Spaces with increment of dimension n
by
M. G. Charalambous (Zaria)

Abstract. Results include () a generalization to arbitrary uniform spaces of a result of
Smirnov characterizing intrinsically the covering dimension of the increment of a space satisfying
the bicompact axiom of countability (ii) a new intrinsic characterization of the covering dimension
of the increment of a uniform space complete in the sense of Cech, and (iii) the first example of
a semicompact space every increment of which is a-normal space of covering dimension > n.

1. Introduction. It was first established by Freudenthal [5] that a separable
metric space X has a compactification with increment of covering dimension (dim)
<0 if and only if X is semicompact, i.e., whenever x € G, where G is open in X,
there is an open set H of X with x e He H=G and H— H compact. It is now known
[8, 11] that this result is valid for all spaces satisfying the bicompact axiom of
countability, i.e., those spaces one (and hence every) increment of which is Lindelof.
Skljarenko [8] gives an example of a semicompact space every increment of which
is non-normal, and hence has dim>0. As the Cech increment of this space is of
dim* = 0, where dim* is defined the same way as dim except that we replace “open
set” by “cozero set”, Skljarenko remarks that the question of extending Freuden~
thal’s result still further is open. In Example 2, Section 3, we construct a space X,
every increment of which is normal with dim>n, n = 1,2,3, .., . In the op-
posite direction, Smirnov [9] gave an example of non-semicompact Tychonoff
space whose Cech increment has ind = 0 (but dim>0). To the best of my knowledge,
we have no example of a non-semicompact Tychonoff space some increment of
which has dim = 0 (*).

A brief history of the problem of generalizing Freudenthal’s result to higher
dimensions can be found in [11, 12]. We are mainly interested in the following
result of Smirnov’s. Let ¥ be the compactification of a Tychonoff space X corre-
sponding to a precompact uniformity % on X. If X is normally adjoined to its
increment Y—X, i.e., every two disjoint closed sets of Y—X are separated by dis-
joint open sets of ¥, then dim(¥Y—X) = dim®X. The definition of dim® is as
follows. A. finite collection {Gy, Gy, ..., Gy} of open sets is called an extendable

k

fringe of (X, %) if X— U G; is compact, and for every open neighbourhood Gy
i=1

() Added in proof. For such ﬁﬁﬁ‘\{ R. Isbell, Uniform Space, p. 132
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k
of X— U Gi{Gy, Gy, ..., G} is a uniform cover of (X, %). dim®X<n if and only
i=1

if every extendable fringe of X is refined by an extendable fringe of order <n. We
introduce a dimension function %-dim®, and show that #-dim®*X = #-dim(¥Y—X),
where #-dim is the dimension function studied in [1]. For spaces satisfying the
bicompact axiom of countability, and are hence normally adjoined to their in-
crements, [11], #-dim® = dim®, and as dim = %~-dim for Lindeldf spaces [1],
Smirnov’s result and ours coincide. Our Proposition 4 gives another intrinsic
characterization of dim(¥~X). In the final section, we establish that if ¥ is the
Freudenthal compactification of X, then dim ¥<dim X'+1.

2. Dimension of increments. A subset of a uniform space (X, %) is called
9 -open (U-closed) [1] if it is the inverse image of an open (closed) set of R, the
space of real numbers, under a bounded, uniformly continuous function. In hyphen-
ated words where %, the relativisation of % to a subset Z of X, occurs, the
suffix “Z” is dropped. Thus, for example, “%;-open” becomes “%-open in Z”.
The collection of all %-open sets of X is closed with respect to countable unions
and finite intersections, and a set is %-open in Z'if and only if it is of the form Z N G
with G %-open in X. %-dimX = —1, %-IndX = —1, or %-ind X = —1 if and
only if X is empty. #-dim X<n if every finite #-cover of X, i.e., cover of X con-
sisting of %-open sets, is refined by a finite %-cover of order <n. %-Ind X<n
if whenever E;, E, are disjoint %-closed sets of X, there are disjoint %-open sets
Gy, G, of X with Ey =Gy, E, =G, and %-Ind(X~G; U G)<n—1. #-ind X<n
if whenever x € G with G open in X, there is a %-open set H and a %-closed set F
of X with xe HeFc G and %-ind(F—H)<n—1.

LemMmaA 1. If Hy, H, are disjoint U -closed sets of a subset of X, there are disjoint
%-open sets Gy, G, of X with H <G, and H,cG,.

