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fori=1,..,n—2. Thus P/#, is abelian, in fact
(3.1.10) ®(P) =P = SI.
This means that P is metabelian of class n—2. The Sylow p-subgroup has
(3.1.11) {o,m) i=1,..,n=2} |

as a generating set. We summarize some of the above results of this sectionin the
following theorem:

TrHEOREM 3.1, If G is a p-group of maximal class of exponent p with a maximal
subgroup which is abelian, then the normal Sylow p-subgroup P is metabelian of
class n—2 and of order p*~3. The commutator subgroup P’ of P is the subgroup
of inner automorphisms S induced on G by the maximal subgroup of G which
is abelian (see (3.1.10)).

References

[11 A.Baartmans and J. Woeppel, Groups with a characteristic series, J. Algebra 29 (1974), pp.
143-149.

2] N Blac!cburn, On a special class of p-groups, Acta Math. 100 (1958), pp. 45-92. )

[3]1 J. Durbin and M. McDonald, Groups with a characteristic cyclic series, J. Algebra 18
(1971), pp. 453-460.

[4] D. Gorenstein, Finite Groups, Harper and Row 1968,
[51 M. Hall, Jr., The Theory of Groups, Macmillan 1959,

[61 P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958),
pp. 787-801. S

{71 B. Huppert, Endliche Gruppen I, Springer 1967.

Accepté par la Rédaction le 25. 9. 1974

icm

Selection theorems for partitions of Polish spaces

by

A. Maitra and B. V. Rao (Calcutta)

Abstract. In this paper we evaluate the (Borel or projective) class of selectors for partitions
of Polish spaces into disjoint closed sets. In particular, we improve upon the results. pertaining .
to @~ partitions which have been obtained recently by Kuratowski and Maitra.

1. Introduction. The problem of the existence of “topologically pleasant™
selectors for partitions of a Polish space into disjoint, non-empty, closed sets, where.
the partitions themselves are “topologically pleasant”, has been considered by several
authors. We mention here the articles of Mazurkiewicz [8], Bourbaki [2], and Kura-
towski and Maitra [7].

In this paper we shall be mainly concerned with the evaluation of the (Borel
or projective) class of selectors. The first such result known to us was proved by
Mazurkiewicz ([8] and [5], p. 389). He showed that any partition of a closed subset
of the space of jrrationals which is induced by a continuous function defined on it
to a separable metric space admits a coanalytic selector. In the same spirit, Bourbaki
proved that any upper semi-continuous partition of a Polish space into closed sets
admits a G, selector ([2], Chap. 9, Ex. 9(a), p. 262)- Kuratowski and Maitra [7]
extended Bourbaki’s result by showing that any o™ or «” partition of a Polish space
into closed sets admits a selector of multiplicative class (a+1) (for definitions, see
Section 2). ’ )

We shall establish in this paper some general results on the existence of selectors,
from which it will follow that the results of Kuratowski and Maitra for o~ partitions
can be improved at all levels >0. Indeed, it a>0, we prove that any o™ partition
of a Polish space admits a selector of multiplicative class ¢, and, moreover that, in
general, a selector of lower class does not exist.

.Our method of defining a selector is as follows. We first define a suitable linear
order on each Polish space such that every non-empty closed set has a first element.
We achieve this by using a result of Arhangel’skii [1], which states that every Polish
space is a continuous open image of the space of irrationals. Using such a continuous
open function, we transfer the lexicographic order on the space of irrationals to the
given Polish space. The selector is now taken to be the set of all first elements of
niembers of the given partition. Our results on the existence of tractable linear orders
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on Polish spaces seem to be of independent interest and have some connections with
the work of Engelking, Heath and Michael [3].

The paper is organized as follows. Section 2 contains the basic definitions and
notation. Section 3 shows how Polish spaces can be linearly ordered. In Section 4 we
prove the main selection theorems. Section 5 is devoted to examples which establish
that some of our results cannot be further improved upon as far as the class of the
selector is concerned.

2. Definitions and notation. Let X be a Polish space. By a partition of X is
meant a family of disjoint, non-empty, closed subsets of X whose union is X. Tf @ is
a partition of X, we write x~) to mean that x and y belong to the same element of Q.
For AS X, the saturation of A with respect to @ is the union of all elements of Q
which have a non-empty intersection with 4. 4* will denote the saturation of 4.

