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V,eL(X,) such that V; is the extension of §; and V,N; = N,V,. The
same argum?,nt for ¢; and V; in place of y, and T shows that Ly = ¢,(V))
commutes with ;. Since V; and ¢;( V;) have the same invariant subspaces,

R; is an extension of T;. Evidently, R, is subnormal. Hence for every

4> 0 we get a subnormal extension of Z; which commutes with N;, and
our proof is complete. o

Proposition 2 and Theorem § yield the following

THEOREM 6.. Let AcL(H) be o subnormal operator amnd suppose that
the_operator T e L(H) commutes with A. Asswme that: '

1. X = o(T) has connested complement.

2. There is o normal extension B of T such that o(B) < 0X.

Then there is o normal emtension ReL(K) and o normal )

! { o normal extension

NeL(K) of T such that N commutes with R,
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Multipliers on Banach algebras

by
B, J. TOMIUK (Ottawa)

Abstract. This paper is concerned with the study and application of (left, right,
double) multipliers on Banach algebras. We consider mainly Banach algebras with
Dounded (loft, right) approximate identities and Banach algebras which are dense
x-fubalgobras of dual B*-algebras. More specifically, in this second group of Banach
algebras wo aze primarily interested in multipliers on modular annihilator A*-algebras.

Tet 4 bo a Banach algebra with a bounded right approximate identity. Let
My (4) be the algebra of all bounded linear right multipliers on A. It follows that
M, (4) can bo embedded into the socond conjugate space A** of 4, when A¥k g
congidored as a Banach algebra with an Arens product. By using this embedding
of My(4) into A¥*, we obtain various properties of 4, A**, and M, (A). Similarly,
it 4 has a bounded left approximate identity we can embed the algebra M(4) of
continuons linear left multipliers on 4 into A%, We also congider M(4) and My(4)
with rospect to their weak operator topologies and study the groups of isometric
and onto (left, right, double) multipliers under these topologies.

The last section of the paper is devoted to the study of multipliers on a modular
annihilator 4*-algebra A. Here we ghow how (left, xight, double) multipliers on 4
are related to (left, right, double) multipliers on the completion A of A.

Introduction. Let A be a Banach algebra and let M (A) (vesp. M, (A))
be the algebra of continuous linear left (resp. right) multipliers on A. Let
M (A) be the algebra of double multipliers (8, T') on A such that Se Mi(A4)
and Te M,(4). Tt was shown by L. Maté [14] that if 4 has a bounded
right approximate identity then M,(4) canbeembedded anti-isomorphi-
cally in the second conjugate space A™ of A, when A* ig considered as
a Banach algebra with Arens product Fx@, F, GeA™. This embedding
i given by the map I-~1""(H), where T is the right identity of (4™, #).
Tn §5 we gather together various results on the algebras of multipliers
as well as A and 4™ coming out of Maté’s representation. For example,
we show that the canonical image m(4) is 2 right ideal of (A*, %) if
and only if every Fed™ is of the form I = T () + @, where Te M, (4)
and Ged™ with the property that m(4)+G = (0).

In §6 we consider the algebras M, (4) and M (4) with respect to
their weak operator topologies. Let & (My(A)) (vesp. & (M,(A))) be the
closed unit ball of Mj(A4) (vesp. M, (4)). We show that if 4 has a right
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approximate identity bounded by one, then m(4) is a right ideal of (4™, x)
if and only if & (M, (A)) is compact in the weak operator topology v ‘on
M, (4). In particular, if 4 is a B*-algebra then this is equivalent to saying
that A4 is dual. Section 7 is devoted to the study of groups of isometric
and onto (left, right, double) multipliers. For example, we show that if 4
has a right approximate identity bounded by one and & ( Ml.(A)) is
7,-compact, then the set G,(4) of isometric and onto elements of M.(4)
iy a 7,-compact group. We then use the group &,(4) to obtain a charac-
terization of duality in a B*-algebra.

In §8 we are concerned with multipliers on & modular annihilator
A*algebra 4. We show that every left (right) multiplier on 4 is a con-
- tinuous linear operator. Let U be the completion of 4. If 4 has a bounded
approximate identity then every left (right) multiplier T' on A4 is of the
form T = T'[A, where T is a left (right) multiplier on 2. If 4 is a modular
annihilator A4*-algebra which is an ideal of its completion 2 then, for
every (8, T)e M(A), there exists (8, 1")e M(¥W) such that S = §"|4,
T =1T'4.

2. Notation and terminology. All algebras and vector spaces are
over the eomplex field C. Let 4 be a Banach algebra. 4* and A™ will
denote the first and second conjugate spaces of 4. 5 (4) will denote the
closed unit ball of A and = will stand for the canonical map of A into A**,
For any set 8 < 4, I(8) (resp. #(8)) will denote the left (resp. right)
annihilator of 8 in 4. 8, will denote the socle of 4. For any aecd, L, and
R, will denote respectively the left and right multiplication operators
determined by a.

