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‘Weak compact generating in duality
. by
KAMIL JOHN and VACLAV ZIZLER (Prague)

Abstract. If X, T are Banach spaces generated by aweakly compact set (WCG)
and ¥ < X* is norming on X, then a projectional resolution of identity on X is con-
structed such that all projections are w (X, ¥) continuous and dual projections form
resolution of identity on ¥. In this case there exists an equivalent w (X, ¥)-lower
semicontinuous locally uniformly rotund norm on X the dual of which is rotund on
X* and locally uniformly rotund on ¥. Also the existence of Giteaux smooth parti-
tions of unity on X is proved. Some results of [14] are generalized, namely it is shown
that any WCG space has a large quotient with projectional basis and that if X*, X**
are WCG, then X and X* contain large reflexive subspaces. If X is a subspace of
WOG space, then some sufficient conditions for X to be WCG are given: X is Fréchet
smooth or X* is WCG.

1. Introduction. Among nonseparable Banach spaces there is a class of
spaces which behave well with respect to many geometrical and topologi-
cal properties. This is a class of weakly compactly generated Banach
spaces, introduced by H. Corson and studied by D. Amir, J. Lindenstrauss
and others. A Banach space X is weally compactly generated (WOG)
if there is a weakly compact set K < X such that X is the closed linear
hull of K. These spaces form a very suitable roof over separable and reflex-
ive spaces and include for example ¢,(1"), Ly (u) for finite u, 1,,(I") — direct
sum of WOG spaces, p > 1, C(K) spaces, where K is weakly compact
subset of a Banach space, etc. They possess a nice projectional resolution
of identity ([1]), Markugevié bases, admit some nice norms ([1], [23], [10],
[11]), and behave ‘well as to some convex extremal problems ([157], [4],
[5]). On the other hand, it was recently shown by H. Rosenthal ([20])
that the WOG property is not hereditary and W. Johnson and J. Linden-
strauss ([14]) constructed a non-WCG Fréchet smooth space whose dual
is WCG.

In this paper we study weak compact generating in duality. In Section
I1T we prove some results on projeetional resolution of identity compatible
with duality for WCG spaces. Also we prove a representation theorem for
bounded subsets (in the weak topology) of Fréchet smooth WCG spaces
(Proposition 5).

The lemmag from Section III are used in Section IV to extend and
strengthen the following renorming theorem of M.I. Kadec (cf. e.g. [16],
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Theorem 1.9) : If X, ¥ = X* are separable spaces, ¥ norming on X, then
there is an equivalent norm on X which is w(X, ¥)-lower semicontinuous
and locally uniformly rotund. We prove, for example, that this equivalent
norm may be also Giteaux differentiable in the case if X, ¥ are WCG.
More exactly, we prove: If X, ¥ « X* are WOG spaces, Y norming on
X, then there is an equivalent norm |[:|| on X with the properties (i)~(vi)
stated in Theorem 1. This is applied to show the existence of Gateaux
smooth partitions of unity in WOG spaces X for which a norming WCG
Y o X* exists.

In Section V we use the projectional resolutions of identity to prove
that if X has Fréchet differentiable norm (or X* is WCG) and if X is
a subspace of a WOG space, then X is WOG. The same result was inde-
pendently obtained by D. Friedland [9] and also by W. Johnson and
J. Lindenstrauss [14]. C
: In Section VIwe show that if X™ and X** are WOG, then any subspace
of X and X* contains a reflexive subspace of the same density, extending
(necessarily by a different proof) the results of W. Johnson and H. Rosen-
thal [13]. In the proof we use a concept of projectional bases introduced
by C. Bessaga ([6]) for which some needed facts (which may be of an
independent interest) are proved in Section VI. Let us remark that from
the results of C. Bessaga and the result mentioned above immediately
follows that if X* and X** are WCG, then X, X*, X* are all homeomor-
phic to a Hilbert gpace.

Appendix contains an dgpplication of the above methods to the prob-
lem of the existence of special Markufevié bases and quasicomplements.

