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The partition O defined in Example 1 now becomes an a” partition. An argument
similar to the one used in Example 1 now shows that Q does not admit a selector
of multiplicative class oc. Thus, an ot partition need not, in general, admit a selector
of multiplicative class a.

ExameLE 8. Here is an example of an analytic partition of a Polish space which
does not admit an analytic selector. The example is related to Sierpifiski’s example
of a planar Bore} set which cannot be uniformized by an analytic set ([9], p. 138).

Let fbe a continuous function on X onto an analytic non-Borel subset ¥ of [0, 1],
Denote by @ the partition of ¥ induced by f, ie, @ = {f ' {¥}): ye ¥} Asis
easily checked, Q is an analytic partition. Suppose, by way of contradiction, that S is
an analytic selector for Q. Define a function g: Z—Z by: g (o) = the unique clement
of 8 nf7H{f(6)}). We now verify that g is Borel measurable. First, note that, for
any subset E of %, g"Y(E) = fYf(E n S)). Hence, if E is any Borel subset of %,
then g~ 1(E) is analytic. So, in particular, both ¢~*(E) and g~ (¥ — E) are analytic,
whenever E is a Borel subset of £. It now follows by a well known result of Sous-
lin ([5], p. 395) that g ~*(E) is a Borel subset of X, whenever E is a Borel subset of Z.
Thus, g is Borel measurable. An immediate consequence of this is that S is a Borel
subset of Z, for § = {o € Z: g(6) = o}. Now the restriction of fto S is one-one and
J($) = Y. Hence, Y is a Borel subset of [0, 1] ([5], p. 397), which contradicts our
assumption that Y is non-Borel.

We therefore conclude that Corollary 4.4 is the best possible result concerning
selectors for analytic partitions.
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Remarks on Cartesian products
by

R. Pol and E. Puzio-Pol (Warszawa)

Abstract. In this paper we consider Cartesian products of topological spaces. Using the
method of A. M. Gleason, we give simple proofs of a few well-known theorems and some their
strengthenings. We give an answer to a questionRof R. Engelking and M. Xarlowicz and prove
that the defined by A.H.Stone closed subsets of N cannot be separated by Gs-sets. We also show
that the realcompact Gs-subspaces of N™ are homeomorphic with N™ for m > ;.

This paper is devoted to some problems connected with Cartesian products of
topological spaces. Using the method of A. M. Gleason, we give simple proofs of
a few important and well-known theorems about products as well as their strengthen-
ings (Section 2 and 3). In particular, we give an answer to a quc;stion raised by
R. Engelking and M. Kartowicz [11]. Next, on the grounds of the results of Sections 2
and 3 and the well-known facts about Z-products, we discuss properties of the
products of natural numbers N™ (Section 4), of the functionally closed subsets of
products of metrizable spaces (Section 5) and of the realcompact subspaces of pro-
ducts of first-countable spaces (Section 6). We show, among other things, that the
closed subsets of N defined by A. H. Stone cannot be separated by Gj-sets and
that the realcompact Gj-subspaces of the space N™ are homeomorphic with N™
(for m> ). : :

1. Notation and terminology. We adopt the notation and terminology of {10].

In particular, w(X) denotes the weight, 3 (X) the character, d(X) the density and ¢ Xx)

the Souslin number of a topological space X. The Cartesian product of a family of

sets {X,}ias is denoted by ]:X,; for T'=S, the symbol pr: PX, - PX, denotes
sa

saS seT
the projection. By a cube in the product PX, we mean a subset of the form K = Pk,

sal' : seS§
where K, X,, for s& 8. The sct X, will be called the s-th face of thc? cube. K .and
the set D(K) = {seS: K, # X} will be called the set of its distinguished indices.

It D(K)<m, we shall say that K is an m-cube. Besides the Tychonoff topology in
the product PX, = X (the space X with this topology will be denoted simply b}: ePSXS)

saS . .
we shall consider the m-box fopology, generated by a base which consists of all

cubes with open faces having the set of distingnished indices of cardinality less
than m. The set PX, with the m-box topology will be denoted by (I;X,)m. For atop-

16§ . se .
ological space X the m-modification of X is the topological space with the same
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underlying set and the topology consisting of the unions of intersections of fewer
than m open subsets of X. A subset of topological space X which is an intersection
of m>x, open sets will be called a G§-set and a union of an arbitrary number of
G-sets will be called a Gyy-set. The Z-product of a family of topological spaces
{X,},es With the base point x = (x,) e PX, is the subspace

saS

E(x)r‘ {y = (ya): {SES: Xg # ys}sxt)}
of the product PX,. The symbol f: X~ ¥ and the word mapping always denote a con-
se§

tinuous function; N denotes the natural numbers, R —the reals, I — the unit interval
and D(m) the discrete space of cardinality m. For a family of sets & the union of o/
will be denoted by (J &. By a cardinal number m we always mean an infinite cardinal
and m* denotes the successor of .

