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It is easy to check that DC does not hold for @ and that @ is a Z3-formula,
Hence Z}-DC fails and therefore so does II-DC. = .
Final remarks. In the paper we have shown that in second order arithmetic

DC = DC, AC + AC, and AC+ DC.

The only remaining question is whether AC-DC. This ploblem has bcen
answered negatively by S. G. Simpson ([Si]). Simpson’s proof, however is not
known to the author of this paper.
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Movability and shape-connectivity
by
G. Kozlowski and J. Segal * (Seattle, Wash.)

Abstract. THEOREM 1. If (X, x) is a uniformly movable pointed continuum with m,(X, x) =
Jor all n, then (X, x) has trivial shape. From this and the fact that a metric continuum X is. ap,
proximately 1-connected if and only if it is the inverse limit of a sequence of simply connected
ANR’s, one obtains the corollary: An approximately 1-connected movable metric continuum X with
(X)) = 0, for all n, has the shape of a point. Another corollary is that the concept of uniform
movability introduced in [12] is stronger than movability,

Introduction. In this paper we obtain a special case of a shape version of the
‘Whitehead Theorem without a dimension restriction.

THEOREM 1. If (X, x) is a uniformly movable pointed continuum with m,(X, x)
=0, for all n, then (X, x) has trivial shape. -

Uniform movability here is taken in the sense of Kozlowski-Segal [12] which
is a generalization of the concept of uniform movability defined by M. Moszyriska
in [17] and which coincides for metric compacta with K. Borsuk’s concept of
movability [3]. As a corollary of Theorem 1 we show in Section 3 that a certain
compact connected topological group is movable but not uniformly movable.
This example is inspired by and heavily depends on the work of J. Keesling. As
another application we have

COROLLARY. An approximately 1-connected movable metric contimum X with
(X)) = 0, for all n, has the shape of a point.

In this paper a compactum means a compact HausdorfF space, continuum means
a connected compactum. All ANR’s are understood to be compact. As a reference
for the ANR-system approach to shape see [15]. We assume that when we deal
with a continuum the ANR-system associated with it is composed of conmected
ANR’s. As a reference for the shape groups m, see [16] where their isomorphism
with the limit homotopy groups is established. Here we deal with only the latter
groups which we accordingly take as the definition of the m,’s: if the ANR-system
{(Xys %), Do » #} is associated with (X,x), then =,(X,x) is defined to be
lim {m,(X,,, %), Puww» &} In dealing with maps between ANR’s and their induced
homomorphisms between homotopy groups we shall omit reference to base-points.

* The second named author was partially supported by NSF grant GP-34058.
5 — Fundamenta Mathematicae XCIII
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1. Movable pointed compacta. First we give a brief description of the natural
transformation approach to shape theory and movability. For further details see [12].

In Section 1 it is assumed that all spaces are equipped with base-points and all
maps and homotopies are base-point preserving. Because of this we find it notation-
ally simpler to suppress further reference to base-points in this section.

Let P be the category of (compact) ANR’s and homotopy classes of continu-
ous maps between them. If X is a compactum, then ITy is the functor from P to
the category of sets and functions which assigns to an ANR P the set IT,(P)
= [X; P] of all homotopy classes of maps of X into P and which assigns to any
homotopy class ii: P~ Q between ANR’s the induced function Ay: [X; P]— [X; 0]
which maps the homotopy class ¢: X—P into the composition sip = hy(¢p) of the
homotopy classes of & and ¢. A natural transformation G of the functor ITy into
the functor Iy assigns to each homotopy class ¢: X—P a homotopy class G(¢):
Y- P in such a way that for all homotopy classes ¢: X—P, : X— 0, and h: P~ Q
such that hp =  we have AG(¢) = G(). If f: X— Y is a map, then there is a natu-
ral transformation f*: ITy—IIy which assigns to the homotopy class A: Y—P
the composition 2[f] = f*(%) of the homotopy ¢lass [f] of 7 with k. (The natural
transformations from Iy to Iy correspond to the fundamental classes from X
to Y in Borsuk’s theory of shape.)

Given two compacta X and Y we say that the shape of X dominates the shape
of Y if and only if there are natural transformations F: IIy—IIy and G: ITy—Ily
such that GF = 1. If in addition FG = 1}, then X and ¥ are said to be of the
same shape. In other words, X and ¥ have the same shape if and only if there is
an invertible natural transformation (i.e., a natural equivalence) of the functors
IIy and IIy. Lastly, X has trivial shape if it has the shape of a point.