Proof. This is Lemma 7 of [1]. If H,, H, are taken to be disjoint %-closed ‘

sets of X it merely expresses the normality of the lattice of all %-open sets of X.
LeMMA 2. Let {Gy, ..., G} be a U~cover of X. Then there are %-closed sets F;,
k

i=1,...,k of X with F,cG; and ) F; = X.
i=1
k—-1
Proof. Let G = |) G;. Then there is a %~closed set Fj and a %-open set H
i=1
of X with X—GcHcF,cG, (Lemma 1). By an obvious induction hypothesis,
k-1
there are %-closed sets E;, i =1, ...,k—1, of G with E,cG, and | E; = G.
=1
Fi=E~H,i=1,..,k—1,is %-closed in X—H (which is %-closed in X) and
k

hence in X. Clearly F;=@, for each i and F =X
. i=1

{By}ses is called a swelling of {4}, if A,=B, for each s, and if () B,= @ if
. T
and only if () 4, = @ for each finite subset T of S [4]. *

seT

Spaces with increment of dimension n 99

LEMMA 3. A U-cover {Hy, ..., H,} of a subset of X has a swelling {G, ..., G;}
consisting of U-open sets of X. )

Proof. We may suppose Hy N ... N H, = @. Then there are disjoint %-open
sets Q, Gy of X with H, n..nH,_;=Q and H,cG, (Lemma 1). Assuming
that the result holds for dimension k—1, there are swellings {P;, ..., Py} of
{Hy—Q, -, Hyey— 0}, and {Gj};p; 0f {H}jein i = 1, ...,kk, consisting of %-open

sets of X. Let Gy=P,uQ,i=1,..,k—=1,and G;= NGy, i=1,..,. k.
j=1

The same argument yields

LEMMA 4. A finite collection of %-closed sets of a subset of X has a swelling
consisting of U-open sets of X.

In the sequel all spaces will be assumed to be Tychonoff.

LEMMA 5. Let Fy, F,, ... be zero sets of X. Then the following statements are
equivalent.

- >, . .
@) pX—Xc UF,, where BX is the Stone-Cech compactification of X.
n=1

(i) Whenever {E,} is a collection of zero sets of X with the finite intersection
property, and such that for each i there is an o with E, & F; = @ then N E, # 9.

Proof. (i) - (ii): For zero sets E, F of X, EnF = @ implies E NnF=@.

Hence F,n ) E, = @, and since fX—Xc UF,, N E,CX; Hence () Ea
=) E,. Since {E,} has the finite intersection property, so does {E,}, and hence
0 E =NE, + 0. .

(ii) — (i): Suppose x e pX—X. For each closed set 4, of BX with x¢é,,,
let P, be a cozero and Q, a zero set of fX with xe P, < Q,cpX—A4,. X x¢& UF,,
then {Q, n X} satisfies (i) but () @, n X = O.

A compact subset F of X will be called accessible if there are zero sets Fy, Fa, ...
of X satisfying (ii) of Lemma 5 and F,nF=0,n=1,2,..

LEMMA 6. Let Y be a compactification of X. Then a compact subset F of X is
aceessible if and only if Y— X is contained in a ¢-compact subset of Y disjoint from F.

Proof. Let f: fX— ¥ be the extension of the inclusion X— Y. If Fis acc—essible,
by Lemma 5, there are closed sets F,,n = 1,2, ..., of Xwith FnF, =Fn F,: .=-Qi
and pX—Xc UF, Then Y—Xc | f(F,), and each f(F,) is compact and disjoint
from F. Conversely, suppose ¥—Xc< \J E, where E, is compact and E,nF=0
for each n. Then F, = f~Y(E,) is closed in fX, F, n F = @ and pX—X< U F,.
Let P, be a cozero and Q, a zero set of fX with F,=P,c Q,cBX—F. Then F,
= é: A X, and Lemma 5 implies that F is accessible.

