

## Complete exact sequences

by

## Donald Cook (Manhattan, Kan.)

Abstract. All groups in this paper are Abelian and have the p-adiac topology. A subgroup A of a group B is a subspace of B if the relative topology on A coincides with the p-adiac topology on A. For each group A,  $A^*$  denotes the completion of  $A/p^mA$  as a metric space.

If  $f: A \rightarrow B$ , then f induces  $f^*: A^* \rightarrow B^*$ . Moreover, \* is a function on the category of Abelian groups. However, \* is neither left nor right exact.

This paper is a study of the class of short exact sequences  $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$  with A a subspace of B and for which the induced sequences  $0 \rightarrow A^* \rightarrow B^* \rightarrow C^* \rightarrow 0$  remains exact.

1. Basic concepts. All groups in this paper are Abelian and have the p-adiac topology. The basic results of such groups are found in [1] and [2].

A subgroup A of a group B is a subspace of B if the relative topology on A coincides with the p-adiac topology on A. If A is p-pure in B, i.e.  $p^nA = A \cap p^nB$  for  $n < \omega$ , then A is a subspace of B. However,  $p^nB$  is a subspace of B that need not be p-pure in B. The class of short exact sequences

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

with A a subspace of B is a proper class as defined in [3].

It is well known that a group A is metrizable if and only if  $p^{\omega}A = \bigcap p^{n}A = 0$ .

For each group A, the quotient group  $A/p^{\omega}A$  is always metrizable. If  $A^*$  denotes the completion of  $A/p^{\omega}A$  as a metric space, then  $A^*$  can be made into a group and the completion topology is the p-adiac topology. If  $p^{\omega}A = 0$ , then A is a dense p-pure subspace of  $A^*$ .

If  $f: A \to B$ , then f induces  $f^*: A^* \to B^*$ . Moreover, \* is a function on the category of Abelian groups. However, \* is neither left nor right exact.

This paper is a study of the class of short exact sequences  $0 \to A \to B \to C \to 0$  with A a subspace of B and for which the induce sequences  $0 \to A^* \to B^* \to C^* \to 0$  remains exact.

2. Complete exact sequences of metrizable groups. In this section we study exact sequences of groups without elements of infinite p-height.

DEFINITION 2.1. Let  $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$  be exact. Then E is a complete exact sequence if the induced sequence  $E^*: 0 \rightarrow A^* \rightarrow B^* \rightarrow C^* \rightarrow 0$  is exact.

icm<sup>©</sup>

THEOREM 2.2. Let  $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$  be an exact sequence of groups. Then E is a complete exact sequence of metrizable groups if and only if A is a closed subspace of B.

Proof. Suppose A is a closed subspace of the metrizable group B. Then C is metrizable and the sequence  $0 \rightarrow A^* \rightarrow B^* \rightarrow B^* / A^* \rightarrow 0$  is exact. We will show that  $B^*/A^*$  is a complete group that contains B/A as a dense p-pure subgroup. The sequences  $0 \rightarrow A \rightarrow A^* \rightarrow A^* / A \rightarrow 0$  and  $0 \rightarrow B \rightarrow B^* \rightarrow B^* / B \rightarrow 0$  are exact. Since A is closed in B, then the  $3 \times 3$  Lemma shows that the sequence

$$0 \to B/A \to B^*/A^* \to (B^*/B)/(A^*/A) \to 0$$

is exact. Now B/A is p-pure and dense in  $B^*/A^*$  since  $B^*/B$  is p-divisible and  $A = A^* \cap B$ . Finally, since  $p^{\omega}C = 0$ , then  $C^* \simeq (B/A)^* \simeq B^*/A^*$ . Thus, E is a complete exact sequence of metrizable groups.

Suppose E is a complete exact sequence of metrizable groups. Since  $E^*$  is exact, by Theorem 13.1 in [1],  $A^*$  is a closed subspace of  $B^*$ . Thus,  $p^nA^* = U \cap A^*$  with U open in  $B^*$ . Therefore,  $p^nA = p^nA^* \cap A = U \cap B \cap A$  with  $U \cap B$  open in B. Thus, A is a subspace of B. Since C is metrizable, then A is closed in B.

COROLLARY 2.3. Let B and C be metrizable, with  $f: B \rightarrow C$  an epimorphism. Then Kerf is a subspace if and only if  $\operatorname{Kerf}^* = (\operatorname{Kerf})^*$ .

Proof. Suppose Kerf is a subspace. Since 0 is closed in C, then  $0 \rightarrow (\text{Ker} f)^*$  $\rightarrow B^* \xrightarrow{f^*} C^* \rightarrow 0$  is exact. Thus  $\text{Ker} f^* = (\text{Ker} f)^*$  if and only if Ker f is a subspace of B.

PROPOSITION 2.4. Let B be a metrizable group and  $f: B \rightarrow C$ . If Imf is a subspace then  $Imf^* = (Imf)^*$ .