Remark 1. If X = {X,,p,, , &}, is any inverse system such that X = limX,
then by Theorems 4 and 3 of [13], we have that, for any ANR P, II4(P) can be
represented as the direct limit of the system {II(P),p¥., &} by means of the
functions pF: IT, (P)—+IT4(P).

DermvimioN 1. A compactum X is said to be uniformly movable provideds
that for each map f: X—P of X into an ANR P, there exist an ANR Q and natural
transformations &: y—1I,, ¥: IIy— 1Ty such that YO[f] =

Remark 2. Since any ANR, is dominated by a polyhedron, for any map
J: X—P into an ANR there exists a polyhedron K and maps g: X—K and 0: K~P
such that f~0g. Using this it is not hard to see that in Definition | “ANR” may
be replaced by “compact polyhedron”. It then follows that Definition 1 is equiv-
alent for compacta to the definition of uniform movability given in [12].

LEMMA 1. Let the inverse system { ¥, Gy B} of ANR’s be associated with Y.
(1) If @g: X— Y, are maps satisfying Qpp Ppr =Py, then there is a unique natural
transformation ®: Iy—I1y such that Dlgs] = [o,). () If : Iy~1ITy is a natural
transformation and @p: X— Y satisfy [p,] = @ g, for all fe B, then for any fac-
torization f~f,q, of @ map f: Y~P into an ANR P, ®[f] = [y 04l
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Proof. If /1 Y-P is any map into an ANR, then since ITy(P) is represented
as the direct limit of rHyﬂ(]’) q/,,, , B} there is an index f and a map fp: Y,—>P
such that fygs~f. Define ¢: O,y by &[f] = [fs04]. This is well-defined,
because if there exist f” and fj.: X —P such that Jrq = = f, then by the direct limit
representation, there is a >, f’ such that

Jo o= Sappr s
and thus

Jo =Ty Gpp P 2y Gpp 052 fp 0 -

Tt is not hard to show along the same lines that @ is a natural transformation. The
uniqueness of @ and the second assertion of the lemma are obtained from the
following computation.

qj[f = d)[f;;q,, = Ofy, 4[1] Jos Q[Qp] Jfre (Pp] [qu’ﬂ]

LEMMA 2. Let the inverse system {Xys Paws £} of ANR’s be associated with
the compactum X. If X is uniformly movable, then for any map f: X—P of X into
an ANR P there exist w€ of and ®: Oy—IIy, such that p¥®[f] = [f). In fact,
X is uniformly movable if and only if for any acsf there exists o' € o and
D2 IIy—1Iy,. such that D[p,] = [Pyl

Proof. Given f: X—P we choose a polyhedron O, a map g: X— Q and
a natural transformation ¥: IIy—II, such that g*¥[f1 = [f1 Making use of the
representation (Remark 1) of IT,(Q) as the direct limit of {1z (0, pm,, &} there
exist o€ .o/, and a map g,' X,— Q such that g~g,p,. Then & = g}y is the
desired natural transformation.

For the second assertion of the lemma we assume X is uniformly movable
and start with p,: X—X,. Choose by the first assertion z € ./ and &': Ix—I1 X5

such that ]J#(P'[pa = [p,]. Let ¢: X;— X, satisfy [p] = &'[p,]. Since op;~p,

= Pabs, it follows from the representation of Iy(X,) as the direct limit of the
system {ITy,., DE o ) } that there is an o/>a such that ¢p;, ~ ™~ Pealant = Doar -
Take ¢ = p¥ @',

Conversely, assume the condition is satisfied and consider a map 2 X—-P
into an ANR. By the direct limit representation of ITy(P) there exist an o € &/ and
a map f,: X,—P such that f,p,~f; also there is an &’ € & and a natural trans-
formation @: ITy-1ly,, such that @[p,] = [py]- Then

pE U1 = pd Oulpd = 13 frn @12l
= P;{:.ﬂt#[pm'] = [/‘;pna’pa'] = [f] .

Remark 3. Lemmas 1 and 2 and their proofs hold verbatim in the unbased
version of shape.