COROLLARY 1. A compact subset F of a space X satisfying the bicompadct axiom
of countability is accessible.
Proof. pX— X is Lindeldf, and hence there are open sets G, and closed sets F,
2]

of X, n=1,2,..., with G,cF,, FAF, = @, and fX—Xc ,ElG"'

2
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In the sequel, ¥ will invariably denote the compactification of a space X corre-
sponding to a pre-compact uniformity % on Y. A #%-cover {Gy, ..., G,} of X will
k
be called a %-fringe it F = X~ |) G, is accessible and for every open neighbour-
=1
hood G, of F, {G,, Gy, ..., G} is a uniform cover of X. Every %-fringe is extend-
able, but not conversely (Example 1). #%-dim®X<n if and only if every %-fringe
of X'is refined by a %-fringe of order <n. For an open set G of X, ExG will denote
the complement in ¥ of the closure of X—G in Y. ExG is the largest open set of ¥
whose intersection with X is G, ExG, u ExG,<Ex(G, U Gy), Ex(G, n Gy)
= BxG; n ExG,, and hence {ExG, ..., ExG,} is a swelling of {G, ..., G} 4, 8,
11, 12}. :
LemMaA 7. A collection {Gy, ..., G,} of open sets of X is an extendable fringe of
k

X if and only if Y—Xc | ExG,.
i=1

Proof. This is Lemma 1 of [11]. y :

ExaMpLE 1. Let Z = Ru {0} be the one-point compactification of the set
of real numbers R with the discrete topology, I the unit interval with the usual
topology, ¥ = IxZ, Q the sct of rationals, F = {1} x(Qu {w0}), G = [0, 1)xZ,
and X = Fu G. Then G is %-open with ¥— X< Y—F = ExG, and hence {G} is
an extendable fringe of X. If F, is a compact set of ¥ disjoint from F, its comple-
ment contains {1} x {c0}, and hence F, contains only a finite number of points
of the uncountable set ¥—X. It follows that F is not accessible and {G} is not
a %-fringe.

Lemmas 6 and 7 imply

CoROLLARY 2. If Hy, ..., H, are cozero (and hence % -open) sets of Y with

k
Y-Xc U H;, then {Hi N X, .., H,n X} is a U-fringe of X,
i=1 !
N k
LemMa 8. Let {Gy, ..., G} be an extendable fringe of X with X — U G, access-
=1

k
ible. Then there are % -open sets Hy, ..., Hyof ¥ with Y— X< UHand H;,n X<=G,.
=1

Proof. By Lemmas 6 and 7, there is a g-compact set Z with Y—XcZ

ok @
< U ExG;. Then there are cozero sets P,, n = 1, 2, ..., of Y with Z& {J P, and
i=1 n=1

P,cExGyyy. Let H; = | (P,: P,cExG).

ProrosITION 1. Let X satisfy the bicompact axiom of countability. Then
-dim® X = dim®X.

Proof. Suppose dim®X'<n. Then a %-fringe {G:} of X is refined by an ex-
tendable fringe {H}} of order <n. By Corollary 1 and Lemma 8, there are %-open
sets H; of ¥ with Y—X<'{ H; and H; n X< H). {H;n X} is a %-fringe of
order <n refining {G;} (Corollary 2). Conversely, suppose #-dim®X<n, and

Spaces with increment of dimension n 101

let {P;} be an extendable fringe of X. By Lemma 8 and Corollaries 1 and 2, there
is a %-fringe {Q;} of X with Q;cP,. Then {Q;}, and hence {P;}, is refined by
a %-fringe of order <n. )

Proposition 1 may fail even if X is normally adjoined to its increment
(Example 2).

PROPOSITION 2. #-dim®X = #-dim(¥—X).

Proof. Suppose %-dim®X<n, and let {G;— X} be a %-cover of Y— X with G,
%-open in Y. Let E;, T; be %-closed and S; %-open sets of {) G; with EicS.'i
cTeG; and ) E; = |G, (Lemmas 1 and 2). By Corollary 2, {S;n X} is
a % -fringe of X, and hence it is refined by a #-fringe {H}} of order <n. By Lemma 8,
there are %-open sets P; of U G, with Y—Xc | P;, P; n X< Hj and hence order
{P}<n. I P;—G,# @, then P)~T; # @, and hence (Pj—TQn X#@ and
(H,—S) n X # @. 1t follows that, {P;} refines {G}, and {P;~X} is a %-cover of
Y—X of order <n refining {G;—X}. Thus #-dim Y—X<n.