2. General Theorems. In the sequel, the following theorem will be of primary
importance:

TaeorEM 1. Let {X,};.s be a family of topological spaces with w(X,)Sw and o
a family of m-cubes in PX,. Then
s .

se

(i) there exists a subfamily & < o of cardinality B < w such that the union Ua
is dense in \Jof,
(@) for any cardinal number n there exists a subfamily B<.of of cardinality
B<(m-w)" such that the union \) B is dense in \) o with respect to the n*-box
topology. ‘

Proof. (i) Let A be the initial ordinal of cardinality n*. Using transfinite induc-
tion, we shall define two sequences: .

) G # Sy c..c8=..aS, where §g<(m-w)“, for £<4,
2 Ao, Ay, Aey..cof,  where §;<(m-m)“, for é<A,
such that
®) Sy = U{D(K): Ke U».-M“} oUS, for 1<é<i,

a< <y

@ ps (U o) is dense in ps,(Uof) in the n*-box topology (in ( PX,),+) for £21.
saSy

For ¢ = Otake Sy = {s}, where s & §,and &, = @. Suppose that o7, and S, are
defined for a<¢>>1. The set Sy defined in (3) has cardinality Sy<(m- )" Tt is easy
to see that w((Ps X)y+)<(m-w)", so that we can choose a subset A=) o of cardi-

seSy

flality A< (m )" such that Ps,(4) is dense with respect to the n*-box topology
in ps,(U &). Now, we finish the construction by taking oy sf such that 4« |) o,
and o, <(m-w)"
‘ We claim that
5 for& =5[<)ldg the union {) # is dense with respect to the n*-box topology
in | .

icm
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Letx € ) o and U = P U, be ann-cube with open faces and x e U. Let T’ = U Se.
S ses g<s
Since D(U) n T's, there exists a <A such that D(U) n T'<S,. By (4) there exists

ay =0} el’qXA. such that ¥ e Usf, and y;e U, for se T. Now, let K be a cube
sa
such that ¥’ € Ke oy, Take y = (y) eP X, with y, = y; for seT and y, = x,
ses

(-]
for se S\T. Since, by (3), D(K)<=Ss4,<=T, we have ye K and thus ye K n U,
which proves (5). This concludes the proof, as F<(m-w)* n* = (m-w)™.

(i) The prool is similar to.although simpler than the proof of (ii). In analogy
to (1) and (2) one defines two sequences S,, &, for n<w, such that §,<m-w,
H#,<mw and (3) and (4) are fulfilled, where instead of the box topology the Tycho-
noff topology is considered. Then (5) defines the required family £.

COROLLARY L. Let {X.};o5 and & be as in Theorem 1. Then for an arbitrary,
number n there exists a subfamily B < of of cardinality B < (m-w)" such that the union
U @ is dense in |) o with respect to the topology of the n-modification of the pro-
duct PX,.

seS

Proof. Let X be the w*-modification of X;. Then w(X;)<w". By Theorem 1(ii)
let us choose a family & of cardinality #<(m-w")"* = (m-w)" dense with respect
to the n*-box topology in |J &/ PX; and observe that the n*-box topology in PX;

saf ses
coincides with the n*-modification of the product PX;.
ses

Theorem. 1 is closely related to the results of Engelking and Kartowiez [7], [11].
From the theorems in those papers one can derive particular cases of Theorem 13
it seems to us that applying the methods used in those papers one could also obtain
the full strength of Theorem 1. However, the method applied here, which follows
an idea of A. Gleason (see [13], the proof of Theorem 19, VIL, or [17], the proof
of Theorem 2, §41, IX), seems simpler.