IL. Notations and definitions, We will work in nonseparable real
Banach spaces. By a subspace of a Banach space we mean a norm closed
subspace. Unless stated otherwise, if ¥ < X%, then ¥, (¥<) denotes
the polar of ¥ to X (X**). Tf (X, ¥) is a dual pair of vector spaces, then
w(X, Y) is the weak topology on X given by the duality (X, Y. w(X*, X)
(respectively "w(X, X*)) topology is denoted by w*-(respectively w-)
topology. If X is a Banach space (shortly, a B-space and M < X , ¥
a subspace of X", total on X, then sp M (w(X, ¥)sp I) denotes the Linoar
(w(X, ¥) closed linear) span of M in X. Also we put 5p M = w(X, X
sp M. If X is a B-space and ¥ < X*, § > 0, then Y is called 8- norming it

”igl(sup (flo); feX, IfI< 1))

LES

If ¥ is 6-norming for some >0, then we'say Y is norming of X, A B-space
X is locally umiformly rotumd (LUR) if whenever By B X, o, ll= ||
=1, lim|jz,+ || = 2, then lim |m, —a| =0. X is rotund ¥ whenever
%, ye X, 2]l = |yl = }llo+yl, then @ = y. X is an f-space if it admits
an’ equivalent norm which is Fréchet differentiable at all nonzero points.
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A topological space T is called an Eberlein compact, if it is homeomorphie
to a weakly compact subset of Banach space (in its w-topology), densT
denotes the density of T, i.e. the smallest cardinal number of a dense
subset in 7'. The restriction of a map ¢ onto a subset 4 < T is denoted by
pld. A system {z,} ¢ X, {f.} < X* aed, is a Markudevié basis of X if
Ja(®g) = 6,5 (the Kronecker delta), sp{w,} = X and Sp{fa} (= the coef-
ficient space of the M-basis) is total on X, which means that N F70)

= {0}. A Marku¥evid basis {(a,, f)} is shrinking if sp{f.} ="X* (cf. [13],
[16]). A B-space X is somewhat reflemive (cf. [16], [14]) if any subspace
Y < X contains a reflexive subspace Z < ¥ with dens Z — dens .

II. Dual projections in WCG spaces.

LeMuA 1. Let (X, ||-|) be o normed linear spacé, Y, B closed subspa-
ces of X, B finite dimensional. Let |- | be another norm on Y such that either
Yl < |yl for all ye¥ or ly| > |yl for all ye¥.

Then there is a ||-|-continuous projection P of X onto B suchthat PY <« Y
and P is |-]-continuous on Y.

Proof. Let ly| < |ly| for all y« ¥. Let (@:)¥ be a basis of BN Y, comple-
ted by @, ..., a, to a basis of B. Let ie{l, ..., p}. We prove that there
is a ||-||-continuous projection P, of X onto sp{a;} such that P;(a;) =0
for j #i,P; Y « ¥ and P,/Y is |-|-continuous. For it let fi be a linear
functional defined on sp( )y i

D
Ji (Z aiaz’) = Oy
j=1
Let f, be a |-|-continuous extension of f, to ¥. Then Jfais a fortiori
[I]|-continuous on Y. Let Z = sp(Y, (aj)}LpH). Then Z is ||-||-closed and
Z = Y®SP(ay)}_p41, topologically. Let § be a ||-||- continuous projections

of Z onto Y such that Q~'(0)= Sp(a)jepr1. Then define the functional
fs on Z: fy(z) = fy(Pz). Furthermore, extend f, [|ll-continuously on X to
f and define on X a projection Pz = f(@)-a;. It i ¢{p+1, ..., n}, then
a;d §f)( Y, sp(ay, § z')) and thus there is a |- ||- continuous linear functional
f on X such that f/sp(¥, spla;,j = 1)) =0 and f(a;) = 1. Then define
projection P; on X: P;o = f(e)w;. Now tuke P =P, + ... 4P, to have
the desired projection. Similarly in case |y| = |ly| for ye Y.

The following lemma is a slight generalization of Lemma 2 in [10],
namely we are given another norm |- |, on the subspace ¥.

LmMMa 2. Let (X, |-]y) be a normed linear space with another norm
[Fa<i-leon X. Let N = X and ¥ = X be linear subspaces of X not necess-
arily closed. Further lei |- |5, resp. ||, be norms of N, resp. Y. Let [*ls= | la
on N and let on Y one of the following conditions hold: -
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(1) 19la= 1yls for ye X, or

(i) lyly < |ylyfor yeXY and Y is closed in (X,|-|y).