Conversely, suppose #-dim Y—X<n, and let {G;} be a %-fringe of X. By
Lemma 8, there are 4-open sets H; of ¥ with H; n X<G; and Y——'Xc U H;.
Since %-dim(Y—X)<n, there is %-cover {S;} of Y—X of order <n with S;=H;.
Let {I}} be a swelling of {S;} consisting of ”Zl-opfan sets of ¥ (Lemma 3). Then
{T;n H,~ X} is a %-fringe of order <n, refining {Gy} (Corollary 2). Hence
Y-dim® X<n.

Consider the following conditions on X.

A,: Whenever Ey, Fy, i =1,...,n+1, are pairs of distant sets of X, there are

pairs of disjoint U-open sets Gy, Hy of X such that E,=G, F,cH, and {G, H;}
; -fringe of X.
" ]:Zj:f;Vhinevfr E, F,, i=1,..,n+1, are pairs of distant sets of Y, there are
pdirs of disjoint %-open sets G;, H; of Y such that E;cG,, FicH; and Y-X
cyUGyu H,.

PROPOSITION 3. A, and B, are equivalent. e disant sets of 7

¥ . Suppose A, holds, and let E;, F;, i = 1, ..., n+1, be distant sets ot r.
Let llji],(rs(:fbcsf’l})?open e:nd 0, T, ”Il-closed. sets of ¥ with E;cP,=Q;, FiCSiChT;
and Q, n T, = @. By A,, there are disjoint % -open sets U;, V; of X sug:htfl al
0,n XU, Ty~ X<V, and {Uy, Vi}, is a %-fringe of X. By Lemma 8, Lcre
are %-open sets L;, M, of ¥ with L; n XcUi', M,nXcV,and Y—Xc UL; v
UM, Then G, =P, 0L, H= S, U M, satisfy B,.

That B, implies A, follows from Corollary 2.

Levva 9. %-dim(Y—X)<n implies B,.

Proof. Let Ej, F,,' i=1,..,n+1, be distant sets of ¥. Take %-o};en—sgs
P, S; and %-closed sets 0, Ty with E;,cP;<=Q;, Fic.S'ic.Ti and Q; r\t ‘i]_ V
It % -dim(Y—X)<n, by Proposition 5 of [1], there are disjoint ”Il-f)pen fsi s U, 3i
of Y—Xwith ¢;—X<U,, Ti~X<V; and Y—X< U U; v V. Inview o HeTI? U,
we may suppose U,, V; are %-open in Y. Then G; = P,u (U;—Ty, H; = S,
U (V,— Q) satisfy B,.
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PROPOSITION 4. Let X be complete in the sense of Cech. Then dim(Y—X)<n
if and only if A,.

@
Proof. Y—~X='{)Z, where each Z, is compact, and dim¥—-X
m=1
= Y%-dim(¥— X) [1]. That dim(Y—~ X)<n implies A, follows from Lemma 9
and Proposition 3. If A, holds, then B, and hence the following weaker statement
holds. .
Whenever Ey, Fy, i=1,..,n+], are disjoint closed sets of Z,, there are
disjoint %-open sets G,, H; of Z, with E,cG,, FicH; and Z, = {JG,u

LU H,;.

This implies dimZ, <7 and hence, by the countable sum theorem for dim,
dim Y- X<n [6].

CoROLLARY 3. If X is complete in the sense of Cech, then dim BX—~X<n if and
only if whenever E;, Fy, i = 1, ...,n+1, are disjoint zero sets of X, there are disjoint
cozero sets Gy, H; of X with E;cG;, FicH; and X— \) G, U H; compact.

Proof. If {P} is a finite cover of X by cozero sets, then BX = Ex( ur)
= UExP; [e.g. 4], and hence {P;} is a uniform cover of X with respect to the
uniformity % induced by X on X. It now follows from Corollary 1 that if X is
complete in the sense of Cech and Q4 ..., O, are cozero sets of X with X¥— uo,;
compact then {Q;} is a %-fringe of X.

Lemma 10. %-Ind X<n if and only if

C,: Whenever E, F are distant sets of X, there are disjoint U-open sets G, H
of X with EcG, FcH and %-Ind(X—G v H)<n—1.

Proof. That %-dim X<n implies C, follows from the easily established fact
that two distant sets can be separated by disjoined %-closed sets. It is also easily
established (from the fact that this holds in R) that if D is a %-closed set then there
are %-closed sets Dy, k = 1, 2, ..., such that D = N D, and Dy, is distant from
X—-D,.

