, 1967.
- [7] R. J. Gauntt, Axiom of choice for finite sets, a solution to a problem of Mostowski, to appear.
- [8] J. D. Halpern, Independence of the axiom of choice from the Boolean prime ideal theorem, Fund. Math. 55 (1964), pp. 57-66.
- [9] On a question of Tarski and a maximal theorem of Kurepa, Pacific J. Math. 41 (1972), pp. 111-121.
- [10] Nonstandard combinatorics, Bull. London Math. Soc., to appear.
- [11] and H. Läuchli, A partition theorem, Trans. Amer. Math. Soc. 124 (1966), pp. 360-367.
- [12] and A. Levy, The Boolean prime ideal theorem does not imply the axiom of choice, Proc. Symp. Pure Math., Vol. XIII, Part I, pp. 83-134.
- [13] T. Jech, The axiom of choice, North Holland 1973.
- [14] B. Jonsson, Homogeneous universal relation systems, Math. Scand. 8 (1960), pp. 137-142.
- [15] H. Läuchli, The independence of the ordering principle from a restricted axiom of choice, Fund. Math. 54 (1964), pp. 31-43.
- [16] A. R. D. Mathias, The order extension principle, Proc. Symp. Pure Math., Vol. XIII, Part II.
- [17] A. Mostowski, Über die Unabhängigkeit des Wahlordnungssatzes vom Ordnungsprinzip, Fund. Math. 32 (1939), pp. 201–252.
- [18] Axiom of choice for finite sets, Fund. Math. 33 (1945), pp. 137-168.
- [19] D. Pincus, Support structures for the axiom of choice, J. Symbolic Logic 36 (1971), pp. 28-38.
- [20] Zermelo-Fraenkel, consistency results by Fraenkel-Mostowski methods, J. Symbolic Logic 37 (1972), pp. 721–743.
- [21] On the independence of the Kinna Wagner principle, Z. Math. Logik, Grund. Math. 20 (1974), pp. 503-516.
- [22] Local indiscernibles (abstract, ASL Spring 1973), J. Symbolic Logic 39 (1974), pp. 195.
- [23] J. Plotkin, Generic embeddings, J. Symbolic Logic 34 (1969), pp. 388-394.
- [24] Nonalgebraic theories and models of ZF (abstract), Amer. Math. Soc. Transl. Notices, October, 1969, pp. 981.
- [25] Shoenfield, Unramified forcing, Proc. Symp. Pure Math., Vol. XIII, Part I, pp. 357-382.
- [26] J. Truss, Classes of Dedekind finite cardinals, Fund. Math. 84 (1974), pp. 187-208.
- [27] Finite axioms of choice, Ann. Math. Logic 6 (1973), pp. 147-176.

Accepté par la Rédaction le 2, 9, 1974

Equitable partitions of the continuum

b

W. Charles Holland (Bowling Green, Ohio)

Abstract. The real line contains no dense homogeneous subset which is isomorphic to its complement.

A partition of the real line R into two subsets S and $R \setminus S$ is equitable if S is dense in R, S is homogeneous (in the sense of order-preserving permutations) and $S \approx R \setminus S$ (as ordered sets). It became of interest to find such a partition during the study of automorphisms of certain ordered permutation groups [2]. However, it seems to be of independent set-theoretic interest whether such a partition exists. It will be shown in this paper that no such partition exists.

Suppose then that S is such a subset. First note that $R \setminus S$ must also be a dense subset of R. For consider a maximal real interval J contained in S; J cannot be open, for then its end points are adjacent points of $R \setminus S$, which implies $R \setminus S$, and hence also S, is discrete, an obvious impossibility. Thus, J must contain at least one of its end points. Suppose that J is not just a single point. Then since S is homogeneous, there must exist an order-preserving permutation f of S which maps an end point of J into the interior of J. Because of the density of S in R, f has a unique extension to an order-preserving permutation of R. Then $J \cup Jf^{-1}$ is a real interval contained in S, denying the maximality of J. Hence J is just a single point and $R \setminus S$ is dense in R.

Let $\varphi \colon S \to R \setminus S$ denote the assumed order isomorphism and observe that also $\varphi \colon R \setminus S \to S$. Because of the density of S and $R \setminus S$, φ has a unique extension to an order-preserving permutation of R. The same is true of any order-preserving permutation of S or of $R \setminus S$. No notational distinction will be made between a map and its extension.