THEOREM 1. Let X be a uniformly movable continuum with m(X) = 0 for all n,
then X has trivial shape.
5%
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Proof. Let X = {X,, Pur, o/} be an ANR-system associated with X. We
first show () that for any o € of, there exists an o such that for any map 6: 8"~ X,
the composition p,,. 0 is nullhomotopic («' is independent of n.) Given «e o,
we choose o € & as in Lemma 2 to obtain a natural transformation @: Iy—1Ily,,
such that ®[p,] = [pu]- To see that &' works let o7 = @[p;] for all Ge . If
0: 8" X, is any map of S" into X,,, then the family of maps ¢z0 defines an element
of the limit homotopy group x,(X). Since this group is assumed to be zero, ¢z0
is nullhomotopic for all &e .. Applying Lemma 1 (2) to the factorization p,
= Pag?Par> WE get
(1) Pawt = Do P +
Hence we have

Pm'e :]]m’goa‘o ~0.

(IT) For each n and for any a e &, there is an o’ & & such that for any map
8: 0~ X, defined on a space O dominated by an n-dimensional complex the
composition p,, 0 is nullhomotopic. To see this let & = 44 and by (I) choosc
@y 20,2033 ... 20, such that for any map 0: S*— X, the composition p,,, 4,0
is nullhomotopic. Then &' = o, is the desired index. To show this it suffices to
consider the case in which Q is an n-dimensional polyhedron. Assume a triangu-
lation of Q is given and let the k-skeleton of this triangulation be denoted by Q*
(k =0,1, ..., n). Since X, is connected, 0 is homotopic to a map 0y: Q= X, in
which 8,(Q°) is a point. Assume that we have obtained 0;_;: Q- X, such that
0,—(QF"Y) is a point and -, p,,,0. Since, for each k-simplex s of QF, 0,y
maps the boundary ds of s to a point, there is by (I) a nullhomotopy relative to ds
of Puy i Bi—118; hence p,, , 00,1 is homotopic to a map Ot Q= X4 such. that
8,(Q") is a point, and 0, = p,,, ,.,0. It follows inductively that p,, 0 is homotopic
to a map 6, Q- X, such that 6,(Q) = 6,(0" is a point. (Note that « depends
on 1.)

We now show that X has trivial shape by showing (II) that any map f: X— P
into an ANR P is nullhomotopic. By Lemma 2 there exist o € o and @: Ty Iy,
such that p*@[f] = [f]. Let f,: X,~P satisty [f] = @[f], and let ¢;: X,~X;
satisfy [pz] = ®[p;]. It follows from Corollary 6.2 of [7, p. 211] that X, is domi-
nated by the nerve of one of its finite open covers. Hence there is an integer »n such
that X, is dominated by an n-dimensional polyhedron. We now apply (IT) with
this choice of n to obtain the desired index o' € . Since f= f,p,, Lemma 1 implics
that [£,0,] = ®[f] = [f,]; hence f=f, ¢,p,. Because P is a natural transformation,
00 Py P> a0 bY (1), pow ¢,r =2 0. Thus f is nullhomotopic. (It has been brought
to our attention by the referee that Borsuk has proved a metric version of The-
orem 1 in Some remarks on shape properties of compacta, Fund. Math, 85 (1974),
pp. 185-195.)

2. Approximately 1-connected continua. In [2] Borsuk shows a finite di-
mensional metric continuum X which is movable, approximately 1-connected and
with all shape groups m,(X) = 0, has the shape of a point. He asks in Problem (6.5)
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if this result remains true when the finite dimensionality ‘hypothesis is deleted. In
this section we show the answer to this question is .affirmative. The following
definition is easily shown to be equivalent to Borsuk’s for metric continua. -

DEFINITION 2. A metric continuum X in the Hilbert Cube I® is said to be
approximately 1-connected if every neighborhood ¥ of X contains 2 neighborhood
Vo of X such that every map of the 1-sphere S! into V, is nulthomotopic in V.

LEMMA 3. A metric continuum X is approximately 1-connected if and only if for
any ANR-sequence associated with X there is a subsequence {X:, pi 141} such that
Pty Ti(Xpp)—=m (X)) is zero for i=1,2, .. '

Proof. Assume X is approximately 1-connected and embedded in the Hilbert
Cube. First we consider an inclusion ANR-sequence ¥ = {X, Pi,i+1} associated
with X, i.e.,, X' = [im X where each X, is a neighborhood of X in the Hilbert Cube
which is a connected ANR and each p; ;,: X;,,~ X, is an inclusion map (see [14]).
Then from Definition 2 we have for the neighbothood X a neighborhood X' » such
that every map of $* into X, is nullhomotopic in X, ;. We delete terms and renumber
our sequence so that i’ = i+1. Then we have Piriv1g: T(Xpu)-=mX)) is zero
fori=1,2,..