Let I be a o-additive lattice of subsets of X. —L stands for the family of com-~
plements of sets belonging to L. A partition @ of X is said to be a L~ (resp. L)
partition just in case the saturation of every open (resp. closed) subset of X with
respect to Q belongs to L (resp. —L). In particular, if L is the c~additive lattice
of subsets of X of additive class &, a L™ (resp. L") partition of X will also be called
ao (tesp. o*) partition. Note that 0~ (resp. 0%) partitions of X are just the lower
semi-continuous (resp. upper semi-continuous) partitions of X. A partition is
continuous if it is both lower and upper semi-continuous. A. partition Q of X is said
to be analytic if the saturation of each open subset of X with respect to Q is analytic.
A selector for a partition Q of X is a subset § of X such that § intersects each element
of Q in a single point.

A linear order on X is an anti-reflexive, transitive and connected binary relation.
on X with field equal to X. Let R be a linear order on X. If 4 is a non-empty subset
of X, then x is said to be the R-first element of A if xe 4 and Vy(ye A and
¥ # x—->xRy). xis a jump point of Rif x has an immediate successor. The immediate
successor of x, if it exists, is clearly unique and is denoted by x™*.

Denote' by N.the set of positive integers. The usual order on N is denoted
by <. For each k € N, P, is the set of finite sequences of positive integers of length k.

L]
Set P =kplPk' For p e P and 1<i<length p, p, is the ith coordinate of p, We define

a partial order <, on P as follows: for p, g € P, p<,¢ if length p<length ¢ and there
is i such that 1<iglength p,p; = q; for 1<j<i~1, and p;<q;. Write p<yq to
mean p<ug OF p = gq.

WesetZ = N ¥ the set of infinite sequences of positive integers. Equipped with
the product of discrete topologies on N, X becomes a homeomorph of the space of
irrationals. If o€ X and ie N, o, will denote the ith coordinate of . For p ey,
Z(p) is the set of all ¢ & X such that (o, ..., a) = p. The lexicographic order on X will
be denoted by <* and is defined as follows: a<*1 if there is a k e N such that
oy = 1; for 1<igk~1, and 6,<7.. ¢<*7 means that o<*t or ¢ = .

Throughout, the real line is assumed to be equipped with the usual topology,

e ©
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‘while subsets of the real line are endowed with the corresponding relativized topology.
1t X is topological space, F(X) denotes the collection of all non-empty closed
subsets of X, F(X) is endowed with the Vietoris topology.

3. Linear orders on Polish spaces. The present section deals with the problem
of defining suitable linear orders on Polish spaces. The results will then be used in
the next section to deduce selection theorems.

TueorEM 3.1, Let X be a Polish space. Then there exists a linear order R on X so-
tisfying the following conditions: i ’

(a) each non-empty closed subset of X has an R- first element,

(b) for each ae X, the set {xe X xRa} is open in X,

(c) there is a countable set DX such that

VxVy(x Ry ze D)(x Rz and T1(yR2)).
Proof. According to a result of Arhangel’skii ({1], Cor. 4.7), there is a con-

- tinuous open function f on I onto X. Let

R={»yeXxX: 3o ef MY 1 ef MDY (e <* ).

1t is easy to check that R is a lincar order on X.

Let C be a non-empty closed subset of X: Then f ~1(C) is a non-empty closed
subset of 3. Let o, be the lexicographic minimum of f “HO). Tt x5 = flog), We
assert that ix, is the R-first element of C. To see this, let x € C and x # x,. Then
00 &7 1 ({x}) and £~ *({x}) =f "H(C). Hence, for any 7 such that (%) = x, we have:
oo # 7 and tef “}C). Consequently, oo<*r, and thus, X, RX.

In order to establish (b) and (c), notice that

xRy—@peP) (x ef(Z(p)) and (V ¢ EP)(QS*P*y ¢f(2(4)))) R

so that

R= U (7E@)x (x- USE@))-

paP g<up
Since fis open, f(2(p)) is open in X, and X~ U f(Z(g)) is closed in X.
asp .