Remark 1. W. Comfort and S. Negrepontis [4] proved (Theorem 2.3) that
if weem and w is regular and strongly n-inaccesible (i.e., if k<m and 1< then k' <m)
then for a family {X,}ses 0f topological spaces such that d(X)<m the Souslin number
(P X)) <m.

sa8

This theorenm. is o simple consequence of the following theorem:

If wewm are cardinals such that w is rgga_g_l_qr and strongly n-inaccesible, then
for an arbitrary family s of cubes K with D(K)<w in the product Ps X, of spaces

56

of weight w(Xg) < there exists a subfamily Bt of cardinality < such that
\U%B is dense with respect to the n-box topology in sl (if, moreover, n is regular,
then we ¢an have #<w (cf. [4], Corollary 2.4)).

This theorem can be proved in the same way as Theorem 1(ii). Such a proof
is much simpler than the one given by Comfort and Negrepontis, who used the
Erdss-Rado theorem (see also [18], Theorem 1; [7], Theorem 6; [14], 4.7; [19],
X1, 3.1).
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 COROLLARY 2. Let {X,},.s be a family of topological spaces with y(X}<wm.
Then the closure A qf a subset A< PX, which is the union of m-cubes is also the union

se8
of m-cubes.
Proof. Let x = (x,) € A. Let X} be a topological space defined on the set X, by
assuming as the topology the family consisting of all neighbourhoods of the
point x, (in the topology of X;) and of the empty set. Thus w(X;)<n. Let 4 = ()7,

where of is a family of m-cubes in X = P X, and thus also in X’ = P X!, From
seS sa s
Theorem 1(i) follows the existence of a family #cwf of cardinality <m the union

B = {J# of which is dense with respect to the topology of X in the set 4. Let us

assume T = U{D(K): Ke #}. We thus have Tgm, pr(¥) € py(B) and pr 1p,‘(B)'

= BcA. Since the projection is open, we obtain pg ' py(x) cﬁﬁ;‘(}w})cﬂ, which
completes the proof.
The following lemma will be useful in the sequel.
Levma 1. Let { X}, 5 be a family of arbirrary topological spaces and let A< P X, be
568

a union of m~cubes. If Fy = F, <... is a sequence of closed subsets of the product P X,
se8

such that A= \J F;, then for F'= ) {KcF;: K is an m-cube} we have A< ) ff
i . i

Proof. Let us assume, on the contrary, that the set A\ UF;“ is nonempty. By
{

induction we define a sequence of m-cubes K,oK;>..., whose faces with dis-
tinguished indices are one-point sets such that

KcAaUF and KnF=0 for i=1,2,..

The existence of K, follows from the simple observation that AU IT;", as the in-
i

tersection of a union of m-cubes with a Gj-set (and thus with the union of x,~cubes),
is the union of m-cubes. Let us assume that the cubes K; are already defined for
J<iz1l. We have K, ,\F;# @, or else we would have K,_, < F}, contrary to our
choice. Thus the set K;_;\F; is a nonempty union of m-cubes and we can pick
K; <K, (\F; satisfying our assumption. One can easily observe that the decreasing
sequence of cubes K,>K;o... such that their faces with distinguished indices are
one-point sets has a nonempty intersection. We have obtained

0] #* n KlCA\UFi= g,
: i i
which is a contradiction. ‘

) Note that Lemma 1 can also be derived from the fact that in the product of
discrete spaces the Baire Theorem holds (see [10], Exercise 3.9.C(a)).

) 3. Corollaries. From Theorem 1 one can easily derive a number of theorems,
wl?xch have been demonstrated by R. Engelking and M. Kartowicz in [7] and [11] by
using other methods. Namely: Theorem 6 of [11] (by Corollary 1, where m = 1),

icm®
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Theorem 7 of [11] and Theorem 3 of [7] (by Tﬁeorem 1(i), where' m = w), Theorem 5
of [71 (") (by Theorem 1(i)) and also Theorem 1 of [7] (by the Hewitt-Marczewski—
Pondiczery Theorem and Theorem 1(i)). The derivation of the following corollary
is less obvious. )

CoroLLArY 3 ([11], Theorem 4). Let { X}, be an arbitrary family of topological
spaces such that w(X)<w for se S and let U, Ve PX, be Giy and Gls-sets re-
se§
spectively withn<w Jf U N V = @, then there exists a set TS such that T<(m-o)"
and py(U) n pr(V) = B.
Proof. For TeS and A< PX, let 4 denote the closure of the set 4 in the
seT

w*-modification of the product P X;. The set ¥, as a GJy-set, is the union of a fam-~
seT

ily & of m-cubes. From Corollary 1 we see that there exists a subfamily #=of of
cardinality <(m-w)" such that U#> Ul =V. Let T= U{D(K): Ke%};
thus T<(m-w)" and for B = {J# we have p;'pp(B) = B=V. Hence pr(U)

N pr(B) = @, and since p(U) is open in the n™ modification of P X, also
seS

pr(U) n;;@?) = . Thus we obtain p(U) N pr(V)=p(U) n pr(B)=pU) N
0;97(73—)- = (J, which completes the proof.