It for every maximal modular left ideal M and for every maximal
modular right ideal ¥ in 4 we have 7(M) = 0 and (V) = (0), 4 i called
modular annikilator. If for every closed left ideal J and for every closed
right ideal B in 4 we have L{r(J)) =.J and (I(R)) = R, 4 is called dual.
A Banach algebra with dense socle is modular annihilator and a modular
annihilator B*-algebra is dual ([24], pp. 41-42).

Let 4 be an A*algebra. The auxiliary norm in 4 will be denoted
by |- 1. If 4 is modular annihilator, then |-| is unique and the completion
A in this norm is a dual B*-algebra ([21], p. 422); moreover, if A is a two-
sided ideal of 9U then there exists a constant &> 0 such that |lmy| =
Llz)lyl, for all med, yU ([15], p. 18, Lemma 4). ‘

A Banach algebra 4 is said to be left (vesp. #ight) fasthful if 1(A) = (0)
(resp. r(4) = (0)). 4 is faithful if [(4) = 7(A4) = (0). Tf A conbains a left
(right) approximate identity, it is vight (left) faithfull.

If T is a mapping of a set X into a set ¥ and § is a subset of X,
T'|8 will denote the restriction of T to 8. If X is a normed vector space
and feX*, we shall occasionally demote the value f(z) by (2,f), #eX.

e ©
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3. Muluipliers. Let A be a Banach algebra. A mapping 7' on A4 into
itselt is called w Teft (vesp. right) multiplier it T(zy) = T(x)y (vesp. T(2y)
= T (%)), for all , yed. If 4 has a bounded left (right) approximate iden-
$ity then every left (right) multiplier on 4 is a continuous linear operator
([121, p- 640, Corollary). Let My (A) (resp. M,(4)) denote the set of all conti-
nuous linear left (vesp. right) multipliers on A. M, (4) and M,(4) are Ba-
nach algebras with identity under the usual algebraic operations for opera-
tors and the norm given by the operator bound. Clearly, L,e Mi(4) and
R,e M,(4), for overy acd. It A is lett (vesp. right) faithful, we may thus
identity 4 as a subalgebra of M,(4) (vesp. M,(4)) by means of the mapping.
a-Lg, (vesp. a-=R,). I A is commutative then M(4) = M, (A). We
observe that if 7' is a left (right) multiplier on 4 for which T~ exists,
then % is a left (right) multiplier. For suppose T is a left multiplier;
then

TN a)y = I (T~ (a)y)
= I7((TT7) (2)y)
= I7*(ay)

for all @, yed. (See [3], p. 207.)

An ovdered pair (8, T') of mappings from 4 into itself is called a double
multiplier it w8(y) = T(x)y for all @, yed. Let M(4) denote the set of
double multipliers (8, 7') on A such that Se M,(4) and Te M,(4). Clearly,
(Ly, RJ)e M(A) for every acd.

Tuvvia 8.1, If A is @ faithful Banach algebra, then every double multi-
plier on A belongs to M (A).

Proof. Suppose that 4 is faithful and that (8, T) is a double multi-
plier on A. We show that Se< M (4). A gimilar argument will show that
Te M, (A4).

Let @,9,2cA and a, feC. We have 28(x)y = T(z)wy = 28 (xy). By
the right faithfulness of 4, S(wy) = S(x)y for all @, yeA. Moreover,
28 (aw-+ By) = T(2)(aw + By) = ol (2)z+ T (2)y = (a8 (@) + B8 (y)). Thus 8
is linear. Now let {m,} be a sequence in 4 such that llz,, — @||—0 and
18 () ~ yll-+0. Then

e () eyl < [l (@) = 28 ()| -+ 128 () — ey
< 12 (@) e =@l - RIS () — Y-
Sineo the lagt term of this inequality tends to zero, zS(x) = 2y for all
zed. Thus, by the right faithfulness of 4, §(2) =y and § has a closed
graph. Hence, by the closed-graph theorem, 8 is continuous and conse-
quently Se Mi(4). (See [5], p. 8¢ and [11], p. 301.) This completes the
proof. "
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M(4) is a Banach algebra under the norm [(8, 1) = max (|9, |T})
and the algebraic operatioms given by (8y,T4) +(8y, T'y) = (8;-}8,,
Ty+To)s (15 T1) (8, To) = (818, ToTh) and o(8, I') = (a8, aT'), a 4 scalar.
If 4 isa Banach"-algebrawith a continuous involution, then (8, T)- (1%, g
is a continuous involution in M(4), where §%(w)= 8(2*)* and T%(z)
= T(a*)*, wed ([11], p. 303). If A is a B*-algebra then M(4) is also
a B*-algebra ([8], p. 81, Theorem 2.11).