Now, for fixed a & X, the set {xe X: xRa} is the horizontal section ate of R.
So, it follows from the above representation of R that {x & X xRa} is a union of
some of the sets f(Z(p)) and, consequently, open in X. '

For peP, set E(p) = X— Uf(Z(@) Let

e

D ={zeX: @peP)(zis the R-first clement of E(p))}-

Plainly D is countable. Moreover, it xRy there is a peP such that
(x, ) e f(5(p)) x E(p). Taking z to be the R-first element of E(p), we get: xRz
and ~1(yRz). This completes the proof. » .

Tn Section 5 we shall give an example to show that it is not always possible to
define 2 linear order R on a Polish space X so that each non-empty closed subset

4 — Fundamenta Mathematicae XCIII
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of X has an R-first element and also that the order topology induced on X by R is
coarser than the given topology. However, as the next result shows, this is always
possible for 0-dimensional Polish spaces. ‘

TagoreM 3.2. Let X be a 0-dimensional Polish space. Then there exists a linear
order R on X satisfying the following condirions:

(a) -each non-empty closed subset of X has an R-first element,

(b) the oider topology induced by R on X is- coarser than the topology of X,

(c) R admits at most countably many jump points,

(d) there is a countable set Dc X such that

VxVyp(xRy & Az)(xRz & zRy)~@ z€ D)(x Rz & zRy)) .

Proof. Being a 0-dimensional Polish space, X can be regarded as a closed subset
of T ([5], p. 348). Take R to be the restriction of the lexicographic order <* to X.
It is well known that R satisfies conditions (a) and (b) above.

For ¢, 7€ X such that o<*v, let J(o, 1) = {ge Z: o<*g<*z}. Let D be the
family of all intervals J(¢,7) such that o,7e X, o<*r and J(o, ) N X =@. If
J(oy, 1) and J(o,, 1) belong to D, then, as is easy to check, (o, 7;) = (03, 72)
or J(oy, 1) NnJ(0;,7,) = @. Now each J(o, 1) e D is non-empty and open in Z.
Consequently, since X is separable, D is countable. The left end-points of intervals
in D are just the jump points of R. Thus, we have checked condition (c).

Finally, for (d), it suffices to let .D be any countable dense set in X, Such that
a D works follows from (b). This completes the proof.

4. Selection theorems. Using the results on linear orders established in the
previous section, we shall first prove two general selection theorems, from which the
results on selectors for a* and &~ partitions will follow.

THEOREM 4.1. Let X be a Polish space, and let L be a a-additive lattice of sub-
sets of X containing all closed subsets of X. If Q is at L™ partition of X, then there is
a selector S for Q such that Se —L.

Proof. According to Theorem 3.1, there is a linear order R on X and a countable
subset D of X satisfying conditions (a), (b) and (c) of Theorem 3.1. Define §< X by:

xS (V) (pRx-"1(x~)).
In other words, S is the set of R-first elements of the members of the partition Q.
That R-first elements of members of Q exist follows from condition (a) of Theorem 3.1
and the fact that members of Q are closed in X. Clearly, then, ' is a selector for Q.
Next, notice that
xS @NP~x&yRN @ ae D)(xe{z: zRa}* & 7 (xRa)).
The last equivalence is by virtue of condition (c) of Theorem 3.1. Now observe
that, for fixed « € X, the set {z: zRa}*, being the saturation. of the open st {z: zRa},
belongs to L;moreover, the set {z: 71 (zRa)} is closed and so also belongs to L. Since

X—S8= Li({z: zRa}* n {z: 1 (zRa)}),

icm

©

Selection theorems for partitions of Polish spaces 51

it follows that X—§ is a countable union of sets belonging to L, and, consequently,
X—SeL. This terminates the proof.

Tt should: be mentioned that Theorem 4.1 has certain similarities with the main
theorem of Section 3 in [7]. However, neither implies the other., On the other hand,
we are able to deduce from our formulation shaiper results about o~ partitions than
in [7]. )

TreoreMm 4.2. Let X be a 0-dimensional Polish space, and let L be a o -additive
luttice of subsets of X containing all clopen.-subsets of X. If Q is a L™ partition of X,
then there is u selector S for Q such that Se —L.

Proof. Use Theorem 3.2 to get a linear order R on X and a countable set DS X
satisfying conditions (a)-(d) of the same theorem. Denote by D' the set of jump
points‘of R. According to condition (c) of Theorem 3.2, D' is countable. Now
define S X as in the proof of Theorem 4.1. As before, S'is easily seen to be a selec-
tor for Q.