We now establish the following assertion: if X ={X,,p;: 1+, is any ANR-se-
quence associated with X having the property that p, ;414 7,(Xpyy) > 7 (X)) is
zero for i=1,2,.. and if Y= {¥;,¢; 1,1} is another ANR-system associated
with X, then Y has a subsequence having the same property. Since X and ¥ are
of the same homotopy type (see [15]) we have maps of systems f: X~ Y and g: Yo X
such that /g1y and gf~1y. Since g is a map of systems we have for each positive
integer i an integer i'>i such that

M 9riydare =L@, rw+19 16y + 19900 + 1,10 -

Since fg=~1y there is an i">/ such that

(¥) Qi = L1l 5y Ugrani -
Let i = max{i’, i} so that (1) and (2) hold for 7. Consider any map ¢: S'— ¥;.
From (2) and (1) we have

3) 9P =119 paydarini® 2P gy, i+ 19 1@+ 19w+ 1),i9 -

The latter map is nullhomotopic since Praysy+ 1956 +1 96w+ 1@ is nullhomotopic
being a map of 8= X iy 1~ Xy We delete terms in ¥ and renumber so that
i=i-+1 to obtain the desired subsequence.

For the converse just consider an inclusion ANR-sequence associated with X
and choosc a subsequence {X;, p; 1.} as in the condition of the lemma. Then for
any neighborhood ¥ of X in the Hilbert Cube there is an X;< V. Take Vy = X;,,
in the definition of approximately 1-connected,

LemmA 4. If Y is a connected ANR and f: Y~ Z is a map such that fy: m,(¥)
—n(Z) is zero. Then there is a simply connected ANR Y’ containing Y and o map
[t Y'>Z extending f. '
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Proof. Since Y is dominated by a finite complex n,(¥) is finitely generated,
Let g,: S'—~Y be based maps for i = I, ..., n whose homotopy classes generate
7y(Y). By the Borsuk-Whitehead Theorem the space ¥' obtaining by adjoining
2-cells [18, p. 145] via the maps g; (i = 1, ..., n) is an ANR. By Theorem 3.8.10
of [18] ¥’ is simply-connected. For each i the map fg;: S'—Z is nullhomotopic;
hence it has an extension B>~ Z of the 2-cell into Z. These exiensions serve to
define the map f’: ¥Y'+Z extending f.

LemMA 5. If X is an approximately 1-connected metric continuum, then for any
ANR -sequence associated with X there is a subsequence X ={X,pie1} and an
ANR-sequerce X' = {X{, pi;4,} associated with X such that X,= X}, Pl X
= Di,i+1 dnd each X{ is simply connected.

Proof. By Lemma 3 a given ANR-sequence has an ANR-subsequence X
= {X;,p;,141} such that p; ;g0 7,(X;0 )= 7w (X) is zero for i= 1,2, .. For
technical reasons we take X to include X, a singleton, and Do X;—Xy. Then
for each i =0, 1,2, ... we have by Lemma 4 a simply connected ANR X; con-
taining X; and a map pj ;40 Xiy X, X} extending Pi,1+1+ Therefore the in-
verse sequence X' = {Xj, p} ;. } is the desired sequence associated with X,

THEOREM 2. A metric continuum X is approximately 1-connected if and only if
it is the inverse limit of a sequence of simply connected ANR’s.

Proof. If X is approximately 1-connected then Lemma 5 applies. Conversely,
it follows from the assertion in the proof of Lemma 3 that any ANR-sequence
associated with X has a subsequence X = {X, i 141} such that Piotrryg 7(Xiey)
—m,(X}).is zero for i =1,2, ...

By Lemma 3 then X is approximately 1-connected. (The referee Lias pointed
out that Trybulec has an unpublished result generalizing Theorem 2 to the ap-
proximately k-connected case.)

THEOREM 3. If X is a uniformly movable continuum which has an inverse system
of simply connected ANR’s associated with it, then Jor any x e X the pointed con-
tinuum (X, x) is uniformly movable.

Proof. First recall the well-known fact regarding simply connected ANR's:
(+) any homotopy class of & compactum 4 into a simply connected ANR M containg
a base-point preserving map and any two base-point preserving maps in this
homotopy .class are based homotopic.

Assume we have an inverse system { X\ Do, o2} associated with X in which
each X, is a simply connected ANR. For each we o let X, = P(x); hence
{(X,. x.), P, Y} is associated with (X, x), where the dot indicates a based map.