Then, given a finite-dimensional subspace B = N, n elemenis fy, ..., f,¢
(X, |-12)* and integer n, there is an N,- dimensional subspace ¢ = X con-
taining B, such that, for every ¢ > 0 and every subspace Z < X, Z o B,
dimZ|B = n, there is o linear operator

T:Z-~C
with
MZnY) <Y, T(ZnN)c N, [T;<l+ts i=1,2,
ITIZNAN|;<L1+e, |TZnY|,<1l4e Tb =D>b for beB,
and

f52) —fu(Te)l < elzl, for 2eZand k=1,2,...,m

Proof. It goes similarly as the proof of Lemma 2 of [10], using in
(ii) Lemma 1 of this paper instead of Lemma 1 of [10].

ProposITION 1. Let (X, ||-|) be &« WOG B-space, ¥ < X & closed sub-
space of X, |-| another norm on ¥, equivalent to the norm ||-|. Lét || be
Fréchet diffewentmble at all nonzero poims of Y. Denote by w the first ordi-
nal of cardinality densX. Then there is a long sequence {P,; 0 < a < u}
of linear projections of X such that

(i) Py= 0, P,=didentity on X, P,Y < ¥, |P.l= |P,/¥|=1 for a > 0;

(i) PuPy= PP, if a< f;

(iti) for every meX is a—=P,n a norm continuous function on ordinals;

(iv) dens P, X<3, dens(P,/Y)*Y* < a for o> w;

v) for every y*< Y™, a—>(Pa/Y* * is a morm continuous JSunction
on or dmals

Proof. We may suppose that |y| > |ly|| for ye ¥. Let K denote an
absolutely convex weakly compact set generating X and contained in
the || ||-unit ball of X. We put in Lemma 2

(i) |#ly = 2], = [l2]] for weX, |v]; = inf{a> 0;2eal} for mespk
=N and |y|, = |y| for'ye¥.

Then we use the methods of [1] to derive the existence of projections
(1), (ii), (i), densP, X < a for a> .

Now, since |P,/¥Y|<1 and |-| is Fréchet smooth, (v) follows from
the results of [11], Lemma 3. Also, dens(P,/Y)*Y¥* = dens(P,Y)* =
dens P, Y since the norm |-| iy Fréchet differentiable (cf. e.g. [157], the
end of Section B5).

In the sequel, we will use the following lemmas. The first is o variant
of Proposition 2.2 of [15].

icm
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Lemya 3. Let X, ¥ be WOG spaces, ¥ < X*. Let P: XX be a bounded
linear projection of X such that P*Y < ¥. Then densP*Y < densP.X
and if moreover Y is total on X, then densPX = densP*Y.

Proof. Let K, K; De absolutely convex weakly compact sets gener-
ating X, ¥, respectively. Let M = PX be a dense subset of PX. Then, as
J. Lmdenstra,uss in Proposition 2.2 of [15], using the restrictions of M
to P*K, and the Stone~Weierstrass theorem, we derive that densC(P*K,)
< card M (where P*K, is in w-topology) and thus there is a set I,
< P*K, such that M, is w-dense in P*EK, and card M = card M,. Thus
densP* Y < densPX. The reversed inequality is proved similarly.

Leyma 4. Let X,Z < X* be B-spaces and lot Z = sp K, where K
is an absolutely convexs weakly compact set in Z. Let P be a norm bounded
linear operator of X into X, such that PE, < K, (where K, is the polar
of K in X). Then P is w(X, Z) — w(X, Z)-continuous.

Proof. For P*: X*+X* we have P*K = P*(K,)° <
thus from boundedness of P, also P*Z < Z.

ProrosIrion 2. Let Y be a dlosed subspace of & WOG B-space (X, |-|)
and let Z = Y* be @ WOG subspace total on Y. Denote by u the first ordinal
of cardinality dens X. Then there is a long sequence {P,;0 < u< ur of
linear projections of X such that:

(i) Py = 07 P, = identity, |P,| =1 for a>0, P,Y < Y;

(11) P, P, —PﬁP =P, if a< B;

(iii) for every we X, the function d—P & is norm continuous on ordinals
€0, uy;

(iv) (P,/Y)*z is norm continuous on ordinals for every zeZ;

( ) densP, X < a and dens(P,/Y)*Z< a for a> w;

(vi) P Y are w(Y,Z) — w(Y, Z)-continuous.