To show Se& —L, observe that

x ¢ Ser@y)(p~x &y Rx)
«[@ae D)(xe{z: zRa}* & aRx)
or AaeD)(xe{z: zRa"}* &aRx)],
so that '
X—8= U ({z: zRa}* n{z: aRz}) v Lg({z: zRa™}* n {z: aRz}).
ael aeD’

Since the order topology induced by R-is coarser than the topology of X, the sets
{zi zRb} and {z: hRz} are open in X for any b€ X. Furthermore, as each open
subset of X is a countable union of clopen sets, it follows that L contains all open
subsets of X. X—S is, therefore, a countable union of elements of L, and hence,
belong to L. This completes the proof.

The proof of Theorem 4.2 suggests the following general selection theorem for
lower semi-continuous partitions.

TrroruM 4.3. Let X be a topological space such that there is a linear order Ron X
satisfving conditions (8) and (b) of Theorem 3.2. If Q is any lower semi-continuous
partition of X, then there exists a closed selector for Q.

Proof. Let D be the st of jump points of R. Define S X as in the proof of
Theorem 4.1, so that § is a selector for @. One easily checks that

X8 = |z zRaP* n{zi aRzp) v U {z: zRa™}* n {z: aRz}).
aekX aeD
Plainly, X—8 is open, which completes the proof.

COROLLARY 4.4, Any analytic partition of a Polish space admits a coanalytic
selector.

Proof. The above result follows from Theorem 4.1 by taking L to be the family
of analytic subsets of the given Polish space.

il
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Note that Corollary 4.4 generalizes the result of Mazurkiewicz which was
quoted in the introduction.

COROLLARY 4.5. If «>0, any o™ partition of a Polish space admits a selector of
multiplicative class a. .

Proof. This again follows from Theorem 4.1. This time one takes L to be the
family of subsets of the Polish space which are of additive class «.

For any a, an o™ partition of a Polish space is, plainly, an («- 1)~ partition.
Consequently, an immediate consequence of Corollary 4.5 is

COROLLARY 4.6, Any o partition of a Polish space admits a selector of multi-
plicative class o+1.

Since any 0~ partition of a Polish space is also a 1~ partition, Corollary 4.5
yields

CoROLLARY 4.7. Any lower semi-continuous partition of a Polish space admits
a Gy selector. :

It should be noted that Corollaries 4.6 and 4.7 were first proved by Kuratowski
and Maitra [7]. Their method of proof, however, is quite different from ours.

As will be seen in Section 5, a lower semi-continuous partition of a Polish space
need not, in general, admit even a F, selector, so that Corollary 4.7 gives the best
general result for lower semi-continuous partitions of a Polish space. However,

in certain special cases, one can do better than Corollary 4.7. We now proceed to
describe some of these special situations.

COROLLARY 4.8, Each lower semi-continuous partition of a 0-~dimensiondl Polish
space admits a closed selector.

) Proof. Take L to be the family of open subsets of the Polish space and ‘use
Theorem 4.2.
Our next result is about partitions whose members are not necessarily closed.
It is clear that one may define lower semicontinuity for such partitions just as
before, i.e., by requiring that the saturation of each open set be open.

THEOREM 4.9. Let X be a subset of the real line, and ler R be the restriction to X of
the usual order on the real line. Suppose that Q is a lower semi-continuous partition of X
into arbitrary sets such that either (i) every element of Q has an R-first element,
or (ii) every element of Q has an R-last element. Then there is a selector S for Q such
that S is closed in X.

Proof. Assume (i). Let § be the set of R-first elements of members of Q.
Plainly, § is a selector for Q. To show that S is closed in X, it suffices now to imitate
the proof of Theorem 4.3. ‘ :

Now assume (if). The proof is as above, except that we now work with the linear
order R’, which is defined by: xR'y if yRx.

CoROLLARY 4.10. Let X be a subset of the real line. If Q is a lower semi-continuous
partition of X into compact sets, then there is a selector Sfor Q which is closed in X.

@
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The remaining results of this section are again about partitions, all of whose
members are closed.

