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Compactly generated shape theories
by

Thomas J. Sanders (Annapolis, Maryland)

Abstract. For locally compact metric spaces, Borsuk’s weak’ extension of shape to metric
spaces and compactly generated shape are equivalent.

1. Introduction. Among the extensions of K. Borsuk’s shape theory [1] to
non-compact spaces are the ones given by Borsuk for metric spaces [2] and
L. Rubin and the author for Hausdorff spaces [9]. Relationships that exist between
these two extensions are discussed in [10].

The approach to shape in [9] is through the compact subsets of the Hausdorff
space, hence the name “compactly generated shape”. A weakened version [3] [4] of
Borsuk’s approach in [2] is also through the compact subsets of the metric space. In
private communication, B. J. Ball posed the question as to whether or not these two
approaches are equivalent. We are able to answer affirmative for locally compact
metric spaces. The reader is referred to [9], [12] for the development of compactly
generated shape. We denote the compactly generated shape category of [12] by s#.
The full subcategory of # consisting of locally compact metric spaces is denoted
by #,. We use AR and ANR to denote, respectively, absolute retract and absolute
neighborhood retract for general (i.e. possibly not compact) metric spaces.

2. Weak shape. Suppose M and N are AR’s and X and Y are closed subsets
of M and N, respectively. A weak sequence from X'to Yin (M,N),¢= {@ws XY aers
is a sequence of maps ¢, M—N that satisfy the following condition:

(2.1)

For every compactum 4 < X there is a compactum B< ¥ such that for every
neighborhood ¥ of B (in N) there is a neighborhood Uof X (in M) and an
integer K such that if k=K then
Py S Ppasly In V.

Note that a fundamental sequence @ = {¢p;, X, Y)yy as defined in [2] is a weak
sequence. Intuitively, we have dropped the “external” conditions imposed on a fun-
damental sequence in [2] and have retained only the “internal” conditions. Com-
positions and identities may be defined as in [2]. A weak sequence ¢. = {oes X, Yhyn
is an extension of Y = {Yi, X', Py if X' <X and g(x) = Yfx) for all x e X’



GUEST


38. T.J. Sanders

and k =1,2,.. If X and Y are compact then a weak sequence is a fundamental
sequence [2]. .

Two weak sequences @ = {(g, X, Yy and ¥ = {f,, X, Y}.M.,N are said to
be homotopic (notation ¢ = y) if they satisfy. the following condition:

(2.2) For every compactum 4cX there is a compactum B< Y such that for
every neighborhood ¥ of B.(in N) there is a neighborhood U of 4 (in M)
and an integer K such that if k> K then

Oy E Yily In V.

Note that if ¢ and i are homotopic fundamental sequences [2] then they are homo-
topic as weak seql;énces.
It M’, N’ are also AR’s containing X, ¥, respectively, then there are cxtensions
w: M—M' and p: N'—+N of the imbeddings iy: XM’ and #y: Y<N. Let
a={t, X, X)ypr and B ={B, Y, Y}y denote the fundamental sequences,
‘considered as weak sequences, determined by « and f, respectively. Two weak sc-
" quences @ = {@, X, Y}py and ¥ = {Y, X, Y}ypn are homotopic it fo and yra
are homotopic in the sense of (2.2). It can be shown that this is an equivalence re-
lation that preserves composition, that it does not depend on the extensions oz and f,
.and that this definition agrees with (2.2) in case M = M’ and N = N'. Furthermore,
there is a category # whose objects are metric spaces and whose morphisms are
equivalence classes of weak sequences. If X and ¥ are metric spaces that are equi-
valent objects in 4, then they have the same weak shape. We use %, to denote the
full subcategory of # whose objects are locally compact metric spaces.

3. Equivalence. Let .# denote the full subcategory of the compact shape cat-
egory, defined by MardeSi¢ in [6], whose objects are compact metric spaces. Let & de-
note the full subcategory of %, whose objects are compact metric spaces. There are
functors K: & —# and L: A~ that are the identity on objects and such that
both compositions are the identity functors (see [10] Proposition (2.6)). An inspec-
tion of [10] shows that there is a functor K*: #,—3#, that is the identity on objects
and such that, for [p] = [{ps, X, ¥Iun], K*[0] = [f, f,] where f: ¢(X)—e(Y)
is any ¢-compadibility function and [f,] = K[p|,). Here, [o] and [f.f4] denote
equivalence classes of weak sequences and »(‘ZS-morphisﬁ;s, rcspcctimvcly, and
@la = {0r> 4, f(A)}y,x. We now construct a functor. L*: sy,

(3.1) TrEOREM. Suppose {X,| n = 1,2, .} is a sequence of compact metric

]
spaces embedded in M, an AR, X = ) X,, and X,inty X, for n = 1,2, .. If
=1

le. = Lok Xus Yhaw) is a sequence of homotopy classes of fimdamental sequences
such that 10,] = [@us (][], where i, = {1,0, X,, X,y Jpeae Jor n = 1,2, ... is the
inclusion weak sequenice, then there is a unigue homotopy class [¢] = [{py, X, ¥}l

such that @] = [p][f:), where j, = {1y, X,, Xy forn =1,2, .. is the inclusion
weak sequence.

