STUDIA MATHEMATICA, T. LV. (1976)

Further results on integral representations

by
PLEMMING TOPSOE* (Coponhagen, Denmark)

Absveaet. This papor is o continuation of my joint research with David Pollard
([1]). It is iy object o establish integral representation theorems for a positive
linear functional defined on a cono of functions in cages when this cone is not necess-
arily closod under differoncocs.

We follow [1] and use definitions, notations and conventions from
[1] without muech further explanation.

LevmA 1. Let o be a (@, U f, M f)-paving on X and u o A -reqular
Sfinitely additive measure.

() If (f.) is a net on [0, oo1* such that f,~0, %mformly on A -sets,
and py(SUpf,) << oo, then pw(f,)->0.

(iiy If pu(f) << o0, then ue(fAan~')—0 as n->oco.

(i) If wu(f)<< o0, them, to every &> 0, there ewists Ke A such that
(S lm < g3 K can be chosen such that f> 0 on K (for some &> 0,
fl@) = 6 for all melk).

(iv) For any fe0, oo, palf) = supua(f.n)

As usual, we only consider non- negatlve functmns

Proof. (iv) is trivial. Formally, (ii) and (iii) are easy consequences
of (i). However, to prove (i) We start by proving (iii). To do this, assume

that gy ( f)< oo, Chooge T = Zatlﬁ- such that all the «; are positive,
< f and g (f) < p(h) +e. Pui. K == UK; Then f > 0 on K and

o+ L) =+ gy (o) ““H*(.f'lazc‘l'k)é/«t*(f)

from which the desived result follows,
To prove (i), put f = supf,. Then p(f) < oo by assumption. Choose
K guch that uy (f+1gg) < & Choose & > 0 such that 6-u(K) < e. By assump-
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~ tion, there exists ay such that f.< 8 on K for all'a > a. For a > a, we
then have
el fa) < M*(5'1K+f’1ox)
= ux(8:1g) +ua(folox) < 26. &

Remark. If p is supportérl by a #-set, ie. if p(CK) = 0 for some K, then
we need not assume that s (supfo) < oo in (i), and in (iii) we can of course find K
with g (farlog) = 0 (but not necessarily such that f > 0 on K).

Now let (¢, T, #') be given and assume that the following conditions,
taken from [1], are satisfied:

Al’: € is a (0, Vf, Af) convex cone in [0, o) satisfying Stone’s
condition; (this is A1 of [1] with Stone’s condition added),

A2: T: 4-[0, o) is a monotone positive linear functional;

Ad: o is a (@, Uf, N f)-paving on X; ‘

A6: For K,nK, = @, e> 0 there exist iy > 1x, by 2 g, such that
T(hyahy) <&

We shall see later on, how A3 and A5 of [1]are replaced by weaker
assumptions.

At present, we congider some other conditions on (%, T, o), analogous
to (i) and (iil) of Lemma 1. Conditions resembling (i) are kinds of con-
tinuity 'conditions and will be denoted by the letter C, conditions re-
sembling (iii) are of the “exhaustion” type considered in [1] and will be
denoted by the letter E. Furthermore, we introduce conditions, roughly
speaking to the effect that € be closed under \ relative to 7'; these con-
ditions are of the “tightness” type considered in [2] and will be denoted
by the letter t. Our conditions are as follows:

C: suph,< h, he®, h,—0 uniformly on A -sets imp]iéé Thy—0;

0*: suph, <h, he®, h,~0 uniformly on all K¢ for which %> 0
on K implies Th,—0; c

E: for all he%, &> 0, there exists Ke o such that Ih' < & for any
M<h with »' =0 on K;

E+*: for all he%, ¢ > 0, there exists Ke 4 with k> 0 on K such that
Th' < e for any V< h with &' =0 on K;

t: for hy < hy, 6> 0 there exists h < hy,—h, such that Thy-+Th
= Thy—e;

t*: for by < by, 6> 0 and Ke A, there exists b with b < by, B g Py =y
on K and such that Th, +Th = Thy—e.

Note that if O holds, then

(1) inf T(han~?) =0 for all he®.
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Lzmyra 2. Assume that t* Tolds. Let he®, let ¢ > 0, and suppose that
Th<e for all W <h with b' =0 on K.
Then k

IW < Tho+e  for all W, hy with b <h and b < hy on K.

Proof. Assume b’ < by, B < hy on K. We may assume that ho << H.
By t* we can find, given & > 0, 1* < &’ with 1* < b’ —h, on K such that
Th* 4 Thy = Th' — 8. Since h*= 0 on K, we have Th* < &. Th' < Thy+ s+ 8
follows. ¢ being arbitrary, the result follows. m

Levnma 3. If t* holds and if tr(%) = F(A), then C,0*, B and E*
are oll equivalent,

Proof. Clearly, 0*=C. Employing the condition r(%) =« F(X), it
is easy to see that € =-C*

Clearly, B* =E. Now agsume that E holds. To establish E* let h, &
be given. Choose K as specified by E. There exists x> 1x. Choose o> 0
such that o T(hg)< e Put K, = Kn{h>o}. Then K,ex. If b’ <h,
b =0 on I, then I’ < ohx on K. By Lemma 2 we conclude that Th'
< T(ohg)+ ¢ < 26. Thus E* holds.