CoroLrARY 4.11. Let Q be a lower semi-continuous partition of the real line.
Then there is « selector for Q which is simultaneously an F, and a G, subset of the real
line.

Proof. Denote by @(0) the (unique) member of @ containing 0. Let X,
= (0, o)~ @(0), so that X is an open subset of the real line. Let @, be the restric-
tion of Qto Xy, ie,let @y = {En X;: Ec Q& En X, # O}. It is easy to verify
that Q, is a lower semi-continuous partition of X; into closed sets, Indeed, if Ee Q
and En X, # @, then En X, is a closed subset of the real line, for
En Xy = L [0, ). Thus, each member of @, is a non-empty, closed, lower-
bounded subset of the real line, and consequently, has a minimum (relative to the
usual order on the rcal line). Hence, by Theorem 4.9, there is a selector Sy for Q4
such that S, is closed in Xj.

Similatly, let X, = (— 00, 0)—Q(0) and let

0, ={EnX,: EcQ&EnX, # @}.

By an argument similar to the above, one can show that there is a selector S, for O,
such that S, is closed in X,. :

Denote by T the saturation of (0, co) with respect to Q. Let §=§ v
U (S,—T) v {0}, Tt is clear that § is a selector for @ and that S is simultaneously
an F, and a G, subsct of the real line. This completes the proof.

CoROLLARY 4.12. Let X be the unit circle equipped with the usual topology. If Q is
a lower semi-continuous partition of X, then there is a selector for @ which is simul-
taneously an F, and a G, subset of X. .

Proof. Remove an element of Q from X and imbed the remainder as a subset
of the real line. The desifed result now follows from Corollary 4.10.

5. Examples. In this section we present examples to show that several of our
results are optimal.

ExampLn 1. Fix 020, Choose ES[0, 1] such that E contains the point 1, E is
symmetric about 4, and such that E is of multiplicative class o but not of additive
class a. Let ‘

Q = {{x}: x e B} U {{x, 1-x}: x€0, 1]-E}.

Claim. @ is a o™ partition of [0, 1]. For, if V'is an open subsc.zt of [0, 1}, lthen
V¥ =V U @(V~E), where ¢ is the homeomorphism x—»l—.—aic. Since V—E is of
additive class a, so is @(V'—E). Consequently, V* is of additive class a.

Now assume that S is a selector for @ of additive class e Since E;S, it foll'o‘ws
that [0, 1]—E = ([0, 1]—8)* = ([0, 1]-8) v ([0, 11-5), so thaft‘E is of additive
class o Contradiction! Thus, there is no selector for @ of additive class o

This shows that Corollary 4.5 cannot be improved upon as far as the class of »
the selector is concerned. o R . :
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ExaMPLE 2. Let X be the real line. For x, y € X, define x~yif x—y is aninteger.
Then ~ is an equivalence relation on X. Let Q be the set of equivalence classes of ~,
As is easy to check, Q is a lower semi-continuous partition of X into closed sets.
.. Let S be a selector for Q. For distinct integers m, n, (S+m) N (S+n) = @,

©w
where S+m = {x+m: x e S}. Moreover, X = {J (S+n). Since X is connected, S is
. n=E=w
not open in X. Nor can S be closed in X. For, if it were, then the real line would be
a denumerable union of disjoint, non-empty, closed sets, which is impossible
(141, p. 178).
This example shows that the condition regarding the compactness of elements
of the partition in Corollary 4.10 cannot be relaxed. The question now arises if
Corollary 4.10 extends to spaces other than subsets of the real line. The answer is
no, as the following example shows.
ExampLE 3. Let X be the unit square [0, 1]1x [0, 1], equipped with the usual
topology. Let
' 0 = {{x,3), (1—x,1-y)}: (x,3) € X}.

It can easily be checked that Q is a continuous partition of X. Denote the homeo-
morphism (x, p)-(1—x,1-y) by ¢.

~ .Now let § be a closed selector for Q. Note that S—{(4, H} and ¢ (S—{(4, H})
form a non-trivial disconnection of X— {(%, $)}. But this is impossible, for, as is well
known, X—{(#, D} is connected. Thus, Q does not admit a closed selector.

Observe also that there does not exist a linear order on X satistying condi-
tions (a) and (b) of Theorem 3.2. This is now an easy consequence of Theorem 4.3.

