

A note on "Atomic compactness in N₁-categorical Horn theories" by John T. Baldwin

by

B. Weglorz (Wrocław)

Abstract. Every model of an ω_1 -categorical Horn theory is atomic compact.

In paper [2] (mentioned in the title above) Baldwin has proved the following theorem:

Theorem 0. If T is a theory satisfying the following three conditions:

- (a) T is almost strongly minimal,
- (b) T is an $\forall \exists$ -theory,
- (c) T is a Horn theory,

then every model of T is atomic compact.

In this note we shall show that (a) can be replaced by a weaker assumption of ω_1 -categoricity of T, (see [1]); (b) can be omitted; and (c) can be replaced by the assumption that the class of all models of T is closed under direct products. Hence we get the following theorem:

THEOREM 1. If T is an ω_1 -categorical theory such that the class of all models of T is closed under direct products, then every model of T is atomic compact.

In the proof of Theorem 1, we shall use the following proposition (see e.g. [5], Th. 4) which results from a theorem in [4].

PROPOSITION 2. Let I be an infinite set and \mathscr{F}_I a filter on $I \times I$ generated by all the equivalence relations ϱ on I such that I/ϱ is finite and all but one ϱ -equivalence classes are finite. Then for every structure $\mathfrak U$ we have $\mathfrak U^I/\mathscr F_I \prec \mathfrak U^I$. Moreover $\operatorname{Card}(\mathfrak U^I/\mathscr F_I) = \operatorname{Card}(\mathfrak U) \cdot \operatorname{Card}(I)$ (1).

Proof of Theorem 1. Let $\mathfrak A$ be a model of T and let $\Sigma = \Sigma(\bar c, \bar x)$ be a set of atomic formulas with a sequence $\bar c$ of parameters from $\mathfrak A$ and a sequence $\bar x$ of variables. Suppose that $\Sigma(\bar c, \bar x)$ is finitely satisfiable in $\mathfrak A$. Take I such that $\operatorname{Card}(I) \geqslant \max(\operatorname{Card}(\mathfrak A), \operatorname{Card}(\Sigma), \omega_1)$ and consider $\mathfrak A^I|_{\mathcal F_I}$. Let d be the diagonal embedding of $\mathfrak A$ into $\mathfrak A^I|_{\mathcal F_I}$. Of course $\Sigma(d(\bar c), \bar x)$ is finitely satisfiable in $\mathfrak A^I|_{\mathcal F_I}$.

⁽¹⁾ $\mathfrak{A}^I|\mathcal{F}$ denotes the limit power of \mathfrak{A} , for more details see e.g. [4].

By Proposition 2, $\mathfrak{A}^I | \mathscr{F}_I \prec \mathfrak{A}^I$ holds. Let r be a mapping of \mathfrak{A}^I onto \mathfrak{A} such that rd(x) = x for all $x \in A$.

Now take $\mathfrak{B} > \mathfrak{A}^I | \mathscr{F}_I$ which has the following properties:

- (1) $\Sigma(d(\bar{c}), \bar{x})$ is satisfiable in \mathfrak{B} ;
- (2) $Card(\mathfrak{B}) = Card(\mathfrak{A}^I);$
- •(3) Card $(\mathfrak{B}) \geqslant \omega_1$.

Since $\operatorname{Card}(\mathfrak{B}) = \operatorname{Card}(\mathfrak{A}^I) \geqslant \omega_1$, and T is ω_1 -categorical, there is an isomorphism f of \mathfrak{A}^I onto \mathfrak{B} . Since $\mathfrak{A}^I|\mathscr{F}_I \prec \mathfrak{A}^I$, f maps $\mathfrak{A}^I|\mathscr{F}_I$ onto an elementary submodel of \mathfrak{B} , say \mathfrak{C} . Let g be an isomorphism of $\mathfrak{A}^I|\mathscr{F}_I$ onto \mathfrak{C} such that $g = f \upharpoonright (A^I|\mathscr{F}_I)$. Now \mathfrak{B} is an uncountable model of T. Consequently \mathfrak{B} is saturated, whence homogeneous. Therefore there is an authomorphism g^* of \mathfrak{B} such that $g \subseteq g^*$. In this way we get the following diagram:

$$\mathfrak{A}_{I} \overset{f}{\longleftarrow} \mathfrak{B} \overset{g^{*}}{\longleftarrow} \mathfrak{B}$$

$$\mathfrak{A}_{I} \overset{f}{\longrightarrow} \mathfrak{B} \overset{g^{*}}{\longleftarrow} \mathfrak{B}$$

$$\mathfrak{A}_{I} \overset{f}{\longrightarrow} \mathfrak{B} \overset{g^{*}}{\longleftarrow} \mathfrak{B}$$

Now, $\Sigma(d(\bar{c}), \bar{x})$ is satisfied in \mathfrak{B} by a sequence \bar{a} of elements of \mathfrak{B} . So $\Sigma(d(\bar{c}), a)$ holds in \mathfrak{B} .