We now verify the condition of Lemma 2 for uniform movability. If o e o 19
given, the unbased form of Lemma 2 implies that there exist o/ & o and a natural
transformation @: ITy 1Ty such that @[p.] = [Pur], Where the homotopy classcs
are unbased. Let ¢;: X,— X5 satisfy loz] = @[pd for all e o. By () we may
assume that ¢; defines a base-point preserving map

(P;: (Xa” Xyr) _’(X;; xz)
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and (since p;;¢; = @7) that there are base-point preserving homotopies

Pisi~@;, whenever a<&.
By Lemma 1 there is a natural transformation &': g~y x,. such that
@'[pal = [gil- Since [p] = D[p,] = [po], it follows from (x) that [¢;] = [p;,];
hence

P [po] = [Par] -

Remark 4. Borsuk [1] has shown that if (X, x) is a pointed movable metric
continuum, then Sh(X, x) = Sh(X, x') for any point x' of X. Hence for such X
the choice of the base-point in computing 7, is immaterial and consequently sup-
pressed.

CorOLLARY 1. If X is an approximately 1-connected movable metric continuum
such that n(X) = 0, for all n, then X has the shape of a point.

Proof. Choose x € X. By Theorem 2 X is the inverse limit of a sequence of
simply connected ANR’s and consequently by Theorem 3 (X, x) is movable. Then
by Theorem 1 (X, x) has trivial shape, and hence X has trivial shape.

3. Movable topological groups. The purpose of this section is to establish
certain movability properties and to give an example of a movable continuum
which is not uniformly movable. For the example we use the fact that for the class
of uniformly movable compact connected abelian groups 4, 7y (4) = 0 is equiv-
alent to 4 = 0, which is established in Theorem 5. Of course, the class of such
groups is extensive because all products of circle groups belong to it. This follows
from Theorem 4 which shows uniform movability is preserved under taking ar-
bitrary products. )

THEOREM 4. If {X| je F Y is a family of uniformly movable compacta, then the
product X = II{X'| je #} is uniformly movable.

Proof. First we consider the case of the product of two uniformly movable
compacta Y and Z. If {¥}, gy, 8} and {Z,, r,,., €} are ANR-systems associated
with ¥ and Z respectively, then {Y,xZ,, Gppr X Ty, B X} is an ANR-system
associated with Y'xZ, where % x ¢ has the product oxder: (8, v") >(B, y) provided
B2 v'=y. It fi YXZ~P is any map into an ANR, then by Remark 1 there
exist fe B, ye ¥ and a map fp,: Y, xZ,~P such that

S folgpxry) .
By the definition of uniform n{ovability there exist ANR’s O, R, maps
g: Y= Q, hi Z—R, and natural transformations @: IDy—Ily, Wi ;-1 such
that g* &gl = [g,] and A*¥[r,] = [r,]. Let @5: O— Y5 and 5: R~ Z; be maps
for all e # and je ¥ satisfying
lpgl = @[] and
By Lemma 1 the maps

W5l = ¥rsl.

PFxY;i QX R-YxZ;


GUEST


152 G. Kozlowski and J. Segal Im

define 2 unique natural transformation
‘ PxY: HYXZ'_)HQXR

such that ’

Dx¥gzxr;] = oz xis].
Since @pg=q, and Y, her,, ‘

(g x* (@ xP)apxry] = [ppg x Y, B} = [gpxry] .

It follows easily that

(gxW¥@xD)f1=[f].
Therefore, the product of two uniformly movable compacta is uniformly mov-
able, and by induction it follows that the product of any finite number of uniformly
movable compacta is uniformly movable.

For the general case consider X = IT{X’| je #} as the inverse limit of the
system of finite products’on S X = lim{X,, P, #}, where o is the collection
of finite nonempty subsets of # with a<a’ meaning a=a’ and X, = II{X'| jea}
with p,,. being the projection. If f* X—P is any map into an ANR, then by Remark 1
there exist an « € o/ and a map f;: X,—P such that f,p, =2 f. Define a map §: X,—» X
by choosing a point z;€ X; for each jé o and specifying that the jth coordinate
of s(x) is the jth coordinate of x if j € & and is z; otherwise. Since p,s is the identity
map on X, and fop,~f, fsf,. Since X, is uniformly movable by the first part
of the proof, there exist an ANR Q, a map g: X,~ Q, and a natural transformation
&: Iy, —II, such that g* #[£] = [£]. The natural transformation ¢s* and the
map gp, satisfy ‘

(9p)* Ps*[f] = pFg* BLf) = p¥f = [1].
Hence X is uniformly movable.