Suppose C, holds, and let E, F be disjoint %-closed sets of X. Choose %-closed
sets By, By, k= 1,2, .., of X such that E = (\E,, F = Ny, and B, .y, X—E,
and Fy,, X—F, are distant. Then E—F,, Fu (X—E,) are distant, and hence
there are disjoint %-open set G,, H, of X with E-FRcGy, FU(X—E)cH, and
%-IndX~G, U Hy<n—1. Let G= |G, and H = (VH,. Then G is %-open,
GnH=@, EcG, FcH and for each k,

He U(X—-E)nHe J(X-E) 0 HicH, .
i i i<i
Hence H = LiJ(X—-E,) () Hy is %-open. Also X*~GUHc Z = U X-
j<i

J
=G, U H, and by the subset and countable sum theorem for #-Ind [2],
A-IndX—~G U HSU-Ind Z<n~1. 1t follows that #-Ind X<n.
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COROLLARY 4. For a metric space X, Ind X<n if and only if whenever E, F are
distant sets of X there are disjoint open sets G, H with Ec G, F< H and Ind X—G U
U H<n—-1. .

Proof. If % is induced by a metric, “%-open” means “open” and %-Ind
=1Ind [2].

PROPOSITION 5. %~dim Y—X<0 if and only if A,.

Proof. In view of Lemma 9 and Proposition 3, we need only prove A, implies
%-dim Y—X<0. It follows from Proposition 3 and Lemma 10 that A, implies
%-Ind Y—X<0. Finally, #-Ind<0 and %-dim<0 are equivalent [2].

COROLLARY 5. If %-dim(Y—X)<0, then X is semicompact.

The converse is false (Example 3).

COROLLARY 6. If fX—X is C*-imbedded in BX, then dim*pBX—X<0 if and
only if whenever E, F are disjoint zero sets of X, there are disjoint cozero sets G, H
of X with EcG, FcH and X—G u H accessible.

Proof. If fX—X is C*-imbedded in BX, then dim*BX —X =%2/-dim(,BX——-X)
[1], where % denotes the uniformity induced by X on BX—X.

CoROLLARY 7. If Y—X has the monotonicity property relative to dim [12],
then A, implies dim(¥—X)<0.

Proof. There is a compactification Z of ¥—X with dimZ = #-dim(¥~-X)
[1, Proposition 8]. ’

COROLLARY 8. If X satisfies the bicompact axiom of countability, then dim ¥~
—X<0 if and only if X satisfies A,.

CoROLLARY 9..If X satisfies the bicompact axiom of countability, then dim X —
— X<0 if and only if whenever E, F are disjoint zero sets of X, there are disjoint co-
zero sets G, H of X with EcG, Fe H and X—G v H compact.

Smirnov [11] calls X proximally semibicompact if whenever E, F are distant
sets of X, there are disjoint open sets G, H of X such that EcG, FoH, X-GuU H
is compact and for every open neighbourhood P of X—~Gu H, G—P is distant
from H—P. The last condition simply means that {G, H} is an extendable fringe
[11, Lemma 1]. Thus A, implies proximal semibicompactness, and for spaces
satisfying the bicompact axiom of countability the two conditions are equivalent
since if X is also proximally semibicompact, then dim ¥Y—X = dim*X = 0 [l1,
Theorem 3], For arbitrary spaces, however, proximal semibicompactness does
not imply 4, (Example 3). Corollaries 8 and 9 are equivalent to Smirnov’s [11]
Theorem 3 and its Corollary 2, respectively.

3. Examples.

ExampLE 2. For each ordinal a<w;, the first uncountable lordinal, let I? be
a subset of I", n = 1,2, ..., 00, such that dimI? = 0, Iy<Jf for a<p, and I" = I,
= |J I" [7, Theorem 13-15]. M, = U {¢} xI; and K, = <U {o} x I} are given the

a<o; a<oy as oy
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subspace topology induced by [0, @] % I", and N, is obtained from X, by identify-
ing all the points of {@;}xI". Then M,, K,, N, are normal with ind M, = ind X,
= indN, = dimN, = 0 and dim M, = dimK, = n. These spaces are due to Smir-
nov [10], who generalizes an example of Dowker’s [3]. :

Let @ be an ordinal greater than the weight of Z, = N, x{0,1,1/2, ...
vy Ifm, W} Let ¥, = [0, w]xZ,, % the unique uniformity on the compact
space Y,, and X, = Y¥,—{o}xM,x{1,1/2,..,1/m,..}. Then since dimpN,
= dimN, = 0, #-dim Y, = dim ¥, = dim ¥, = 0, and by the subset theorem for
%-dim [1] %-dim(¥,—X,) = 0. Hence X, is semicompact (Corollary 5), The
choice of e ensures that every real valued continuous function of X, can be ex-
tended to. ¥,, and hence X, = ¥,.