Proof. Denote by K, K, the absolutely convex weakly compact
sets which generate X, Z, respectively and are contained in the wunit
balls. We put in Lemma 2(i):|-|, = ||, = [-] on X, |, = inf{a > 0;
seak} for mesp K = N and |y|, = sup{y(k,); kye K} for ye¥. Then we
use the methods of [1] and Lemma 4 to derive the existence of a long
sequence {P,; 0 < a'<< u} of projections satistying (i)-(iii), the first part
of (v) and (vi). We prove that then also (iv) holds. For it let « be a limiting
ordinal and zel;. Then

c (Ky)° =K and

limPle =P,z

Bra
in the w(Z, X) topology, as it i5 easily seen from (iii) and (i). Since P,ze K,
for £< 4, and on K, the weak and w(Z, X) topologies coincide, we have

l'unP;z =Piz
Bra
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in the weak topology of Z. From this, the boundedness of P,’s and from
the argument of [1] (see Lemma 2 of [11]), (iv) follows. Furthermore
Lemma 3 is used to derive (v).

PROPOSITION 3. Let (X, |-|) be @ WOG B-space, ¥ = X* a closed sub-
space of (X, |+|) and let one of the following two conditions hold:

(a) ¥ 48 WCGQ, or

(b) X* 4s WOG.

Let ||| be an equivalent norm on Y and denote by u the first ordinal
of cardinality densY. Then there is a long sequence {P,;0< a< u} of
linear projections of X such that

(i) Py =0, P, =identity on ¥, Pi¥cY,
a> 0;

(i) PPy = PP, =P, if a<< f;

(i) dens,PX <@, densP:¥Y <@ for a> w;

(iv) for every we X the function a—>P » is norm continuous on ordinals;

(v) for every yeY the function a—>Phy is norm continuous on ordinals.

I'Pal = “P:/:Y“ =1 'i/f

Proof of (a). This requires a different approach than that of the
statements above. We may suppose that |ly] > |y| for ye¥. Let K, K,
be absolutely convex weakly compact sets generating X, ¥, respectively.
We put in Lemma 2(i) X = X*, ||, =] on X*, |fl, = sup{f(k);
keK} for feX*, Y=Y, N =spK,, |fl;=inf{a> 0; feak,} on N, |f],
= |if]] on ¥. We then work on X* in the w*-topology (details for this
approach. are in [12]). The limiting points of operators T, and projections
appearing in Amir-Lindenstrauss construction exist in the w* sense by
the w*-compactness of the |-|-unit ball of X*. The fact that the w*- cluster
point @ of the sequence {T',} from the proof of Lemma 4 of [1] is a projec-
tion follows from the w* — w* continuity of @ (see Lemma 4). As in Lemma 6
of [1] we choose a dense subset {y,; « << u} of N. Using the fact that all
operators appearing in the construction, are bounded and preserve K,
and thus ¥ and Y (Lemma 4), we see that the cluster points may be taken
with respect to the w*-topology on X and simultaneously with respect
to the weak topology on ¥. We use also Lemma 3 and the fact that if
X is WCG, then w*densP*X = densPX (Proposition 2.2 of [157). From
these remarks, and on Amir-Lindenstrauss construction (see [1], [107,
[11]) the proof of part (a) follows.

Proof of (b). Let K, XK, be absolutely convex weakly compuct
sets generating X, X", respectively. We use again Lemma 2 (i), putting:
(X, 1) = (X [)), If]y = sup{f(k); e K} for fe X*, Y=sp K, N =Y,
Ifls = Ifl for fe ¥ and |f], = inf{a > 0; fe aK,} for fesp K,. Wo then wow‘k
on X* and the cluster points of pr OJeemons and linear operators in Amir—
Lindenstranss construction ([1]) are in weak topology on X* because they
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preserve K,. Further we proceed similarly as in (a). As in Lemma 6 of
[1] we choose a dense subset {y,; a<< u} of ¥ = .