The next theorem is a strengthening of Theorem 5in [11] and (for m = w = &y)
is an answer to a question raised by R. Engelking and M. Karlowicz ([11], Remark,
p. 282).

THEOREM 2. Let {X,};es e a family of topological spaces with w(X)<w and

let U, Ve P X, be disjoint a Gy-set and a Gsy-set, respectively. Then there exists
sas

a TS of cardinality T<m-w such that pr(U) n pr(V) = O.
Proof. Let F,cF,c... be a sequence of closed sets such that X\U = | F;.
. i

Let F¥ = J{K<F,: K is an m~cube}. As V= | F; and ¥ is a union of m-cubes,
i

by Lemma 1 we infer that Ve {J ﬁ"_‘ . Foreachi = 1, 2, ... there exists by Theorem 1,
{

(i) o family of n-cubes &, such that #,<m-w and |J #; = Ff. Let
Te= Y{DK): KeF;, i=1,2,..}.
Then for cach i we have py ‘pzv(."% = Ff‘ and Tgm-w (see also [Zl, Theorem. 5).
We obtain  pp(U) A po(Pyepp(U) 0 pr(U F) = pr(U) 0 Li_) pr(FF) = @, since
i

for i = 1,2, .. we have U npilpy(F) = Un Ty = 0.

Remark 2. Let G be a Gyset in the product P X, = X with w(Xg<m. Then

. seS

(X) The proof given fa [7] ‘contains‘ a gap, but the theorem itself can casily be derived from
Theorems 7 and 1 of [7].
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there exists a set To=S of cardinality <m such that for each T>Ty of .cardinality
<m the projection pr(G) is @ Gy-set in the space PXx, ‘

seS . .

Proof. Let XNG = | F;, where F;cF,c... are closed sets. Put

Ff= {K<F;: Kis an nt-cube} .

By Theorem 1(i) (see also [7], Theorem 5) we infer that the sets Fj are closed and
for some Toc S of cardinality <m we have PraprFl) = Ff. Let T=T and T<m.
‘We shall show that for the closed sets py(F) = K; we have

I;Xs\PT(G) = LiJKi-

Since each py !(K;) = F} is disjoint with G, the inclusion = holds. Let x ¢ p(G).
Then pr 1_(x) is an m-cube contained in {J F;; hence, by Lemma 1, we have

i
prld) e U F, and thus x e {J K;, which completes the proof.
i i

From the above Remark and Theorem 2 it easily follows that

every two disjoint Gy-sets in the product P X, with w(X)<m can be separated
seS

by Gy-sets depénding on m coordinates ().
Remark 3. By a little modification of an argument of R, Engelking ([7], the

proof of Theorem 8; see also [6], the proof of Theorem 4) one can give on the

strength of Theorem 1(i) (the proof of which is easy) a simple proof of the following

ErtMov TaeoReM. If 2 P X, - X maps the product of compact spaces of weight
se§

<m onto a Hausdorff space X containing a dense subset X, such that y(x, X)<m
for each x € X,, then w(X)<m.

Proof. Choose for each x e X, an m-cube K(x)=f !(x). By Theorem I(i)

there exists a family #cof = {K(x): xe X,} of cardinality <m such that’

U% = Ust. Let T= | {D(K): Ke ). Put X; = X, for se T and X, = {4}
for s ¢ T, where a, € X,. Since the weight of X’ = P X/ is not greater than m, and

for #' = {Kn X': Ke B} we have "
AU = f(U) = [(Ua) = f(Ueh) = f(Us) = Xy = X,

we obtain w(X)gw(X")<m.