Proof. Suppose Im f is a subspace. If  $y \in (\text{Im } f)^*$ , then there are  $y_n \in \text{Im } f$  such that  $y_n \to y$  in  $C^*$ , hence in  $(\text{Im } f)^*$ . In the p-adiac topology we can choose a Couchy sequence  $b_n \in B$  with  $f(b_n) = y_n$ . Let  $b_n \to b \in B^*$ . Then  $f^*(b) = y$  and  $y \in \text{Im } f^*$ . Since  $\text{Im } f^* \subseteq (\text{Im } f)^*$ , then  $\text{Im } f^* = (\text{Im } f)^*$ .

If A is p-pure in B then  $A^*$  is a summand of  $B^*$ , thus A is p-pure closed if and only if  $B^* = A^* \oplus (B/A)^*$ .

COROLLARY 2.5. Let B be a metrizable group and f:  $B \rightarrow C$ . Then  $B^* = \operatorname{Ker} f^* \oplus \operatorname{Im} f^*$  if and only if  $\operatorname{Ker} f$  is a closed p-pure subgroup.

THEOREM 2.6. There is a one to one correspondence between p-pure closed subgroups of a metrizable group B and summands of  $B^*$ : given  $A \subseteq B$ , let  $A^*$  correspond to A; given X a summand of  $B^*$ , let  $X \cap B$  correspond to X.

Proof. Suppose  $B^* = X \oplus Y$ . Then the restriction to B of the projection onto Y has kernel  $X \cap B$ . Since Y is metrizable, and  $p^nB \cap X = B \cap p^nX$ ,  $X \cap B$  is p-pure and closed. Therefore,  $B^* = (B \cap X)^* \oplus (B/X \cap B)^*$ . Since  $X \cap (B/X \cap B)^* = 0$ ,  $X = (X \cap B)^*$  and the correspondence  $X \to X$ ,  $B \to (X \cap B)^*$  is 1-1.

If A is a p-pure subgroup of B, then  $A^*$  is a summand of  $B^*$ . If A is closed then  $A = A^* \cap B$ . Thus, the correspondence  $A \to A^* \to A^* \cap B$  is one to one.

COROLLARY 2.6. If B has only trivial p-pure subgroups, then  $B^*$  has only trivial p-pure closed subgroups.

COROLLARY 2.7.  $Z^*$  is indecomposable.

3. Complete exact sequences. In this section we use the results in Section 2 to classify complete exact sequences for arbitrary groups.

THEOREM 3.1. Let  $E: 0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$  be exact with A a subspace of B. Then  $E^*: 0 \to A \xrightarrow{\alpha} B^* \xrightarrow{\beta^*} C^* \to 0$  is exact if and only if  $p^{\omega}A = p^{\omega}B \cap A$ .

Proof. Suppose  $p^{\omega}A = p^{\omega}B \cap A$ . Then  $0 \rightarrow A/p^{\omega}A \rightarrow B/p^{\omega}B$  is exact. Hence  $0 \rightarrow A^{*a^*} \rightarrow B^*$  is exact. By Corollary 2.3,  $\operatorname{Ker}\beta^* = (\operatorname{Ker}\beta)^* = A^*$  and by Proposition 2.4,  $\operatorname{Im}\beta^* = (\operatorname{Im}\beta)^* = C^*$ . Thus,  $E^*$  is exact.

If  $E^*$  is exact, then the diagram

$$A^* \xrightarrow{\alpha^*} B^*$$

$$\downarrow \uparrow \qquad \qquad \uparrow j$$

$$A/p^{\omega}A \xrightarrow{\sigma'} B/p^{\omega}B$$

commutes with  $\alpha^*$ , i and j monic. Hence  $\alpha'$  is monic and  $p^{\omega}A = p^{\omega}B \cap A$ .

COROLLARY 3.2 (Fuchs Theorem 39.8 [1]). Let  $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$  be a p-pure exact sequence, then  $E^*: 0 \rightarrow A^* \rightarrow B^* \rightarrow C^* \rightarrow 0$  is split.

Proof. If A is p-pure in B, then  $p^{\omega}A = p^{\omega}B \cap A$  and  $A^*$  is a summand of  $B^*$ .

COROLLARY 3.3. Let  $E: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$  be exact. If C is complete, then  $B^*/A^* \simeq C \simeq (B/A)^*$  if and only if  $p^{\omega}A = p^{\omega}B$ .

COROLLARY 3.4. For all k,  $B/p^kB \simeq B^*/p^kB^*$ .

## References

- [1] L. Fuchs, Infinite Abelian Groups, New York and London 1970.
- [2] I. Kaplanski, Infinite Abelian Groups, The University of Michigan Press 1968.
- [3] S. Mac Lane, Homology, Berlin 1963.

KANSAS STATE UNIVERSITY

Accepté par la Rédaction le 14. 5. 1974