Now assume that B holds and let us establish C. To do this, let (&), &
be given with h, <k for all a, h,~0 uniformly on #-sets. To ¢ > 0 we
choose I such that Th' < ¢ whenever &' < h, &' = 0 on K. There exists
hg 2 1g. Choose ¢ > 0 such that o7 (hg) < ¢. Eventually, we have h, < olg
on K and hence, by Lemma 2, Th,< T(ohg)-+¢<2e. This proves C.

Lastly, assume that O holds and let us prove E. To a given » consider
the set ) consisting of all pairs (b, K) with »' < &, &' = 0 on K. Direct
D by (hy, Ky) = (h, K))«K, 2 K,. For a = (b'y, K)eD define h, = h'.
Then (%,) is a net with A, <& for all a and h,—0, uniformly on £ -sets.
Thus Th,—~0 and we conclude that E holds. m

Ag in [L], ‘we consider u, defined on 2% by

(2)
(3)

wlC = inf{Th: hz1g}; KeX,

el =sup{ull: K < A, Ked}; Ae2%.

LEMMA 4. Assume that ir (4) < F(A), and that t* and B hold. Then
the restriction of ux t0 (A is a A -reqular finitely additive ‘measure
dominated by T.

Proot. Going through the proof of Theorem 1 of [17], one finds that .
the only mon-obvious fact that needs proof is, that for K, < K,,

(4) WE A p (KNI ) 2 K,
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holds. To establish (4), let K, < K, and & > 0 be given. Ohoose h, = 1k,
hy > 1g, such that

Th,< pK,+e, Thy< pKy+e.

We may assume that hy < b, <1
Since h; < h, and sinee by, —hy = 0 on K,, we may, according to *,

choose & < h, such that A = 0 on K; and such that
Sl’h1 +Th = Thy—e.

By E*, we can find X such that » > 0 on K and such that

(B) Th' <& for all B’ <k with #’ =0 on K.
Put K, = K NK,. Then K, = K, \K,.

We claim that the following is true
(6) Th' <3s for all ' <h with &' =0 on K,

To prove this, assume that &’ < k, b’ = 0 on K,. Choose o > 0 such
that T'(h'A a) < & (ef. (1)). Since K, and I n{h' > a} are disjoint A -sets,
we can by A6 find

h* > 1K2; 2 Leapza

such that T(h*ah**)<<e. We may assume that A*<<h,. Note that
Thy < yl, +e < Th*+e. Now we have
Thy+T (h**Ahy) < Th*+T (h**Ahy) + ¢
=T (h*v (W% A k) + T (R*A (B** A Bg)) + &

< Thy+2e.
Hence
T(h**Ahy) < &
Now note that
MW Aa+h**Ah,
Use this together with A'<

on K.
h, (5) and Lemma 2 to conclude that
Th < T(h'Aa—+h**Ahy) +e
=T (k' Aa)+T(h**Ahy) +e
< 3Be.
This proves (86).

For any k" > 1g, we have "' > h on K, and employing (6) in con-
nection with Lemma 2 we get Th < T(h'')+3s. Since this inequality
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holds for any A" > lg,, we have Th < u(X,)+ 3+, hence

HICy + o (NI 2 Thy +Th—4e
> Th,—5e

which proves (4). m
For the main result, we also need the condition

(7) Th =supT(han) for all he®.
n
TuroreMm 1 (ef. Theorems 2,3 of [17]). Assume that (%, T, o) satisfies
Al’, A2, Ad, A6, t* and that tr(%) < F(X).
Then the following equivalences hold:

(i) There exists a A -regular finitely aditive measure representing T

< B, (1)
< 0, (7).

(i) . If & is closed under ((Me) then:

‘ There ewists a A -regular o-additive measure representing T
< B, (7), T is o-smooth at @ w.rt. A

(i) If A is closed under ((Ma) then:

There ewists a A -regular =-additive measure represenimg T
< B, (7), T is z-smooth at @ w.rt. A .

Proof. We need only consider case (i), since (ii) and (iii) can then
be handled by the methods in [1].

That B and C are equivalent hag already been noted and that B
and (7) must hold in case there exists a /£ -regular finitely additive measure
representing 7' follows from Lemma 1.

Now assume that I and (7), and hence also C are satisfied. Let u be
the A -regular finitely additive measure from Lemma 4. We shall prove
that u represents 7'. According to Lemma 4, we need only prove u, (k) = Th
for all he%. By (7) it is enough to consider bounded h’s. Therefore, let
h be a fixed bounded function in % (for the following it is in fact enough
to assume that h is bounded on-every 4 -set).