- It is also interesting to note that there is no continuous selection (in the sense
of [3]) on F(X). This follows from the fact that Q is a continuous partition and
that Q admits no closed selector. Indeed, this proves more, viz., that there is no
continuous selection on @, where Q is now regarded as a subset of F(X) and is endo-
wed with the relative topology inherited from F(X). This should be compared with
Proposition 5.1 in [3].

ExAMPLE 4. A better example than the above — better because the underlying
space is one-dimensional — from which the same negative consequences can be
deduced is this. Take X to be the unit circle endowed with the usual topology. Let Q
be the collection of all diametrically opposite two-point subsets of X, It is easy to
check that Q is a continuous partition of X. That there is no closed selector for Q
follows from the connectedness of X.

ExamerLe 5. Start with circle group C as above. For x, y in the circle group,
define x~y if x =y or x = y+m. ~ is an equivalence relation and the collection
of all equivalence classes of ~ constitutes a continuous partition of the circle group
(indeed, this was just the partition considered in Example 4). Define F: C—F(C)
by: F(x) = {x, x+=x}, so that F is continuous.

" Now let X be the product of denumerably many copies of C and equip X with
the product topology. Define G: X—F(X) by: G((%,)) = F(x.) x F(x;) X ... Since Fis
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continuous, it follows that G is continuous, The last assertion can be established in
a manner analogous to the proof of Theorem 12 in [6]. Letting

Q = {G((x): () e X},
we sec that @ is a continuous partition of X.

Let S be a selector for Q. We now assert that, if K is a compact subset of S,
then K* is nowhere dense in X, To see this, consider the product {0, 1}¥ x X, where
{0, 1}V is endowed with the product of discrete topologies. Define a function
01 0, 1Y x X=X by: @((6), (%)) = (%,+&,m). It is easily checked that ¢ is con-
tinuous and onto X, Next, if ES X, E* = ¢({0, 1} x E). Since X<, the restriction
of ¢ to {0,1}"xK is onc-one. Hence, as K is compact, the restriction
of ¢ to {0, 1}¥x K is a homeomorphism onto K*. Now assume, by way of con-
tradiction, that K* is not nowhere dense. So there is a non-empty, connected, open
subset 7 of X such that Vs K*. The set ¢~ (¥) n ({0, 1}¥ x K) is, then,.a non-
empty, connected, open subset of {0, I} xK. Projecting ¢ ~*() n ({0, %K)
to the first coordinate, we get a non-empty, connected, open subset of {0, 1}, which
is clearly impossible. Thus, K* is nowhere dense in X.

Tt follows immediately that S cannot be an F, in X. For, if it were, S would be
L)

U K%, so that the above

n=1
considerations imply that X is meagre. This contradicts the Baire Category Theorem.
We have thus proved that the continuous partition Q does not admit.an' F,
selector. Consequently, our results regarding selectors for lower semi‘-c‘:ontmuous
partitions (Corollary 4.7) as well as for upper semi-continuous partitions (Cor-
ollary 4.6) cannot be improved upon. N
ExameLE 6. The following is an example of an upper semi-continuous partition
of a 0-dimensional Polish. space which does not admit an F, selector. Take X to be
the Cantor set. Define a function f: X—[0,1] by:
® 2g ® g
f<2 .—37?) = ngl 2_: ’

ne=l

o0
equal to ) K, where K,’s are compact. But X = S* =
nma L

where ¢, = 0 or 1. As is well known, fis continuous and onto [0,.1]. Le? Q be the
partition of X induced by f, i.c., let O = {F~4{y}: y 0,11}, Since fis a closed
apping, Q is upper semi-continuous. _

mlppSﬁ?ﬁoﬁ: nov«} |let S is a selector for Q. It is easily check.ed tl}at both S and
XS ixr.c donse in ¥ and that X—§ is countable. Moreover, if Kis com.pact and
K<8, then K is nowhere dense. It follows that, if § is an F, in X,' then S is m_eagre
in X. Consequently, as XS is also meagre in X, it follows that X is meagre in. itself,
which contradicts the Baire Category Theorem.