At the end of this section we show two propositions on M-bases:
ProrosiTioN 4. If X is @ WOG space and Y = X* o WOG total sub-
space of X*, then there is an M -basis {(®,, f.); ael} of X, such that

sp{fe; ael} =

Proof. By transfinite induction on densX = densY (Lemma 3).
If dens.X = dens Y = N,, then we have Theorem IIL.1 of [12]. If dens X
=N and g is the first ordinal of cardinality N, then by Proposition 2
(or by Proposition 3) there is a long sequence of projections {P,; 0 < a
<plon X, P =1, densP,X<§,P.Y « ¥ and a—P,y norm con-
tinnous for all ye¥Y. By the induction hypothesis there is an M-basis
{af,iel,} of (P,,—P,)X such that

Spifi; tely= (P

Evidently {(#%,fl); iel,, 0<
@{f:7 ielaﬁ 0 <

ProOPOSITION 5. Let X be o WCG f-space. Then every bounded subset

B < X is isomorphic to o subspace of co(I") (for certain I') by an affine
homeomorphism with respect to. weak topologies. )
Proof. By Theorem 1 of [11], there is a shrinking M-basis {(2;, f);
iel} of X. Suppose that |f;] <1 for all < I. Then for every #e X is T'(x)

= {fi(®)}ecy(I") and thus T is continuous linear imbedding of X into
¢o(I"). Now let {wu} < B be a net and #<B. Then we have

*—PHY for 0<a<p
a<< u} is an M-basis of X such that

a< p} =

fw,)—~f(x) for evéry feX < fi(w,)>fi() for every iel
because {#,, 4} B is bounded and sp{f;} = X*. But
filw,) = i fi(@) = (Ta); < To,~Tx

in the weak topology on ¢o([) because {Tw,, Tz} is bounded in e(I").

IV. A renorming theorem. The main result of this section is: -
TaworeM 1. If X, ¥ « X* are WOG Banach spaces, Y norming on
X, then there is an equivalent norm |- || on X with the following siz _'pa operties:
(1) -1 48 w(X, Y) lower semicontinuous;
( i) [+ is locally wuniformly rotund;
(ili) on the unit sphere {meX; |l = 1} the norm and the w(X, Y)
topologies coincide;

(iv) the dual norm |- |I* on Y is locally uniformly rotund;
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(v) on the wnit sphere {ye¥; |y|*= 1} the norm and the w(¥Y,X)
topologies coincide;

(vi) the dual norm |- on X* is rotund.

Before proving Theorem 1 we state some corollaries of it.

CoROLLARY 1. Under the assumptions of Theorem 1, X has a Gdteaun
smooth partitions of unity (subordinated to any open covering) of X.

Proof. By the results of H. Toruticzyk ([22], Theorem 1) it suffices
to prove the following lemma.

LeMma 5. Under the assumptions of Theorem 1, there is a homeomorphic
imbedding u of X into ¢y (I") for some I" such that p,ow is Gdteauw differen-
tiable, where p,ecy(I'Y* denotes the fumctional (,)—>w,.

Proof of Lemma 5. First, using Proposition 4, we see that there
s an M-basis {#} = X, {f} <'Y, ael',{f;} bounded, such that sp{f,}
=Y. Let 147" and define w: X0y (I'U{1}):

ll|? for a=1,
Pou(z) =

fu(@) for el

where [|-} is a norm from Theorelh 1.
Then to prove that %~ is continnous, let
lim |u(w,) —u(z)] = 0.
Then
limflw,|| = |lzf and limf,(@,—®) =0,
n n

Thus by the property (iii) of the norm ||-|| from Theorem 1,

lim ||z, — 2| = 0.

COROLLARY 2 ([10]). If X, X* are both WG, then there is an equiva-
lent norm on X which is LUR, the dual of which on X* is LUR and bidual
on X** is rotund.

Proof. Put in Theorem 1: ¥ = X, X = X*

Remark. Assumptions of Theorem 1 do not cover all spaces with
nice renorming properties. For example, there is no WOG total subspace
Y < (e(1))*, I' uncountable, since I, (1) has only separable WOG sub-
spaces by the Phillips theorem (cf. e.g. [15], Section 2) and total Y cannot
be w* separable (Proposition 2.2 of [15]).

First we need the following two observations:

Lmyva 6 ([16]). If X, ¥ = X* are Banach spaces, ¥ norming on X,
then Y is 1-norming on (X, I*1), where |-| is an equivalent norm on X
given by

o] = sup{f(@); feX, if| <1}.

icm®
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Proof. Denote by K, the unit ball of X* in its original norm. To see
that ¥ is 1-norming on (X, |-]), it suffices to show that (o0 X))’ nY
is w* dense in ((K;nY)). But ((K,n Y))’nY > E;nY and KE,nY
is w* dense in ((K,N X),)° by the bipolar theorem.