Below we always indicate by the letter & a - slmple function. If
k= 24 gl g, With all the a; positive, we put supp (k) U K;.
])ueet the set

= {(b', b, k):

<H <k, b <y h' +h" < h on supp(k)}

by defining

(hey B, Teg) = (B, B, By) < Tew 2 oy
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For o = (k', ", k)eD put h, = h’’. Then (I,)p is & net on ¥ with
he < h for all a. To prove that h,—0, uniformly on 4 "-sets, let K and ¢ > 0
be given. Since h is bounded on K, we may as well assume that b <1
on K. Choose n such that n™* < & Put K, = En{h > wm™}; v = 1

Since tr(¥) < # ('), these sets are all members of . Put &k = Z 'n‘ll,L

Put ay = (R, 0, k). Then ayeD and since b —k < ¢ on K, we see 1;]1&17 h,< e
on K for all a>a). Thus h,~0, uniformly on & -sebs.

Given s> 0, we can by C find a, = (hy, by, &) such that Th,<e
for all a > a,. Put K, = supp (k).

Consider a fixed 7' > k,, ' < h. By t* we can find A" such that
B<h W' <h—K on K, and such that T%"+Th' > Th—e Then
(B'y By Kg)eD and (W', b, ky) = a,. Therefore Th' < e. It follows that Th’
2= Th—2e. Since this argument applies to any &' =k, with A" < h, we
conclude that ua (k) > Th—2¢. ux(h) = Th—2¢ follows. m

Remarks 1. In cage we ask for the necessary and sufficient oondmmm that
there exists a X -regular finitely additive [or c-additive or 7-additive] measure
supported by a 4 -set which represents T, then:we need only replace & by the condition

Eg: there exists K such that Th = 0 for all h = 0 on K
and C by the condition

C hy—0 uniformly on #-sets implies Tha->0

2. As pointed out in [1], Section 1 it is not difficult to generalize to the situation
in which T is allowed to take the value - co. Also, it is possible to handle #-functions
which may take the value - oco; this only requires a proper definition of \, ¢f. Section
3 of [2].

3. As usual, the o -regular representing measure iy unique and is determined
in all cases by (2).

4. For the sufficiency part in (ii), we need not agsume that # be closed under
(ne); what we obtain then is a #'5-regular o-additive measure representing 7', where
X'y is the paving of countable intersections of sets in . A similar remark applies
to (iii). To establish these results, proceed as explained in Seetion 4 of [1].

THBOREM 2. Assume that (4, T) satisfies A1’y A2 and t. Put A" = tr(%)

and_assume that to any pair K,, K, of disjoint A -sets there ewist hy, hye @

With by > 1g, ke > 1g, and hiah, = 0.

Then a necessary and sufficient condition that T can be represented
by a A-regular finitely additive measure is that (1) and (7) hold. When
it ewists, this measure is unique and determined by (2).

We leave the simple proof to the reader, only noting that I is obtained
from (1).

Of course, the separation property assumed in the theorem could

be replaced by A6. The example below ahows that some separation prop-
erty is needed.

~EXAMPLE 1. Let X be the set of integers, ¥ the set of bounded non-negative
‘functions on X for which both limits & (o) = limh(n) and h{—o0) = limh(n) exist

n-ro0 Py OO
l

e _®
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and are equal, and define 7' by Th = (o). In this case, tr(¥) = 2X. All properties
considered, except the separation property A6 hold. u determined by (2) is not addi-
tive. However, T' can be represented by a o -regular finitely additive measure, indeed,
every finitely additive measunre u on 2¥ with 4X = 1 and vanishing on all finite sets
represents T. Thus we have no uniqueness in this case. m

THEOREM 3 (compare with Theorem 4 of [1] and Theorem 3.13 of
[27). Assume that (¢, T) satisfies Al', A2 and t, and that k\1¢% for all
he®. Denote by A [ A,] the paving on X of couniable [arbitrary] intersections
of sets in t(%).

_ Then a necessary amd sufficient condition that T can be represented
by a A sregular o-additive measure [ ,-regular v-additive measure] is that
T be o-smooth [r-smooth] at 0.

Due to the condition AN\1e% for all he%, the proof can be carried
out in the same way as the proof of Theorem 4 of [1].

When we add the assumption that € be closed under (/\¢), we end
up with (in the o ,-case) the situation dealt with in Theorem 3.13 of [2],
except for the fact that the condition A\1e% for all <% was not needed
in that result. It should be noted that the general formula (with u de-
termined by (2))

px(f) = sup ik Th;  fe[0, c0)¥,

k<t hzk

ks referring to s -simple functions, then reduces to

p(f) = supTh;  fe[0, coT*
<t
since Lg% for every K etr® [nh\(n—1){{h =1} for h < 1]

Throughout the paper our main effort has been to avoid the con-
dition that % be closed under \. That this can be done is theoretically
revealing, in particular, when comparing with the analogous situation
for the construction of measures. The typical applications which are
possible with the refined results but not with the earlier results are to
situations when % is a class of upper semicontinuous furtctions.
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