4. Arens products. Let 4 be a Banach algebra. Arvens [1] has defined
two products on A* which make 4™ into a Banach algebra. These are
given as follows: Let @, y e 4, fe A" and J, GeA™. Define fxwed" by (f*a)y
= f(ay). Detine Fxfed"™ by (Fxflo = F(f*m). Define FwGed™ by
(F«@)f = F(G«f). Detine #+'fed* by (m+'f)y = f(ya). Define fx Fed”
by (f¥'F)a = F(ov'f). Define Fx'Ged™ by (Fx'@)f = G(f+ F). The
canonical map # iy an isomorphism of 4 into the algebras (A**, %) and
(4™, #). (See also [6].)

A Banach algebra A is called Arens regular if the two Arens products
agree on. 4™, Every B"-algebra is Arvens regular ([6], p. 869, theorem 7.1).
From [6], p. 855, Lemma 3.3, and [13], p. 11, Proposition 1.6, it follows
that (4™, x) has a right identity B if and only if 4 has a bounded right
approximate identity. Similarly, (4**, ') has a left identity B’ if and
only if 4 has a bounded left approximate identity. We observe that if
4 has a right approximate identity bounded by one then (B = 1.
In particular, if 4 is a B*.algebra then |H| = 1.

N.B. From now on, by a (left, right) approwimate idenwtity {u.} we
shall mean a bounded (left, right) approximate identity with |ju,| <1
for all a.

We remark that if 4 is a Banach algebra, then every continuous
linear left (resp. right) multiplier on w(4) is of the form T™ |m(4) for
some T'e My(4) (resp. Te M,(4)). Moreover, I (w(w)) = m(T'(w) for
all wed.

5. 4™ and the algebras of multipliers on 4.

Lmywd 5.1. Let A be o Banach algebra with o right appromimate identity,
For each Te M,(A), let F¥eA*™ be given by FT = T (B, where B s
a right identity of (A™, x). Then the Jollowing statements are true:

() (B"#f)(@) = f(T(2) for all mecd and fedX,

(i) I* (w(2)) = w(w) =T for all we .

(ifi) (o) %P7 en(A) for all wed.
(iv) The mapping T—F" is an isometric anti-isomorplism of M,(A)
into (A™, ). .

(V) 1 Bprla(A) = |F®| for all Te M,(A),

icm°
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Proof. (i) This follows from the proof of [14], p. 810, Theorem 1.
(ii) Using (i), we obtain
I** (@) = a (@) (T*() = F(T(@)) = (BT f)a
= (@) (F7nf) = (w(@)+F7)f,
for all wed and fed™. Fence
‘ T (m (@) = m(@) % T (wed):

(ifi) Since I™(n(w)) = (T (»)) and since T(w)ed, for all wed, we
obtain (iii).

(iv) From F"sf = T*(f) we obtain |I™(f)| < IFZ(f] so that |[FZ|
= |77 = |T|l. On the other hand, |F7| = |I™ (&) < IT*™|B| = |T*|
= ||T|. Hence [[F”| = |T]. Thus, T-F* is an isometry which is clearly
linear, Now if Ty, Tpe M, (4) then, by [14], p. 811, Theorem 2, we have

((FT2x 1) f)@ = (TETE(P)(0) = F(T2To(a),
for all wed and fed”. Heénce TyT,~FT2%F71, This proves (iv).
(v) We have

IRy | (A)l| = sup i (2) FF} = sup || T (= (2))]|
Il [ES )

= sup |T'(a)l| = |IT)} = |F7.
el

CorOLLARY 5.2. Let A be a Banach algebra. with a right approvimate

identity. If weA such that R, +# 0, then
IRz |7 (A)]| = 1B,

Moreover, if (A™™, «) is right faithful then Ri*(H) = w(x) for all weA.

DEFINITION. Let

Ny = {Ged™: n(a)s@ = 0 for all wed}.

Remark 1. We observe that if 4 has a left approximate identity

{ug}, then N, = (0). In fact, since
(Ff, w(ug) @) = (f, w(u)x'@)—(f, B +'@) for all fed*,

Lmmyma 5.3, Let A be a Banach algebra with o right approximate identity.
Let T'ed™. Then the following statements are equivalent:
(i) w(o)sFen(A) for all weA.
(i) There ewist T'e M (A) and GeN, such that F = T"(B)+G.
(iil) There emists T'e M,(A) such that
(Fxf)w = f(T(a) (wed,feA¥).

¢ — Studia Mathematica LIV.3
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Proof. (i) = (ii). Suppose (i) holds. Since T->T™|m(A) is an iso-
metric isomorphism of M,(4) onto M, (z(A)), there exists I'e M,(4) such
that T** (n(2)) = n(w)*F for all weA. Let T = 1% (H). By Lemma 5.1,
m(z)xFT = m(w)«F for all wed. Therefore m(m) (L — —T%) =0 for all
sed and 50 G = F—TFTeN,. Hence I' = F'+ @, GelN 4.

(i) = (iii). Suppose (ii) holds. Let F¥ = 1" (¥). From Lemma 5.1
and the fact that GeN, we get

(BT xf) o =f(1’(m)) =T (vz(w))f (wed, fed")
and

T (@) = a(@)+FY = m(o)xF  (wed).