Lemma 11. Let f: Y,— S be the extension of the inclusion X,~ S, where S is
a compactification of X,, and suppose E, E, are disjoint closed sets of M,. Let
Ejm= {0} xExx{l/m},i=1,2, m=1,2,.. Then there is an integer k such that
E, ) N fE,, ) = @ whenever m>Fk.

Proof. Let p, = (@, %y, X, 1/m) € Ey ,,, and g, = (@, P> Vs 1/m) e E,,,.
Then there is an ordinal o with a,,, B, <a<w; for each m. For each j, the image
of {®} x BN, x{1/j} under £ is a closed set of S containing only a finite number
of points of {f(py),f(gm}. If F; is the closure of E; n ([0, «] x I") in BN,, it follows
that the limit points of {f(p,)}, {f(g.)} belong to {0} x Fy x {0}, {w} X Fy % {0},
respectively. Finally, F; n F, = @, and if f(p,) = f(g,) for infinitely many m’s,
then since S is compact {f(p.)}, {f(¢n)} have a common limit point belonging
to {o}x(F; n F)x{0} = @.

If dim(S-X,) =r—1<n, let E;, F;, i=1,2,..,r, be disjoint closed sets

" of M,. Since the restriction of f to Y,—X, is closed, then for some integer m f(E; ,),

S(Fi ), i=1,2, .., r, are disjoint closed sets of S—X,, and hence there. are disjoint
open sets G, H; of S—X, with f(E; ,)=G;, A(E; ,)=H,and §-X, = G, u H;.
Then f~HGy), f~'(H;) are disjoint open sets of Y,—X, with E ncf ™G,
Fincf THH) and {0} x M,x {I/m}= Uf~NG) uf~(H,). This is readily seen
to imply dim M, <r—1<n. Hence dim(S— X,)>n. Moreover, the countable sum
theorem for dim [6] implies dim(Y,—X,) = n.

Let G,, G, be disjoint open sets of ¥,—X,. Since ¥,—X, and hence Gy, G,
are open in {o}xN,x{0,1,1/2,..,1/m, ..}, then, in {0}xZ,, ExGy, ExG,
are open and disjoint with Gy =ExGy and G,cExG,. It follows from this obser-
vation that X,; is normally adjoined to ¥,—X,, and hence to every one of its in~
c‘J'rements. Thus X is semicompact, every increment of X is normal with dim>n,
dlr-n“’X,, = dim(Y,~X,) = n [11], while #-dim®X, = %-dim Y,—X, =0 (Prop-
osition 2). A space with dim® <%-dim® is given in Example 4. ‘

Emm 3. A semicompact space every increment of which has %-dim>0
and %-ind>0,

‘ Let L be the space obtained from [0, @,] by inserting-a copy of Q, the rationals
in [0, 1], between any two consecutive ordinals oy, o5, and identifyihg 0 with a,
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and 1 with &,. Let X, = Lx I, where I, = I"—{0}. Tt follows from the fact that
dimL = 0 and I, is semicompact that X, is semicompact. Hence X, is proximally
semibicompact in the proximity induced by its Freudenthal compactification.

A G, set of X, intersecting {w,} xI, contains a closed subset homeomorphic
with @, and is not fherefoge compact. Let % be the uniformity on X, induced by
a compactification Y. Let E;, F;, i = 1, ..., n be disjoint closed sets of a compact
subset of {w,} xI,, and suppose G;, H; are disjoint %-open sets of X with E;=G;,
FicH;and F = X— | G, U H, compact. Since F is also a G; set of X, {o,} %
xI,e |J Gy v H;. This implies that every compact subset of I, has dim<n—1.
It follows that X, does not satisfy A,_,, and #-dim(¥Y—X,)>n (Lemma 9 and
Proposition 3).