Luvma 7. Let (X, |-|) be a Banach space, © @ linear Hausdorff topology
on X such that |-| is v-lower semicontinuous. If L is a finite-dimensional
subspace of X, then

o(, L) = inf{|Je—1|; 1L}
is v-lower semicontinuous on norm bounded sets. .
Proof. We will show that liminfg(z,) > o(w) if lim#, = & in. the

v-topology. First, from lima, = # in v follows that there is a subnet
{w,} of the net {»,} and a norm bounded net {y,} = T such that

limg(®,) == liminf p(z,) = lim |z, —7v,) y

limly,—y| =0 for some ye L.
Then ’

liminfe(2,) = lim|z,—y,| =limls,—y|> lz—y| > o(s),

by the z-lower semicontinuity of the norm |-].

Also, we need the following

LuvmA 8. Let ¥ = X* be WCG B-spaces; Y total on X. Then there
18 a bounded lincar one-to-one embedding of X into ¢,(I") for some I" which
s w(X, ¥)—weo(I), 1,(I") eontinuous.

Proof. We have X < Y* imbedded continuously in w(X, ¥)—w*
sense. By Proposition 2 of [1], there is w* —w continuous imbedding of
Y* into some ¢,(I).

Lemma 9. Under the assumptions of Theorem 1, there is an equivalent
norm |||l on X with the properties (i)—(iii) of Theorem 1 and there is an
equivalent norm ||+, on X with the properties (i), (iv), (v).

Proof. First we introduce an equivalent norm | -| defined in Lemma 6.
Then in Proposition 2 we put ¥ =X = (X, |-]), Z = ¥. Using this
decomposition of X, Lemma 7 and the w(X, Y) continuous imbedding
of X into ¢,([") from Lemma 8, we see that Troyanski’s LUR -renorming
construetion on X ([23]) can be built wp in the w(X, ¥) sense. The prop-
erty (iii) follows easily from (i) and (ii): if z,, 2zeX, o), = |z, =1,

lima, = a in the w(X, ¥) topology, then by (i),

2 = limsup ||lw, + @, = liminf |z, + 2], = 2|z, = 2.

Thus, by (ii), lim |z, — 2|, = 0. For the second part of the statement we
construct similarly a w*-lower continuous LUR norm on Y. Then we use
ity dual norm on X. : i
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TEMMA 10. Under the assumptions of Theorem 1, there is an equivalent
norm || lly on X with the properties (i)—(v).

Proof. We use the following variant of an averaging procedure of
E. Asplund ([2], [3]): Starting with f, = §1I1}, ¢o = ¥l |} and supposing
that g, <fo<(1+0)g,, we define

fn+1 =%(fn+gn)7 Iny1 = (% f:b+g;kb))*?

where f denotes the dual function of f, on ¥ in the sense of Fenchel and
(3(fr-+gm)« means the dual function on X. Then, similarly as in [3],
[2], we have

nz0,

gn<fn7 Jn .{]n+17 fn >fn+1.! %209 fn\l 1 |“1—nc)gn41

- From this follows ([3], [2]), that its common limit % is LUR, the dual
of k on Y is also LUR. Furthermore, % is w (X, ¥)-lower semicontinuous,
since f,,, g, ave such and % is the supremum of g,.

Ieama 11, If X is WOG and ¥ < X* 1-norming, thm them s an
equivalent morm |-, on X which is w(X, Y)-lower semicontinuous and
whose dual morm on X* s rotund.

Proof. We will work on X with the norm |-| introduced in Lemma 6.
Let T be a bounded linear one-to-one w(X*, X)—w(6(I"), (I} con-
tinuous  mapping of X* into ¢(I") (see Lemma 8). Put for w‘eX*

p(a*) = 3o+ Tal,

Inr1 =

where |7 means the Day’s LUR norm on ¢, (") (see e.g. [23]). Denote
by K, the polar of the unit ball of Day’s norm in'l,(I") and by ¢ the ex-
tended-valued Minkowski functional of the w(X, ¥) compact set T"K,
< X. Then for the Fenchel dual function of }¢* in X* we have

(3¢)* (@") = sup (o, ») gq“(m)':sup(supm ) —4q* (@)

ze X >0 gx)=
= sup (sup (2, Ty) —4d) = ﬁup([l'a" le—%¢%) = T a0 .
>0 JeeK)

Now if we put » = inf-convolution of }|-J, i¢*, then 7 is w(X, ¥Y)-lower
semicontinuous since g2 is inf-compact in w(X, ¥) (see [17], p. 22) and
3P is w(X, ¥)lower semicontinuous ([17], p. 23). Furthermore, an
easy calculation shows that 7* = p on X* (see [3], p. 22), so, V7 is the
desired norm on X.