Since g^* is an authomorphism of \mathfrak{B} , the set $\Sigma\left(g^*d(\bar{c}),g^*(\bar{a})\right)$ holds in \mathfrak{B} too. If we pass from \mathfrak{B} to \mathfrak{A}^I by f^{-1} , we see that $\dot{\Sigma}\left(f^{-1}g^*d(\bar{c}),f^{-1}g^*(\bar{a})\right)$ holds in \mathfrak{A}^I . But $f^{-1}g^*d(x)=d(x)$ for each $x\in A$. So $\Sigma\left(d(\bar{c}),f^{-1}g^*(\bar{a})\right)$ holds in \mathfrak{A} . Finally, applying r, we come back to \mathfrak{A} and we see that $\Sigma\left(rd(\bar{c}),rf^{-1}g^*(\bar{a})\right)$ holds in \mathfrak{A} . But rd(x)=x for each $x\in A$; consequently $\Sigma(\bar{c},\bar{x})$ is satisfied in \mathfrak{A} by the sequence $rf^{-1}g^*(\bar{a})$. Thus \mathfrak{A} is atomic compact. Q.E.D.

Remark 1. Baldwin's Theorem and the Theorem just proved deal with theories in countable languages. This is not an essential restriction. Indeed, if the language $\mathscr L$ of T is of the cardinality $\lambda \geqslant \omega$, then we can use Shelah's Categoricity Theorem (see e.g. [3]) for T to get (by the same proof with ω_1 — replaced by λ^+) the following theorem:

THEOREM 3. Let T be a complete theory in a language of the cardinality $\lambda \geqslant \infty$. If T is categorical in some cardinality $\varkappa > \lambda$ and the class of all models of T is closed under direct products, then every model of T is atomic compact.

Remark 2 (2). No assumption can be omitted in Theorem 1. Indeed, the theory of algebraicaly closed fields of the characteristic 0 is ω_1 -categorical, but does not have an atomic compact model.

To check that ω_1 -categoricity is essential, take the lattice $\mathfrak{A} = \langle A, \wedge, \vee, 0, 1 \rangle$ such that A is infinite and elements of $A - \{0, 1\}$ are pairwise incomparable. Take $T = \operatorname{Th}(\mathfrak{A}^\omega_{\mathscr{F}})$, where \mathscr{F} is the Fréchet filter. It is easy to see that the class of all models of T is closed under direct products but T does not have an atomic compact model.

Remark 3. The proof of Theorem 1, yields the following representation theorem:

THEOREM 4. If T is an ω_1 -categorical theory and the class of all models of T is closed under direct products, then for each countable model $\mathfrak B$ of T, every uncountable model $\mathfrak A$ of T is isomorphic with $\mathfrak B^I|\mathscr F_I$, where $\operatorname{Card}(I)=\operatorname{Card}(\mathfrak A)$.

Unfortunately the statement above is not true if $\mathfrak A$ is countable. Indeed, let T be the theory of countably many distinct individual constants. If $\mathfrak B$ is a model of T, then $\mathfrak B^2$ is saturated. Consequently other countable models of T are not products of a fixed model of T.

References

- [1] J. T. Baldwin, Almost strongly minimal theories I, Symb. Logic 37 (1972), pp. 487-493.
- [2] Atomic compactness in x1-categorical Horn theories, Fund. Math. 83 (1974), pp. 263-268.
- [3] S. Shelah, Stability, the f.c.p. and superstability; model theoretic properties of formulas in first order theory, Ann. Math. Logic 3 (1971), pp. 271-362.
- [4] J. Waszkiewicz and B. Weglorz, Some models of theories of reduced powers, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), pp. 683-685.
- [5] L. Pacholski, Elementary substructures of direct powers, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), pp. 55-59.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WROCŁAW Wrociaw, Poland

Accepté par la Rédaction le 4.11.1974

⁽²⁾ Remarks 2 and 3 answer questions raised by L. Pacholski.