Thus, results analogous to Corollaries 4.8-4.12 do not hold for upper semi~

continuous partitions. N f
Exampre 7. In Example 1, take the set E to be of additive class a but not o

multiplicative class a. It is still assumed that E is symmetric about % and contains 3.
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The partition O defined in Example 1 now becomes an a” partition. An argument
similar to the one used in Example 1 now shows that Q does not admit a selector
of multiplicative class oc. Thus, an ot partition need not, in general, admit a selector
of multiplicative class a.

ExameLE 8. Here is an example of an analytic partition of a Polish space which
does not admit an analytic selector. The example is related to Sierpifiski’s example
of a planar Bore} set which cannot be uniformized by an analytic set ([9], p. 138).

Let fbe a continuous function on X onto an analytic non-Borel subset ¥ of [0, 1],
Denote by @ the partition of ¥ induced by f, ie, @ = {f ' {¥}): ye ¥} Asis
easily checked, Q is an analytic partition. Suppose, by way of contradiction, that S is
an analytic selector for Q. Define a function g: Z—Z by: g (o) = the unique clement
of 8 nf7H{f(6)}). We now verify that g is Borel measurable. First, note that, for
any subset E of %, g"Y(E) = fYf(E n S)). Hence, if E is any Borel subset of %,
then g~ 1(E) is analytic. So, in particular, both ¢~*(E) and g~ (¥ — E) are analytic,
whenever E is a Borel subset of £. It now follows by a well known result of Sous-
lin ([5], p. 395) that g ~*(E) is a Borel subset of X, whenever E is a Borel subset of Z.
Thus, g is Borel measurable. An immediate consequence of this is that S is a Borel
subset of Z, for § = {o € Z: g(6) = o}. Now the restriction of fto S is one-one and
J($) = Y. Hence, Y is a Borel subset of [0, 1] ([5], p. 397), which contradicts our
assumption that Y is non-Borel.

We therefore conclude that Corollary 4.4 is the best possible result concerning
selectors for analytic partitions.
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Remarks on Cartesian products
by

R. Pol and E. Puzio-Pol (Warszawa)

Abstract. In this paper we consider Cartesian products of topological spaces. Using the
method of A. M. Gleason, we give simple proofs of a few well-known theorems and some their
strengthenings. We give an answer to a questionRof R. Engelking and M. Xarlowicz and prove
that the defined by A.H.Stone closed subsets of N cannot be separated by Gs-sets. We also show
that the realcompact Gs-subspaces of N™ are homeomorphic with N™ for m > ;.

This paper is devoted to some problems connected with Cartesian products of
topological spaces. Using the method of A. M. Gleason, we give simple proofs of
a few important and well-known theorems about products as well as their strengthen-
ings (Section 2 and 3). In particular, we give an answer to a quc;stion raised by
R. Engelking and M. Kartowicz [11]. Next, on the grounds of the results of Sections 2
and 3 and the well-known facts about Z-products, we discuss properties of the
products of natural numbers N™ (Section 4), of the functionally closed subsets of
products of metrizable spaces (Section 5) and of the realcompact subspaces of pro-
ducts of first-countable spaces (Section 6). We show, among other things, that the
closed subsets of N defined by A. H. Stone cannot be separated by Gj-sets and
that the realcompact Gj-subspaces of the space N™ are homeomorphic with N™
(for m> ). : :

1. Notation and terminology. We adopt the notation and terminology of {10].

In particular, w(X) denotes the weight, 3 (X) the character, d(X) the density and ¢ Xx)

the Souslin number of a topological space X. The Cartesian product of a family of

sets {X,}ias is denoted by ]:X,; for T'=S, the symbol pr: PX, - PX, denotes
sa

saS seT
the projection. By a cube in the product PX, we mean a subset of the form K = Pk,

sal' : seS§
where K, X,, for s& 8. The sct X, will be called the s-th face of thc? cube. K .and
the set D(K) = {seS: K, # X} will be called the set of its distinguished indices.

It D(K)<m, we shall say that K is an m-cube. Besides the Tychonoff topology in
the product PX, = X (the space X with this topology will be denoted simply b}: ePSXS)

saS . .
we shall consider the m-box fopology, generated by a base which consists of all

cubes with open faces having the set of distingnished indices of cardinality less
than m. The set PX, with the m-box topology will be denoted by (I;X,)m. For atop-

16§ . se .
ological space X the m-modification of X is the topological space with the same
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