Proof of Theorem 1. We use again an averaging procedure of
E. Asplund ([3], [2]) introduced in the proof of Lemma 11, i.e. in the
duality (X, ¥, for the norms ||, ||/, on X. The fact that the dual
function of % on X from the proof of Lemma 10 is rotund follows from

icm
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the inequalities
fn+1 (1 _|_4:—n0 fn+1
(where the stars mean the dual functions on X*) and from the fact that

gh = 27" |T(a")*+h, on X, where T is a map from Lemma 11 and h,

is a w(X*, X)-lower semicontinuous convex funection on X*. To sketch
the proof of this here, assume it holds for numbers < #. Then

= ((E5+3gm @)))" = (Bf5+3h)+27"H T ()P
== (mf convolutlon( (3FE+4n,) ), 2771 2)) = 70n+1+‘>'" LT (@ P

{we use the notations from the proof of Lemma 10).

gn-l-l

!/;‘:4-1(

V. On heredity of WCG property. First we state the following suf-
ficient property for WOG.

Lmyma 12. If @ Banach space X has o shrinking Markusevié basis,
then. X is WCG-

Proof. Tt is easy to see (cf. [23], [11]) that if {»,} < X, {f.} = X*,
aed is a shrinking M-basis of X with {«,} bounded, then {z,}uU{0}is a
weakly compact set generating X.

Now we state the main résult of this section.

TumornM 2. 4 Banach space X has a shrinking Markudevié basis
if one of the following conditions holds:

(i) X has an equivalent Fréchel smooth norm and X is a subspace
of @ WOG B-space Z;

(il) X* is WOG and X is a subspace of « WOG B-space Z.

Proof. Similariy as in [11] and using Proposition 1 in (i) and Prop-
osition 2 in (ii).

CoroLLARY. 4 Banach space X is WCOG if one of the following condi-
tions holds:

(i) X is an f-space and X is o subspace of @ WCG space;

(i) X is an f-space and the unit ball of X* with w* topology is an
Eberlein compact (for the definition see Section IT);

(i) X* is WOG and the wnit ball of X with w* topology is an Eberlein
CoOmpact.

Proof. It follows from Theorem 1, Lemma 5 and the result of D.
Awnir and J. Tindenstrauss that if K is an Bberlein compact, then C(K)
is ' WoG ([1]).

VI. Long basic sequences and their application to the study of nonseparable
Banach spaces. First we state some definitions.
A long sequence {S,;0< a<< &} of linear projections of a Banach
space X iy called a projectional basis of the type & ([6]) if
(i) 8, =0, 8¢ = identity on X, sup{I8.}; & < &} < o0;
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(i) 8,8; = 88, = 8, if < §;

(iii) for every #eX is the function a—8,# norm continuous on ordi-
nals; '

(iv) dim (S~ 8,) X

Then any system {(e,, f.);

=1 for a<< &

a << £} such that
te X, [foeX¥, f.@)e,= (Sar1— 8w

is said to be a biorthogonal system associated with {8,; a << &}.

We call any system {e,; a << & of the elements of X a basis of X
of the type & if there is a projectional basis {§,; a << £} of X of the type &
such that e,e(8,.;,—8,)X

It is easy to see that a basis {e,; o << £ determines its projectional
basis uniquely: if zesp{e), # = 21 6, K flmte, then S,z = 22 ;-

A system {e,; a << &} iy called a long) basic sequence if it lOI‘lllb a ba-
sis for sp{e,; a<< &} A system of projections {S,; ¢ < & of a w* closed
subspace ¥ of X is-said to be a w* projectional basis of ¥ if (i) and (ii)
of the definition above hold for {§.}, 8, are w*—mw* continuous on ¥
and 8,y is a w* continuous function on ordinals for every fixed ye¥.