Since (Fxf)z = (n(s)+F)f, we have (Fxf)w = f(T()) for all wed, fed™
(iii) (1 ). Suppose (iii) holds, Let BT = T™* (7). Then, by Lemma 5.1,

(Faf)o = f(T(z) = (Fxflo  (wed, fed¥),
whence

(@) F = g(w) s Flem(4) (wed).

This completes the proof.

COROLLARY b5.4. Let A be a Banach algebra with a right approvimate
identity. If FedA* is of the form F = T**(H)+@, for some TeM,(4)
and GeN 4, then |Rp|m(4))| = |TI.

As a consequence of the above results, we have:

THEOREM 5.5. Let A be a Banach algebra with o right approwimate
identity. Then the following statements are equivalent:

(1) w(A) is a right ideal of (A**, ). ‘

(il) Hvery FeA™ is of the form F = T**(E)+@ for some TeM,(A)
and GeN .

(iil) For every Fed™, there is Te M (A) such theat

(Fxf)o = f(L())

Remark 2. If a Banach algebra 4 has & left approximate identity,
we can state the left-hand version of the results above. In this cage we
consider M;(4) and the algebra (4™, ') with a left identity %', We have
¥ B =ffor all fed™ If Se My(4) and IS = §™(B') then (f+ FS)(w)
=f(8(x)) for all wed and fed*, and 8™ (m(0) = P« w () for all wed.
The mapping §—F is an isometric isomorphism of Mi(4) into (A", *).

TeworEM 5.6. Let 4 be a Banach algebra with left and right approwi-
mate identities. Let (8, T)e M (A). Then the following statements are true:

(i) 8*™(B) =1"(B).

(ed, fed®).

icm°®
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(i) Let T = 8" (B").
= g (x) T for all wed.

(iii) US| = Tl

(iv) 8 is a regular element of My(A) if and only if T is a regular el-
ements of M,(4), and (8% TV e M(4).

(v) 8 is an onto isometry if and only if T is an onto isomeiry.

Proof. (i) to (ili). Let F = §(F'). By the left-hand version  of
Lemma 5.1, 8 (n(@) = Fxn(s) for all wed. Since

Then 8™ (m(e)) = Fxn(z) and T (z (o)

T (o (@) % (y) = m (o) %8™ (m(y))
for all @, y<d, the faithfulness of 4 implies that
T (n(@) = m(w)xF  (wed).

= [ (@) xF)unly),

Therefore, by Lemma 5.3 and Remark 1, F = T**(E). That |8] =
follows directly from the proof of [5], p. 81, Lemma 2.6.

(iv) Suppose that T is a regular element of M,(A), ie. T exists
and T 'e M, (4). Let P = T**(B). By (ii), F*n(A) < 7(A). Since z(A4)*XF
= m(A) and T hag inverse F~' = (T~)**(H), it follows that Fxm(4)
= w(A). Therefore F'xn(Ad) =n(4). By the left-hand version of Lemma
5.3, there exists S;¢ My(4) such that 87*(m(s)) = F~'x=(w) for all wed.
It is now eagy to see that 8, = §~*. Since m(d4)xF~' = x(4), we have
(87, TYe M (A). Similarly, we can show that if S is regular then so is 7.

(v) Suppose that § iy an onto isometry. S8ince A has a right approxi-
mate identity and S is onto, we have

171

1T (@)l = sup{|T(2)y]l: yed, |yl <1}
sup{leS(y)l: ye4, ly| <1}
sup {8 (87 (2)||: zed, el <1} *

1} = {ll,

for all zed. Thus 7 is an isometry and, by (iv), it is also onto. Using
a left approximate identity, we can similarly show that if 7' is an onto
1h(mlet1y, so is 8.
(oROLLARY B.7. Let A be a Banach algebm with left and right approwi-

mate identities. Then a pasr (8, 1), Se My(A), Te M,(A), belongs to M(A)
/) — T’M ( .E).

Proof. This follows easily from Lemma 5.1, Remark 2 and The-
orem 5.6,

CorROLLARY 5.8. Let A be o Banach algebra with left and right approwi-
mate identities. Then m(A) is a two-sided ideal of (4™, %) if and only

= sup{lloel: 2ed, || <


GUEST


274 i B, J. Tomiuk

if for every FeA™ there emists (8, T)e M(A) such thai F = ™*(H). In
this case we have |Lyla(A)] = ||Bpla(A)| for all Fed™.

6. Weak operator topologies on J;(4) and M, (4). Let X be a normed
vector space and let B be an algebra of bounded linear operators on X
into X. The weak operator topology on B is the topology on B generated
by the seminorms T-—|(T(),f)|, #<X, feX". Under this topology B is
a locally convex topological vector space in which multiplication is sep-
arately continuous. For any Banach algebra A, we shall denote the
weak operator topology on M;(4) by 7 and on M,(4) by z,.