4. Remarks on N™. The following theorem is an answer to a question com-
municated to the authors by K. Alster.

[ &) A subset 4 c PSXS depends on m coordinates if A= pp l‘pT(A) for some subset T' C.§
S€.

of cardinality < m,

icm
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ProposITION 1. 4. H. Stone’s sets (*) Fy and Fy in N™ cannot be separated
by disjoint Gj-sets. '

Proof. In the opposite case, by Theorem 2 (for m = w = ¥,), the projections
of F, and Fy on some countable subproduct N™° would be disjoint, and this is
impossible.

We shall now show that the separation of closed sets in N™ by G;-sets is a weaker
property than the separation by open sets.

EXAMPLE 1. There exist disjoint closed subsets A and B of N® (where ¢ = 259)
such that A is countable and discrete and B depends on countably many coordinates
(and thus is a Gyset) and yet A and B cannot be separated by open sets.

Choose a discrete, countable set 4" = {a,, 4,,....} in N° which is not C-embed-
ded (*) in N°. The existence of such a set can be proved directly by an applic-
ation of the function f defined on the interval I by R. Engelking ([9], Theorem 2,
[10], Exercise 3.1.M (a)), which embeds 7 as a discrete closed subspace of N°; namely
one can assume 4’ = f(Q) where Q are rational numbers in I. Let b, e N™ for
n=20,1,.. be distinct points such that b, = limb,. In N°= N xN%° define
A ={(a,,b): n=1,2,..} and B = N°x{bo}. By using the fact that the closure
of an open subset of N° depends on countably many coordinates ([10], Prob-
lem 2.7.12 (a)), it is not hard to verify that 4 and B cannot be separated by open
sets.

As noticed by K. Alster, the property of separating closed sets by Gj-sets is
weaker than subparacompactness (see [1], Remark 1.3). Thus, Proposition I is
a strengthening of Theorem 2 of [2], which states that N™ is not subparacompact.
The space N™! is not even f-refinable (for the definition see [26]). For the proof it
suffices to combine H. Corson’s conclusion that the closed subspace F,, defined
above, of the space N is collectionwise normal but not paracompact([5], Theorem 4)
with the Worrell and Wicke theorem, which states that a 6-refinable and collection-
wise normal space is paracompact ([26], Theorem (iii), p. 825). This fact follows also
from Example 2 below (since, as is easy to verify, a subset of a 6-refinable space
which is a locally F,-set is an F,-set).

EXAMPLE 2. There exists a subset E of N™ which is locally an F,-set at each

point of N™* (i.e., for each x € N™ and for some neighbourhood V of x, the intersec-
tion V.~ E is an F,-set in V) but is not an F,-set.
" Our construction is related to the proof of Theorem 2 in [2]. Let W(£) be the
set of all ordinals less than & By the Mycielski Theorem [21] there exists a closed
discrete subspace X = {xy: £<w,} of the space N"“? = N®. For each a<a;
choose a finite set F,c W(w,) such that

-1 _
PR pr(x) 0 X = {x} .
is the set of x &€ N™1 such that for any integer 7 #17 at most one coordinate of x is equal to z, cannot

be separated by disjoint open sets.
(*) For this notion see for example [12}:
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Let

T, = w(g+1), where W(®>UT;uF, L W),
i<a
and E= | E,.

a<ay

E, = pr, prx2)

For xe N we can find an ordinal p<, and a finite set F< W () such that the

neighbourhood V = py 'pp(x) does not contain the points x; for £z u. Thus for
E>p we have FcTy; hence pr(By) = prlxy) # pr(x) and lhus Vo By =@, So
VnE=Vn UEis an F,-set.

E<p
Suppose now that E is an F,-set. Then, since E is a G5}

(i = m = &) there would exist an a<a, such that
E= Pv;(lu)PW(a)(E) .

For some 8 we have Ty, = W(B+1); then T, W(p). Choose ye N®t guch that
PAY) = pelx,y) for €5 B and py(y) # pp(¥a4r). Take E<oy. T E<a+1 then
FecTyeW(B) and pp(y) = Ppy(Xr1) # Pry(xg; hence y G E; if &=a+l we
have pr(y) # ]JTi(xg) and y ¢ Ey; finally for {>a+1 we have Fy . <l =T,
and p,, () = Pr,o(Kas 1) # Pr,. (%) and so y ¢ Ey. Thus y ¢ E, but at the same
time Py(Y) = Prw(Xasi) € Pww(E), and we have a contradiction.