It is now useful to study the group A(S) of all order-preserving permutations of S. A convex subset $B \subseteq S$ is an o-block if for each $g \in A(S)$, Bg = B or $Bg \cap B$ is empty. A(S) is o-primitive if there are no non-trivial o-blocks. It is known [1] that for an o-primitive A(S), there are just these two possibilities: (i) A(S) is o-2-transitive; for each x < y, z < w, x, y, z, $w \in S$, there exists $h \in A(S)$ such that xh = z and

yh = w, or (ii) A(S) is uniquely transitive; for each $x, z \in S$, there exists exactly one $h \in A(S)$ such that xh = z. In this second case, A(S) is isomorphic (as a group) to a subgroup of the additive group of real numbers, which in turn is isomorphic (as an ordered set) to S (Ohkuma [3]).

It will be shown that the A(S) of this study falls in case (ii). First, A(S) is o-primitive. For consider any o-block $B \subseteq S$. Let \overline{B} be the convexification of B in R. If B were a proper block, let $a \in R$ be an end point of B. Whether $a \in S$ or $a \in R \setminus S$, there exists $f \in A(S)$ such that af is in the interior of B, so that $Bf \neq B$, yet $Bf \cap B$ is not empty, a contradiction. Hence there is no proper o-block, and A(S) is o-primitive.

Next, if A(S) were o-2-transitive choose points a < x < y < b with $a, b \in R \setminus S$, $x, y \in S$. Then $a\varphi, b\varphi \in S$ and $a\varphi < b\varphi$. Hence there exists $g \in A(S)$ such that $a\varphi g = x$ and $b\varphi g = y$. Then the continuous map φg must have a real fixed point in the interval [a, b], which is impossible since $\varphi g \colon S \to R \setminus S$ and $\varphi g \colon R \setminus S \to S$.

Hence A(S) is uniquely transitive on S, and S is isomorphic (as an ordered set) to a subgroup of the additive group of real numbers. If this isomorphism is ψ , then since $S\psi$ is a non-discrete subgroup of R, $S\psi$ is dense in R, so that ψ has an extension to an order-preserving permutation of R. Thus, $S\psi \approx R \setminus S\psi$, and it may be assumed henceforth that $S\psi = S$ is a subgroup of R such that A(S) is uniquely transitive and $S\approx R\setminus S$.

For each $s \in S$, let τ_s denote the translation $x\tau_s = x+s$ of S. The only order-preserving automorphism of S is the identity map, for if σ is such, then σ and $\tau_{0\sigma}$ are members of A(S) which agree at 0 and so must be equal; but the only τ_s which is a group homomorphism is the identity map.

It is clear that the map $g\mapsto \varphi^{-1}g\varphi$ is an order-preserving group automorphism of A(S). Therefore, $g=\varphi^{-1}g\varphi$ for all $g\in A(S)$.

If $x\varphi < xh$ for some $x \in S$, $h \in A(S)$, then $y\varphi < yh$ for all $y \in S$; for by homogeneity, there exists $g \in A(S)$ such that xg = y, which gives rise to $y\varphi = xg\varphi = x\varphi g < xhg = xgh = yh$, using the fact that φ commutes with all $g \in A(S)$ from the previous paragraph, and that A(S), being isomorphic to S as a group, is abelian.

The map φ can now be described arithmetically. In fact $s\varphi = s + 0\varphi$ for every $s \in S$. For otherwise, say $s\varphi > s + 0\varphi$ for some $s \in S$. Then $0\varphi < s\varphi - s$, and by density, there exists $z \in S$, $0\varphi < z = 0\tau_z < s\varphi - s$. By the previous paragraph, $s\varphi < s\tau_z = s + z < s\varphi$, a contradiction. Similarly, it cannot be that $s\varphi < s + 0\varphi$, and so $s\varphi = s + 0\varphi$.

The conclusion is that $R \setminus S = S\varphi = S + 0\varphi$ is a coset of S in the group R, and in fact is the only other coset of S; that is, S has index two in R. But as R is a divisible group, it has no subgroups of finite index, and so no such S can exist.

Two further unsolved questions of this sort may be posed.

Is there an equitable partition of R into three or more subsets?

Is there an equitable partition of R^n ?

References

- W. C. Holland, Transitive lattice-ordered permutation groups, Math. Zeit. 87 (1965), pp. 420-433.
- [2] Outer automorphisms of ordered permutation groups, Proc. Edinburgh Math. Soc. 19 (1975), pp. 331-344.
- 3] T. Ohkuma, Sur quelques ensembles ordonnés linéarment, Fund. Math. 43 (1954), pp. 326-337.

BOWLING GREEN STATE UNIVERSITY Bowling Green, Ohio

Accepté par la Rédaction le 9. 9. 1974