- iom°®
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Proof. By Theorem 3.1, p. 9. of [11] there is a sequence of representatives
@n = {08 Xy Y}yy of the homotopy class [p,] such that ¢, is an extension
of @uforn=1,2,..Let ¢, = @kt M—N. Then @ = {@g, X, Y}y,y is represen-
tative of the required homotopy class. The uniqueness also follows in a straightfor-
ward manner. ’ ‘ ’

The following indicates that topological sums are sums in the category 4.

(3.2) THEOREM. Suppose {X,| aeA} is a collection of metric spaces and M is
an AR such that X = Z X, is a closed subset of M. Let Y be a closed subset of N,

agd
an AR. If [p,] = [, X.» Y}aea) is a family of homotopy classes of weak sequences,
then there s a unique homotopy class of weak sequences [p1 = [{pw, X, Y }y,n] Such
that [p,] = [pllil, where i, = {1y, Xo, X}y i the inclusion weak sequence.
Proof. For each n, define ¢,(x) = ¢¥(x) if x € X,. Then ¢,: X~ YcNand N
is an AR, so there is an extension ¢,: M—N. Let 4 =X be compact. Then 4 = 3, 4,

aedr

where A’ is a finite subset of A and 4, X, is compact. Let B,, @ € A, be the family
of compact subsets of ¥ guaranteed by ¢,, a € 4', being a family of weak sequences.
Let B =Y B,. Then B Y is compact. Suppose ¥ is an open neighborhood of B

as ! .

in N. Let X be an integer such that if k> K and ae A’ then there is a homotopy
H,: X,xI-V between ¢fly, and @f.|y,. Since ¥ is an ANR, there is a neighbor-
hood U of X in M and a homotopy H: Ux I~V between @yly and ¢reqly-

For uniqueness, suppose ¥ = {ify, X, ¥}y y is any weak sequence such that
@a = Vi, By an argument analogous to the above proof that ¢ is a weak sequence
it follows that = ¢.

We are now able to define a functor L*: s ,—%, that is the identity on objects.

Let Yand X = ¥ (U X,,), where ([5], Theorem XL 7.3) X,, is compact and

aed n=1 R
X,,cintX, . forallaed and n=1,2, ..., be locally compact metric spaces.

If [f, f4]: X— Y'is a homotopy class of CS-morphisms then by Theorems 3.2 and 3.3
there is a unique homotopy class of weak sequences [p] = [{¢e, X, Y}] such that

{oda 4. S(AN] = L(fy) for 4 =X, acd and n=1,2, ..

Define LX([f, £4)) = [g]-

One then checks that the functors L*: #o—%#, and K*: B>, are inverse
functors, i.e., the compositions are the appropriate identity functors. Thus the con-
cepts of Borsuk’s weak shape and compactly generated shape agree on locally compact
metric spaces. :
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The automorphism group of a p-group
of maximal class with an abelian maximal subgroup *

by

Alplionse H. Baartmans (Carbondale, IIl.) and
James J. Woeppel (New Albany, Ind.)

Abstract. In this paper we give a detailed description of the automorphism group of a p-group
of maximal class with a maximal subgroup which is abelian.

§ 1. In this paper we will always let G denote a p-group of maximal class of
order p", n=4, p an odd prime, and we will let o/ be the group of all automorphisms
of G. First we note that G has a characteristic cyclic series, that is, there are charac-
teristic subgroups, G, 0<i<n, of G with G;/Gy.. cyclic such that

(L.LD G = Gol> Gy ..> G, = E.

This follows from Lemmas 14.2 and 14.4 in [7]. From Durbin and McDonald’s
result in [3] or [1], o is supersolvable and its exponent divides p'(p—1) for some
t>0. Thus the Sylow p-subgroup P of & is normal in &, and so ithasa p’-comp-
lement H. )

The characteristic series (1.1.1) may be taken as a composition series, in that
case the factors G;/G;4; have prime order p. Thus any automorphism o of G acts
on Gy/G., as a power map, i.e. if ¢ is an automorphism of G restricted to Gi/Gy+y
then (@G, )0 = 0"Gyyy for all 4Gy € Gi/Giyy- Consider H’ the commutator
subgroup of H; clearly H' stabilizes (1.1.1), that is, if A€ H' then k acts trivially
on G/Gyyy, | =0, ..., n—1. By Theorem 1 of P. Hall’s paper [6] H" is nilpotent,
and by Coroliary 3.3 of [4], p. 179, it is a p-group. Therefore H' is trivial giving us
that H is an abelian p’-group. )

Levma 1.1, The automorphism group o of a p-group G of maximal classis the
semidirect product of P by H where P is the normal Sylow p -subgroup of of and where H
is the p'-complement of P. Furthermore H is an abelian p'- subgroup of s with exponent
dividing p—1. : - )

A p'-group H of automorphisms of G may be represented faithfully on the
H-module G/®(G) over the field Z, (integers modulo p). Here $(G) denotes the Frat-

* A p-group of order p" is of maximal class if it has class n—1. N. Blackburn studies these
groups in detail in his paper [2]; most of his results .are presented in Huppert [7], pp. 361-377.
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