-set, by Theorem 2

5. Remarks on products of metrizable spaces. Let X = P X, be a product of
sal

spaces satisfying one of the following conditions:
() each X, is metrizable and separable,
(ii) each X, is completely metrizable,
(iii) each X, is a Lindelsf and Cech-complete space of countable tightness (%).
Then for each x € X we have
(6) the Z-product 2(x) is normal and C-embedded in X.
The first part of (6) in the case (i) was proved by A. Kombarov and V. Malyhin [16],
in the case (ii) by H. Corson [5] and in the case (iii) by A. Kombarov [15]. The
second part of (6) follows from a theorem of M. Ulmer ([25], Theorem 2.2) in the
cases (i) and (if), and from a theorem of R. Engelking ([8], Theorem. 1) in the case (iii)
(see also [10], Problems 2.7.13, 2.7.14, 4.5.12).

LeMMA 2. Let E be a subset of the product P X, which is.a union of tg-cubes
ses

andlet £ = 2(x) be a Z-product with an arbiirary base point x = (x,). Then E<E r 3.
Proof. Let a = (g)€ E and let U = P U, be an open neighbourhood of .

seS
There exists an sp-cube K such that a e K< E. Take T = D(K) u D(U); hence

T<x,. For y = (y,) such that p,'=a, if seT and yy=1x, if s¢T we have
yeUnKnZ which completes the proof.

(%) The tightness of a space X is countable if for any set A ¢ X and a point x & A there exists
a countable set A’ c 4 with x€ 4’ (see also [10], Problem 1.7.13).
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. ProrosITION 2. Let X = P X, satisfies the condition (6). Then
seS

(i) each subset A of X which is the closure of a union of 8y-cubes is C-embedded
in X . ‘

(ii) each closed Gy-sef 4 in X is functionally closed.

Proof. (i} Let f: A—R be an arbitrary mapping. By the normality of Z, there
exists an extension g: Z—R of the restriction f] 4 n £. By (6) we can extend g over
the whole of the space X; denote this extension by f. We have f|l4 n X = f |4 Z,
which, by Lemma 2, gives fld =f, as A=A n 3.

(if) Let X\A4 = |J F; where F,cF,c... are closed. By Lemma 1 we have

XA = U If:i‘:; where Ff¥ = |J{K<F;: Kis an so-cube}. For each 4 U }«Ti*, by (i),

there exists a mapping f;: X—7 such that f7 (0)> 4 and f; 1(1)::1"* For the map
f= ZZ f, we have f4(0) =

For a product P X, of metrizable separable spaces even more can be proved;
seS

namely that Proposition 2(ii) holds for all sets 4 which are - unions of sy-cubes
(see [7], Corollary 1, p. 294). It may be interesting to find out whether or not a similar
theorem holds in a more general case.

QUESTION 1. Ler X = P X, be a product of completely metrizable spaces.

se§
(@) Is every regularly closed subset of X (i.e., a closure of an open set) a G;-set?
(b) Is every closed union of Ny-cubes in X a Gz-set?
(¢) What is the answer to \2) or (b) in the case of X = D(¥,)¥*?

- Remark 4. By Corollary 2 we have (b)=>(a). Notice, that (a) is equivalent to
the question whether X has the Bockstein Separation Property (i.e., whether disjoint
open subsets can be separated by disjoint open F,-sets; see [3], also [10], Prob-
lem 2.7.12(b)); the equivalence easily follows from Proposition 2. Problem (b) for

X = D(s,)™ is equivalent to the question whether the union F = | F; of an in-
$<oy .
creasing sequence FycF,c..cF;c..cX, {<w; of closed Gjysets is a Gj-set

(from Lemma 4 it follows that F is closed). -
QuESTION 2. Ler X = P X, be a product of arbitrary metrizable spaces Is

seS
Proposition 2 true for X?
Note that if for some x e X the Z-product Z(x) is normal (hence (6) holds),
then the answer is positive. The last problem was raised by H. Corson in {5] and,
as far as we know, has not been solved.

6. Realcompact subspaces of products of first-countable spaces. In this section
we shall assume that the spaces under consideration are completely regular. We

shall investigate realcompact subspaces of
)] X=PX, with x(X)<n, for seS.
se§ g o
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It is convenient to consider a more general situation. For a topological space X
the symbols I(4) and C (4) will denote respectively the interior and the closure of
the set A=X in the nl—modiﬁéatibn of X. Having this topology in mind, we shall
consider Gy-open sets, Gy-dense sets etc. in the space X. We shall be interested in
the following property of the space X: :

) I(((4)) = I(4) for each AcX,

which means that the closure of each Gy=open set in X is Gy~open. By Corollary 2 we
infer that )
®) if X is as in (7), then X satisfies (x).