TaroREM 6.1. Let A be o Banach algebra with a vight appromimate
identity. Then the following statements are equivalent:

(i) w(4) is & right ideal of (A™*, *).

(i) The closed wnit ball of M,(A) 8 v,-compact.

Proof. (i) = (ii). Suppose that (i) holds and let {¢,} be a z,open
cover of y(Mr(A)). We may clearly assume that each @, is of the fol-
lowing form: there exist T'ye S {My(4)), 6> 0, @y, ..., B d and fy, ..., f; e A*
such that

G, ={Te M,(A): |(T—T)a;, fi)|<eforl<i<m, 1<j<n}.
For each a, let F, = T;*(E) and let )

N, ={Fed™: |(f;, m(@)»(F—~F,))| < s for L<i<m, L<j<n}.

Each ¥, is a w*-neighborhood of #, ([9], p. 116).
We show that (N, = £(4™). Let Fe&(4™). By Theorem 5.5,
F =T"(B)+G, where TeM,(4) and GeN,, and, by Corollary 5.4,
|Bpls(A)ll = |T]; so that |T|<1. Since U G,2 L (M, (4)), Teb,; for
some a, and therefore |(T—T. o, fi)|<e 1<i<m, 1<j<n. Bub
(fiy m(@)%(F—F.) = (T—To)m, f)  (1<i<m, 1<j<n).
Hence FeN, and consequently & (4™)<s (UN,. Now, by the w*-com-
o
pactness of L(A™), there exists a finite subfamily, say Nayeris Ny
. p .
which covers & (4™). Hence & (M,(4)) < (6, and therefore & (M,(4))
is 7,-compact. ped
(ii)}k*» (). Suppose that & (M,(4)) is m-compact. Let Fed™ guch
tlias’n AT # (0), |F| < 1. Let {w,} be a net in &(4) such that m(,)
w"-converges to F. Let R, = R, for all a. Then {R} < & (M,(4)) and
therefore, by the 7,-compactmess of 5 (M,(4)), there is a wsubset, say
{Ro}, which 7,-converges to an element T e (M,(4)). Let F7 = T ().
We have ) ‘
‘ (f, (@)« RY (B))—(f, w(x)« FF)  (wed, fed¥).

icm°®
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But 7(0)* B (B) = a()sm(s,) for all sed, and

(Ffy (@) xm (@) (f, m(@) = F)  (wed, fed™).
Hence .
_ (f, (@)% BE (B)—~(f, w(@)sF) (wed, fed).
Therefore .
(@)« = m(@)+FT  (wed).

Sinee m(A)« B < m(A), it follows that n(A)xF < w(A) and consequently
m(A) iy a right ideal of (4™, ). This completes the proof.

As a consequence of Theorem 6.1 we have the following characteriz-
ation of duality in a B*-algebra. .

TrmornM 6.2, Let A be a B*-algebra. Then the following statement
are equivalent:

(i) 4 4s dual.

(ii) & (M, (A)) is =-compact.

(iii) & (My(A)) is v-compact.

(iv) Bvery FeA* is of the form F = T*"(H) for Te M, (4).

(v) There ewists am isometric isomorphism of M (A) onto A™ which
maps D, onto w(4), where Dy = {(Ly, Bo): acd}.

Proof. We obgerve that the map S->S% takes M;(4) onbto M, (4)
and the map T->T# takes M,(4) onto M;(4) with [|§%| =8| and 1)
= {T]. Using the fact that A is dual if and only if z(4) is a two-sided
ideal of (4™, %) ([20], p. 533, Theorem 5.1), the equivalence of statements
(i)=(v) follows at once. This completes the proof.

The next theorem gives us an example of a Banach algebra with an
approximate identity which is Arens regular and which is not a B*-algebra.

THROREM 6.3. Let X be a wwiformly convew Banach space with an
uneonditionally monotone basis, and let A be the wniform dlosure of the
algebra T of all Uinear operators of finite rank on X into itself. Then A has
an approvimate identity ond &F(My(A)) and & (M (4A)) are compact in
theirrespective weals operator topologies.

Proof. By [23], p. 109, Theorem 1, X is reflexive and, by [23],
p. 213, Theovem, 7, the basis is shrinking. Since X has the property (Fy),
[4], p- 165, Lemma 12 implies that 4 is the algebra of all compact linear
operators on X. (See also the proof [10], p. 553, Proposition 2.4.) Since
X has & bagis, every feA* can be represented by a matrix [10]. Clearly,
o matrix with a finite number of non-zero entries is an operator of finite
rank, Now, by [10], p. 055, Proposition 3.1, B(X) = A™ (in the sense
that there exists a linear isometric map from B(X) onto A™* such that
each @A is talen onto its usual image under the canonical map n: A-> *y
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if and only if the set of matrices with finite number of non-zero entries
in A* is a dense linear subspace of 4™, Since X is uniformly convex, [107,
p. 557, Theorem 3.2 gives us B(X) = A**. Moreover, since 4 is the algebra
of compact linear operators on X, by [10], p. 560, Theorem 4.1, 4 is
Arens regular and, by [10], p. 561, Theorem 4.2, the Arens products
coincide with operator multiplication in B(X). Thus, in particular, 4 has
an approximate identity. Since 4 is a two-sided ideal of B(X), n(A)
is a two-sided ideal of (4™, *). Application of Theorem 6.1 and ity left-
hand version completes the proof.