LeMMA 5. If a compact connected abelian group A is uniformly movable, then
(4, 0) is uniformly movable, where 0 is the zero element of A.

Proof. Recall the well-known fact that there is an inverse system {T,, Do, H}
of tori T, (a finite product of circle groups) and continuous homomorphisms p,
associated with 4. For the projection p,: 4-»T, Lemma 2 (unbased) implies that
there exist o’ € &/ and a natural transformation &: IT 41y, such that @[p,]
= [Poy]- Then by Theorem 1.2 of [9] there is a unique continuous homomorphism
@: Ty—4 such that ¢* = @, But since homomorphisms preserve 0, Lemma 2
implies the definition of pointed uniform movability also holds. Hence (4,0) is
uniformly movable.

THEOREM 5. The only uniformly movable compact comected abelian group X
with m,(X) = 0 is 0. ‘

Proof. Using the toroidal inverse limit representation for X we have z,(X) = 0
for all n>1 (since all the higher homotopy groups of any torus vanish). Thus with
our hypothesis that m,(X) = 0 we have 7,(X) = 0 for all n. Now Lemma 5 allows

us to apply Theorem 1 to get that X has the shape of a point. Then [9, Corollary 1.3]
implies X is a point. .
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COROLLARY 2. If X is a uniformly movable torus-like continuum with n,(X) = 0,
then X has the shape of a point.

Proof. A torus-like continuum X has the same shape as the compact connected
abelian group 4 = char H'(X) (see [8]). So A4 is uniformly movable and 7,(4) = 0.
Therefore the theorem applies and 4 has the shape of a point.

EXAMPLE OF A MOVABLE CONTINUUM NOT UNIFORMLY MOVABLE. The fol-
lowing example is based on the work of Keesling [11] who has shown how such
examples can be obtained from certain algebraic data. Because no such examples
have actually been given, we give one for the sake of definiteness and make no
claim of originality. According to Keesling one starts with a discrete abelian group
having certain properties. Such a group was suggested to us by R. J. Nunke who
also outlined the proofs for the algebra.

Let G = Z® (Z = the integers, R = the reals) be the group consisting of all
functions g: R— Z with coordinatewise addition, and let H be the subgroup con-
sisting of all g & G such that g(r) = 0 for all but countably many r e R. The desired
discrete abelian group is G/H, which is obviously 2 nontrivial group. Let 4: G—G/H
be the natural homomorphism.

The two algebraic properties to be verified for G/H are: (1) any countable
subgroup is free and (2) the only homomorphism of the group into Z is zero.

Proof of (1). If I' is a countable subgroup of G/H then there is a countable
subgroup C of G such that #(C) = I'. Since C n H is countable, there is a count-
able set J such that any two elements g,, g, of C which differ on some element
of R—J have distinct images under . (In frct, J may be taken to be the set of all
re R such g(r) # 0 for some ge Cn H) If ge G, let g° € G be the function which
agrees with g on R—J and which is 0 elsewkere. Let C; be the countzble subgroup
of G consisting of all 4° where ge C. Since 7(g) = 1(g° for every g e C, 7(C,)
= I, and by the choice of J it follows that the kernel of #|C, is zero. Hence C, & T.

Since C, is countable, there is a countable subset Lo R such that any two
distinct elements of C, disagree on some member of L. Restriction of functions
defines a homomorphism 0: G- Z" which is therefore injective on C,; hence Co
= 0(Cy). By Theorem 19.2 of [4] 0(C,) is free; hence I is free.

Proof of (2). Let S be the subgroup consisting of all g € G for ‘which g (r) = 0
for all but finitely many » e R. Since Z is slender by Proposition 94.2 of [5], and
since R has nonmezsurable cardinal by Theorem 12.5 of [6], the only homo-
morphism G— Z which maps S to 0 is the zero homomorphism by Theorem 94.4
of [5]. If ¢: G/H~ Z is a homomorphism, then ¢n: G- Z maps H and therefore S
to 0, hence ¢ = 0 and thus ¢ = 0.

Keesling first claimed the existence of an abelian group satisfying properties
(1) and (2) in [11, Proposition 3.1]. Then by Theorem 3.3 of [11] the character
group of such a group is a non-trivial compact connected abelian group which is
movable and m; = 0 and by Theorem 5 is not uniformly movable.
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