PROPOSITION 3. Let a space X satisfy (x). Then each A<X which is dense in
some Gy-open subset of X (equivalently, if A<X(A)) is C-embedded in its Gy-clo-
sure C(4). If X is realcompact, then C(A) is the Hewitt-realcompactification of A'

Proof. First let B> 4 be an arbitrary Gy-open subset of X, We claim that B is
C-embedded in B U C(d4) = B'. Since each nonempty Gy-open subset of B in-
tersects B, it is sufficient to show that B is C*-embedded in B', or that the disjoint
functionally closed subsets Z,, Z, of B have disjoint closuresin B’ (see [12], Theo-~
rem 6.4 and 1.18). Let us assume, on the contrary, that there exists an
xeZynZ, n C(4). Since both Z; are Gy-open in B, they are also Gy-open in X;
hence by (x) the sets Z, are Gy-open. The set Z, ~ Z is thus a G- open neighbourhood
of x € C(4); hence Zy N Z; n A % . We obtain a contradiction:

B#ZonZ nB=Z,nZ; =0,

Now let f: 4—R be an arbitrary mapping. There exists a Bc 4 which is a Gy-set
in 4 and contains 4 and an extension f’: B-+R of f (see [10], Theorem 4.3.20)
From our assumptions and («) we see that the set 4 is Gy-open; hence B is Gy-open
in X, and by our initial observation there exists an extension.f”: B U C(4d)—R
of f'. The restriction f"'|C(4) is the required extension of £, If X is realcompact,
the equality v4 = C(4) follows by the observation that C(d) is also realcompact
“(see [20], Theorem 2).

For a product X = P X, with X, second-countable, a similar result was proved

seS
(by other means) by N. Noble [23] (see also [6], Theorem 5). From Proposition 3
follows, in particular, the theorem of M. Ulmer [25] about the C-embedding of the
Z-product in the product satisfying (7).

LemMmA 3. Let X satisfy (x). Then

@ if EcX and X\E is realcompact, then E<C(I(E)),

(i) if both E and X\E are realcompact then both are Gyopen.

Proof. (i) Let X be an arbitrary functionally closed subset of X such that
KnEs@.If we had (K E) = @, then the set K n (X\E) would be G,-dense
in the G,-open set K; hence by Proposition 3 it would be C-embedded in K (as
a dense subspace). But this is impossible, as X n (X\E) is realcompact and different
from K; hence I(K r E) # @. Since X is arbitrary, we obtain (i),

icm°®
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(11) By (i) we have EcC(I(E)) cI(E), hence by (x) Eis dense in the G,-open
set I(E) By Proposition 3 the space E is C-embedded in its Gy-closure C (E), and
since it is realcompact, E = C(E). Thus X\E is G,-open, and, by symmetry, this
concludes the proof.

From Lemma 3(ii) and from (8) we immediately obtain

COROLLARY 4. If the product X satisfying (7) is decomposed into the union of two
disjoint realcompact subspaces, then both of them are unions of 8- cubes

Remark 5. A4 realcompact space X satisfies () if and only if the interior of
each realcompact subspace E of X is Gsclosed.

Proof. Assume (). If EcX is realcompact, by Lemma 3(i) we have
XNEcI(X\E) and by (+) the set X\E is Gy-open. Thus IntE = X\(¥\E) is
G5-closed. Suppose now that C(IntE) = IntE for an arbitrary realcompact sub-
space E of X. Let A=X and I(4) = 4. The space X\4 is realcompact ([20],
Theorem 2‘); hence Int(X\4) is Gy-closed. Thus 4 = X\Int(X\4) is Gs-open.

LemMA 4. Let the product X satisfy (7) and let the complement X\E of Ec X be
realcompact. Then the closure E is equal to the sequential closure of E (i.e., each x € E
is the limit of some sequence of points of E).

Proof. By (8) and Lemma 3(i) we have E = f(f) Take an x€ E and let
% = %(x) be the Z-product with the base point x. By Lemma 2 we have x e I(E) n X,
and since X is a Fréchet space (see [22], Theorem 2.1, or [10], Exercise 3.10.D),
we can choose a sequence {x,}<I(E) n X converging to x.