COROLLARY 6.4. Let X be a uniformly convew Banach space wilh
an unconditionally monotone basis, and let B(X) be the algebra of all bounded
linear operators on X. Then the closed unit ball of B(X) is compact in the
wealk operator topology on B(X).

Proof. Let 4 be as above, and let ¢ be a minimal idempotent in 4.
Then (4e)* = ed ([4], p. 161) and there exist ne X, pe X", |yl = [lp] = 1,
such that ¢ =9®¢p, where (7®¢)(£) = (& ¢)n, §¢X; moreover, Ade
= {E@g: £eX} and ed = {n@y: X'} ([17], p. 67). Now for aeB(X),
£eX, yeX*, we have (a(£), y)e = yaw, where 2 = Q¢ and y = 4@,
By the proof above, every T'e M;(4) is of the form T == L,| 4, for some
a¢B(X), and |IT|| = |afl. Hence if {U,} is an open cover of (B(X)) in
the weak operator topology vy on B(X), then the image of {U.} by the
map a—L,[4 is an open eover of & (M (4)). Since & (M;(4)) is 7-com-
pact, it follows that #(B(X)) is 7x-compact. ‘

' COROLLARY 6.5. The closed unit ball of B(H), for any Hilbert space H,
18 compact in the weak operator topology on B(H).

7. Groups of isometric multipliers.

'L".E.}MMA 7.1. Let A be o Banach algebra and G,(A) be the subset of M,(A)
consisting of all elements which are isometric and owio. If the closed wnit
?all of M, (A} is compact in the weal operator topology on M. (4), then G.(4)
8 @ compact topological group.

Proof. We follow [3], p. 207. Clearly, G(4) is a group and, since.

multipligation in M, (4) is separately continuous in ,, @, (4) is & topologi-
cal semigroup. Suppose that F(M(A)) is rr-compva.et'a.nc't let T "belohg
to the 7-closure of @,(4). Since y(Mr(A)) is 7-closed, |7 1. Let {7}
be a net in G,(4) which T,-converges to 7. By the v,-compactness (l)ll
(M, (4)), the net {T7'} contains a subnet {T7'} which =-converges o
S~e£f(Mr(A)). Clearly, 8T = T8 = H, where B is the identity of Jf,(4).
Since |!S|| <1and 7)< 1, 8 and T ave isometries and so TeG.(4). a?huﬁ
Gr(fél) 1s & 7-closed subset of &(M,(4)) and therefore v,-compact. Appli-
cation of [8], p. 124, Theorem 2 completes the proof.

icm
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TuwornM 7.2. Let A be o Banach algebra with a right approvimate
identity. If m(A) is a right ideal of (A™, %), then G.(4) is & v-compact
group.

Proof. This follows from Theorem 6.1 and Lemma 7.1.

TanorEM 7.3. Let A be o Banaoh algebra with left and right approvimate
identities. Let G(A) be the subset of M(A) consisting of elements (8, T)
such that either S or 1' is an onto isometry. Then the following statements
are lrue:

(i) G(A) is a group and, for every (8, T)eG(A), both 8 and T are
onto isometries,

(i) If w(d) is a two-sided ideal of (4™, %), then G(A) is,a compact
group in the product topology v X 7,.

Proof. (i) This follows from Theorem B5.6.

(ii) This follows from Theorem 7.2 and its left-hand version, and
[9], p. 116, Lemma 1.5,

As an application of the groups discussed above, we give the following -
characterization of duality for a B*-algebra. We observe that if B is
a commutative B*-algebra, then Gy(B) = G.(B) = G(B). We recall that
the algebra of multipliers on B is isometrically isomorphic %o 0y (L235),
the algebra of all bounded continuous complex-valued functions on the
carrier space 25 of B ([24]). ‘

Trmormy 7.4. Let A be a B-algebra. Then A is dual if and only if
the following conditions hold:

(i) G,(4) is v,-compact.

(i) G(B) separaies the points of the carrier space 2z, for every mazimal
commutative x-subalgebra B of A.

Proof. Suppose that 4 is dual. Then, by Theorem 6.2 and Lemma
7.1, Gy(4) is 7,-compact and, by [16], p. 179, Theorem 1, Qp iy discrete.
Therefore, representing the elements of G(B) as bounded continuous
funetions on Ry, it is easy to see that G(B) separates the points of Oz,
for every maximal commutative s-subalgebra B of 4.