Let oo be a limit point of {w;}x I, in ¥, and E a non-empty compact subset
of {w;} xI,. Choose a %-open set H and %-closed set F of ¥ with Ec HcFc Y~
—{co}. If %-ind(Y—X,)<0, in view of Lemma 1, there are disjoint % -open sets
Gy, G, of Y with w0 € Gy, F—X,cG, and Y—X,=G, U G,. Then P, = G,~F,
P, =G, u H are disjoint #-open sets of Y intersecting {w,}x I, with ¥Y—-X,
cP; UP,. Then X,—P, U P, is a compact Gy set of X, and {w,}xI,<P; U P,.
Since this implies that I, is disconnected, %-ind(¥~— X,)>0. We recall that if ¥ is
the Freudenthal compactification of X, then ind(¥—X)<0 [8, 11].

ExameLE 4. In Example 2 of [2], we give a space (R", §) with £-dimR”
= n~1 and dimR" = 0. Let Z, be a compactification of R" (as a topological space)
such that #-dimR" = &—dimR" [l, Proposition 8], where % is the unique uni-
formity on Z,. Let ¥, =[0,®]xZ, and X, = Y,—{w;}xR" Then as in
Example 2, X, is normally adjoined to its increment ¥,—X,, and hence dim®X,
= dim(¥,—X,) = dimR" = 0 [11], while %-dim®X, = #-dimR" = n—1 (Prop-
osition 2).

4. Dimension of compactifications. Answering the question of Alexandroff
whether a semicompact space has a compactification of the same dimension with
zero-dimensional increment, Skljarenko [8] gives a semicompact metric separable
space with dim = 1 every compactification with zero-dimensional increment of
which is of dim>2. We show that, in fact, any compactification with zero-di-
mensional increment of a semicompact space X satisfying the bicompact axiom
of countability is of dim<dimX+1. The definition of a m-compactification of
a (semicompact) space can be found in [8]. Here we only use the following conse-
quence of Skljarento’s Lemmas § and 9: If E, F are disjoint closed sets of a m-com-
pactification Y of X, there are disjoint open sets G, H of ¥ with EcG, FcH and
Y-Gu HcX.

PROPOSITION 6. Let Y be a m-compactification of X with dimF<m for every
compact. set F of X. Then dim¥Y<m+1.

Proof. Let E;, F;, i = 1, ..., m+2, be disjoint #-closed sets of Y. Let P, S;
be %-open and Q;, Ty be %-closed sets of Y with E;cP;=Q;, Fi=S;cT; and
0;nT, = @ Take disjoint open sets Gyiz, Hpiz With Qni2©Gipyz, T2
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¢H,., and F= Y=G,,, U H,.,cX (Y is a n-compactification). By hypoth-
esis #-dimF = dim F<m, and hence there are disjoint %-open sets U;, V; of F,
i=1,.,m+1, with Q;nFeU;, TynFcV; and Fc YU, v V; [1]. In view
of Lemma 1, U,, ¥; may be assumed to be #-open in Y. For i<m+1, let G;
=P, u(U;=T), H;=8S;u(Vi—Q). Then G,, H;, i =1, .., m+2, are digjoint
open sets of Y with E;cG,;, FicH; and Y = |JG,u H;. This implies dim ¥
<m+1 [6].

Since the Freudenthal compactification of a semicompact space, and any
compactification with zero-dimensional increment of a space satisfying the bi-
compact axiom of countability is a m-compactification [8]. ‘

CoroLLARY 10. If Y is the Freudenthal compactification of a semicompact
space X, then dim Y<dim X +1.

CoroLLARY 11. If Y is a compactification of a space X satisfying the bicompact
axiom of countability and ind Y—X<0, then dim ¥Y<dimX+1.

In Proposition 6 and its corollaries, dim may be replaced by ind or Ind. The
proofs of the following results are the obvious modifications of the proof of .Prop-
osition 6. ' )

ProrosITION 7. If dimF<m for every accessible G; set F of X, then dimY
S<U-dim(T—X)+m+1.

CoroLLARY 12. If dimF<m for every accessible G; set F of X, then dimY
<U-dm*X+m+1. ‘

COROLLARY 13. If dim F<m for every compact Gy set F of a space X satisfying
the bicompact axiom of countability, then dim Y<dim®X+m-+1.

PRrOPOSITION 8. If dim F<m for every accessible G subset F of Y—2X, then
dim Y<%-dim X+m+1.

ProrosiTioN 9. If dimF<m for every compact subset F of X, and Y—X is
normal, then dim Y<dim(Y—X)+m+1.
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