TueoreM 3. Lei X = P X, be a product of separable metrizable spaces. Then

seS
(i) a sequentially open () subspace Uc X is realcompact if and only if it is functio~
nally open,
(ii) a Gs-set G in X is realcompact if and only if it depends on countably many
coordinates.

Proof. (i) If U is a sequentially open realcompact subspace of X, then by
Lemma 4 the complement X\ U is closed. By Corollary 4, X\U is a union of 8y~cubes
and thus it depends on countably many coordinates (by Theorem 1(i) or [7], Theo-
rem 5) and is functionally closed.

(i) Let G be a realcompact Gs-set in X. Since X\G is G;-closed it is also real-
compact ([20], Theorem 2) and by Corollary 4itis a union of xo~cubes. It is sufficient
now to use Theorem 2. Conversely, each subspace of X which depends on countably
many coordinates is realcompact as a product of realcompact spaces.

COROLLARY 5. For a Gyset G in N™, where m>Xx,, the fallowmg are equivalent:

() G is homeomorphic with N,
(ii) G can be embedded in N™ as a closed set,
(ili).-G is realcompact.

(® Le., such that each converging sequence of elements of X\ U has the limit point in X\U.
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~ Proof. Implications. (i)=>(ii)=>(iii) are obvious. If G is realcompact, then by
Theorem.3(ii) we have G = G’ x N™ for some Gj-set G in N™°. By the Mazurkiewicz

Theorem (see [17], Theorem 3, §36, II) we. have G'Xx N““ = NM and thus
4 No — No mo_ m S
G 5 G'XN®XN™ = N%xN" = N".
COROLLARY 6. For a Gy-set G in a dyadic space X the following are equivalent:

(i) G is realcompact,
(i) G is Lindeldf.

Proof. Let f: D"—»X map a Cantor cube D™ onto X. Suppose (i). Then the
set £~ 1(G) is realcompact ([10], Corollary 3.11.8) Gy-set in. D™ and, by Theorem 3 (i),
depends on countably many coordinates. Hence f~ YG) is a Lindelsf space as the
product of a metrizable separable space and a compact space, and its continuous
image G is also a Lindeldf space. The inverse implication is a well-known fact (see [10]).

Note that Corollary. 6 can also be formulated in the following manner: each
Cech-complete, realcompact, subdyadic space (see [6]) is a Lindeléf space.

COROLLARY '7: The interior Intd of a redlcompact subspace A of a Cantor
cube D™ is a Lindeldf space.

' Proof. By Remark 5 the complement D"™\IntA is G;-open; hence it is a G- sef.
in D™ (see [7], Corollary 1), and thus Intd is an F,-set in the compact space D™.

~ The example given by R. Engelking ([7], p. 302), i.e., two Cantor cubes D% in
contact at exactly one point, shows that Corollary 7 does not hold for all dyadic
spaces (but, as is easy to verify, it does hold for all retracts of Cantor cubes).

Remark 6. (a) Theorem 3(ii) and Corollary 6 hold if realcompactness is re-
placed by Dieudonné-completeness (for the definition see [10], Problem 8.5.13).
Indeed, in both cases the condition ¢(G)< %, holds ([7], Theorem 3), and for such
spaces these two concepts coincide (see [12], 15.21).

. (b) Theorem 3, (ii) and Corollary 6 are not true for sets G which are unions of
8o-cubes, One can in fact define (by using the Continuum Hypothesis) a subset G
of D™ such that both Gand DM'\G are unions of x,-cubes, and yet G contains as a
closed subset a space D(s,).

We are grateful to Professor R. Engelking for valuable discussions.

Added in proof.

1. A sumlar approach to the Efimov theorem (Remark 3) appeared recently in the book
of A. V. Arhangel’skil and V. I. Ponomarey, Foundations of general topology in problems
and exercises, Moskva 1974 (Russian), Problem 391, § 5, II.

2. The positive answer to Question 1(a) (where X is even product of arbitrary motriz-
able spaces) follows from recent results of E. V., §¢epin, DAN SSSR 226 (1976), pp.
527-529, Theorem (Russian).

3. In Corollary 6 it is enough to assume that G is a Borel set in X with X\G real
compact, as was shown by the first of the authors in 4 note on Borel sets in dyadic spaces,

Bull. Acad Polon. Sci. (1976) (to appear).
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