Uonversely, suppose (i) and (ii) hold. Since B is convex and norm-
closed, it is weakly closed. From this it follows that G(B) is compact
in the weak oporator topology on M (B). Since G(B) separates the Points
of £, Dy [3], p. 209, Theorem 5, 2 is digerete and so A is dual by [16],
p. 179, Theorem 1,

As another application of the group &(4), we have the following:

Trmornm 7.5. Lot & be a locally compact group and L(G) the group
algebra of G. Then G is compadt if and only if n(L(G)) is a right ideal of

(L (1), %), where L™ (@) is the second conjugate space of L(@).
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Proof. Let G have a right invariant Haar measure u. If ¢ is compact
then L(@) is a dual algebra ([30], p. 699, Theorem 15) and therefore
a{L(@)) is a two-sided ideal of (L**( N, #) ([24], p. 82, Theorem 3.3)

Conversely, suppose that =(L(@)) is a right ideal of (L*(@), #).
Since L (@) contains a bounded approximate identity, @, (L (%) is z,-com-
pact. By [32], p. 254. Theorem 3, T'<G,(L(&)) if and only if T = iR,
where 1 is a scalar with |] = 1 and R, is the right translation operator
on L(@) given by some ge@ Thus G may Dbe identified as a subset of
G, [L(@)). Let = be the given topology on @&. Let {g,} be anet in @ which
z-converges to geG. Now, if z<L(@) then B (), as an clement of L(@G),
is a continuous function of se@([31], p. 118, 30¢). Therefore,

[ Fmym(hgz") (@)= [ £(h)w (hy™) (@h)

for all v I (&) and fe L, (G), where L, (&) is the set of all essentially bounded
meagurable complex-valued funetions on &. That is, E, v,-converges
to R,. Thus g—E, is continuous and, consequently, the topology on G
induced by 7z, is weaker than 7.

Let 7, be the strong operator topology om M, (L(6)). Let ¥ be a compact
neighborhood of the identity eeG, and let # be the characteristic function
of V. ThenweL(G and V = {g: —m(6)] < 1}. Let W = {TEG( (@):

AT (@) —R,(@)l <1}; Wis a ¢ -nelghborhood of the identity in &,(L (G))
If Rye W then gV, 8o that, if we identity & as a subset of G (L(@

we obL‘un Wn@ < V% Since the v-compact neighborhoods V' of e Iorm
@ basis for the z-neighborhoods of ¢, the topology on & induced by v, is
stronger than 7. As 7, = 7, on G,(L()), we have v = 7, on &. Thus if

{E,} is a net converging to Tel,(L(®) then T = R,, for some geG.

That is, @ is a closed subset of &,(L(@)) and hence compact.

8. Multipliers on modular annihilator A*-algebras.

Lenva 8.1. Lat A be a modular - annihilator A”'-algaba'a. Then every
left (right) multiplier on A is linear.

Proof. Let I' be a left multiplier on 4. Let a, beS L« and A, p scalars.
Since a,beS,, a, b belong to a right ideal of finite order and ther cfore,
by [2], p. 286, Lemma 2.3, there existd a self- -adjoint idempotent ¢e.d.
such that ¢ = ea and b = ¢b. Hence

T(Aa+ub) = T(o(Aa+ub) = T(e)(Aa - ub)
== A1 (a) -+ pd'(D),
which shows that 7 is linear on S, . Thus if a, be.d, Ay peCand e is o minimal
idempotent in 4, then

(T(Aa+ pb) — AT (@) — uT (b)) e = 0.
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Sinee every weS, can be expressed in the form
D= 00y .. 6, Ty,

where ¢;is a minimal idempotentin 4, w;¢.4, ¢ < ¢ < n, and since 1 (8,) =(0),
it follows that T'(Aa--ub) = AT (a)-+ uT(b), for all a,bed and A, ueC.
Thus T is linear. Similarly, if T is a right multiplier on. A then T is linear.
This completes the proof.

The following lemma is actually the “Main Boundedness Theorem”
of Bade and Curtis ([26], p. 592, Theorem 2.1, [27], p 285, Theorem 4.1)
applied to multipliers.

LEMMA 8.2. Let T be a linear left (right) multiplier on a Banach algebra A.
Let {w,} and {y,} be sequences in A such that ©,Y, =0, n 7 m. Then
there ewisls a comstant M > 0 such that

(1) I (0nyn)| < Mol [Ynll,  m2=1.

Proof. Let T be a linear right multiplier on A. Suppose that there
does not exist M > 0. for which (1) is true. Then there exists a doubly
indexed. subsequence of distinet elements {u;} of {,} and a corresponding
subsequence {vy} of {y,} such that

I 2y 03) 1| > 44+ lugltvyll  for all ¢, j.

Lot
h¢=2—2—7; ’kll ed, ix1
et vz
Then
Upgly =0 i p i
and

1 Uy,
B = . Lig Vig
Vit =97 ol

‘We observe that T'(k) 0, for i 1, since

T (g 04)

1 1
Uiy T (i) == T'( (14 h) ~ T

anl
I (g i) | > 4+ sl 03]l > 0.

Uhuuso {4} a sequence of distinet pomtwe integers such that 2% > [T (h)lly
. Let

ﬁi H’M@“
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Then
1 gy 1 Yy
BT w2 g
and

(BT (Bl = L ()|

1 T (g V) |

o (gl g |

AR = O > 9| TR, k.

> SR

Thus [ = oo which is clearly a contradiction since hed and |[h] < oo.

In a similar way we can show that (1) holds for a linear left multi-
plier.

TupoREM 8.3. Let A be a modular annihilator A*-algebra. Then every
left (right) multiplier on A s a continuous linear operator. )

Proof. Let T be a right multiplier on 4. By Lemma 8.1, 7' is linear.
We shall first show that 7' is continuous on every mlnuna.l right ideal
of A. Let I be a minimal right ideal, I = ¢4, where ¢ is & minimal idem-
potent. Let J = {wed: y—T(ay) is continuous on 4}, Then one can
verify that J is a two-sided ideal of 4 ([29], p. 158), and that an idem-
potent ¢ is in J if and only if 7'|g4 is continuous. We can now follow the
argument given in the proof of [28], p. 308, Theorem 2.1 to show that
T'leA is continuous. (We replace the homomorphism » there by T.)

To show that T is continuous on all of 4, it suffices to show that
the graph of T is closed. Let {z,} be a sequence in 4, @, y ¢4 be such that
w,~2 and T(#,)—vy. Let ¢ be a minimal idempoten.t in 4. Then ew,~>ew
and T'(em,) = eI'(m,)—+ey. By the continuity of 7 on ed, we have
T(em,)~>T (ex) = eT' (). Hence ¢(I'(w)—y) =0 for all minimal idempo-
tents ¢ in 4, so that z(T(z)—y) =0 for all zeS,. Since 7(8,) = (0),
we obtain that T'(#) = y. This shows that the graph of 7' iy closed and
hence that I' is continuous. (See also [18], p. 145.)

Similarly we can show that every left multiplior on 4. is continuous.

Remark. We note that Lemma 8.1 and Theorem 8.3 hold for any
semisimple modular annihilator Banach algebra A, since 1(8,) == r(8,)
= (0). .

TugorEM 8.4. Let A be o modular annihilator A*-algebra which is an
ideal of its completion . Thon every double multiplier (8, T) on A has
@ unique extension to o double multiplier on .

icm°®

. [(‘01 overy Fed™, let 1" U™ be given by F'(g) =
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Proof. By [21], p. 422, Lemma 3.1, AnJ 5 0, for every non-zero
two-sided ideal J of A. Therefore, by the argument m the proof of [15],
p. 31, Theorem 18, the norm

lwly, = sup{lloyl: yed, W<l (wed)

iy equivalent to the auxiliary norm || on 4. By Lemma 3.1, every double
multiplier (8, T) on 4 belongs to M (4). Let w<¥ and let {@,} be a sequence
in A such that |o,—u|-»0. We have °

(wn""mm)s(y) = T(‘in“wnz)y?

for all yed and all positive integers m, n. But

H-T(wn) wT(wm)”! = SHP{H(T(.W )"‘T(mm)):’/”: y€A7 ”y“ < l}

< sup {kle,— 2,1 1S () yed, Iyl<1}

Hence {T'(2,)} is a Cauchy sequence in . By the completeness of
there exists 2¢% such that |T(x,) —2|—0. Let T'(z) = 2. It is easy to see
that the value 1"(») is independent of the sequence {z,}. This gives us
a unique extension 7" of T to . Similarly, we obtain a unique extension
8 of 8 to . It follows quite readily that @8’ (y) = T"(x)y for all @, y «A.
By Lemma 3.1, (8, I")e M ().

COROLLARY 8.5. Let A be o modular annihilator A*-algebra which is
an ideal of its completion . Then every Te My(A)NM(A) has a unique
ewtension T' to W and T’ e M (W) NI, (N). :

TunoREM 8.6. Let 4 be o modular annihilator A*-algebra with en
approzimate identity, and let A be the completion of A. Then for every Tetf
(vight) multiplier T on A there exists a left (right) multiplier T on U such
that T = T"| 4.

Proof. Liet my denote the canonical map of U into A, Since Iﬁl

«; fllell, wed ([17], p. 187, Corollary (4.1.16)), for each geW*, gy = g]AsA,i
= I'(g,) for all geA"
(See [24], p. 82.) Then (Fxzm (@) = Iy (@), for all Fes . ped. Since
A iy dense in A and A is dual, we have

B g (@) emy(W) (@, Fed™).

Now if Te M(A) and F = 1" (W), then T*(w(®)) = Fxx(w), for all
wed. Mence it T'e My(N) is given by T (oy(@)) = F' ay(w) for all
2e, then T = T'| 4. Similarly we can show that if TeM,(4) then
T w17 | A, for some 1" e M,(%). This completes the proof.
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