Dealing with these notions, we have two definitions of bounded
completeness. First is a classwal one analogous to that for Schauder
bases :

A projectional basis {8,; « < £} of X is called S-boundedly complete
if whenever y < & is a limiting ordinal and {y,; 8 < y}, where Yo = 8
‘for y > a > B, is a norm bounded net, then limy, exists.

Py
The second is that given for Markuievid bases in [18], [16]: A Maxr-
kuXevié hasis {(e,,f,); eeI} of a Banach space X is said to be M-bound-
edly complete if whenever {z,} is a bounded net in X such that limf,(%,)

exists for each o, then there is an #< X such that Tfa(®)

= limf, (x,) for
each ael. 4

A long basic sequence {e,; a << £} is called slwmking (boundedly

complete it {e;;a< & is a shrinking (boundedly complete) bagis of
Sp {Gu! a<< é:}

Bvidently M-basis (e,, f,) of X is M- -boundedly complete if and only
if every bounded subset of X is relatively compact in the w (X, sp{f}
topology. The “only if” part uses Tychonoff’s theorem.

Remarks. 1. It is easy to see that the S-bounded completeness
of a projectional basis {S,; a < £} implies that whenever B is a limiting
ordinal, and {8,;vel} is a net of ordinals B, << p such that hm B, =p,

and {y,} is a bounded net such that g, = 8,9, for v< wel, then {y,}
is a norm convergent net.

icm
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2. Similarly as in [13], if T: XX [, for a w* closed subspace

Y < X* is the quotient map, then 7*: (X/Y,)*~Y is a w* isomorphism

and norm isometry and {S,; ¢ < €: Y- is a w* projectional basis of
Y iff {T*'8, 1"} is a projectional basis of X/T,

Furthermore, analogously to [13], we ca.ll {ea, a<< &}, e,¢X" a long

“w* basic sequence if there is a w* projectional basis {8,; a < 5} of ¥

= w*sp{e,; « < £} such that e,e(S,.,—F8,)X.

To compare the two definitions of bounded completeness we state
the following

ProposrrioN 6. If {8.; a < &} is a projectional basis of & Banach
space X omd {&., f.} 18 dts biorthogonal system, then

If {wy, £} is D -boundedly complete, then {S,; a < & is 8- boundedly
complete,

(i) If Y=5p{f.} = X" is norming on X and {8,; a < &} is S-bound-
edly complete, then (%, fo) 98 M-boundedly complete;

(iii) If {S,,, a << &} s a w* basis of a w* closed subspace ¥ = X*, and
{f.} = X, then §p{f,} is norming on Y.

Proof. (i) Let y < & be a limiting ordinal and {y,; « < y} be a bounded
net such that y, = 8,y, for a < . We are to prove that {y,} is a norm
convergent net. For it observe that if 6 > y, then f;(¥,) = f5(S.¥.) = 0.
If 6 <y, then f,(y,) is equal to some number 1, for a > 4§, so, lim fy(¥,)

ary

exists for any 4 < & Thus, by the M-bounded completeness of {#,;f.},

there is a y<X such that f;(y) =0 for d >y and fy(y) = 4; for < y.
‘We have for every fixed o< y:

Fo(8:9) = Foly) = 2s = F5(¥a)

F5(8.9) =0 = fs(¥a)

Thus 8,y =y, by the totality of {f,} on X. Furthermore, since for 6 >y,
8,y = 8,y by the transfinite induction, we have that

for d<a
and

for 6> a.

lim8,y = 8,y =lLm&8y =y.
a-ry &
Thus hmya = .

(11) ‘%111)[)%@ that the unit ball of X is w(X, ¥) closed (Lemma 6)
where Y = §p{f.}. Let {x;;ieI} e a bounded net in X with lu_:nfa( 3

= ), for a < & We are to prove that there is an 2 X such that f,(®) = 4,
for a< & I‘115L we show by induction on « that th x; equals to some

Y, for any a < f in the w (X, ¥) sense, and f,(y,) = 0 if y > a and f,(y,) |
=1, if y < a. This is true for o = 0,1 and also supposing it for p—1,
it holds for g if B is not limiting. Suppose it holds for a < §, 8 limiting.
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Then the set {S,(z;); a<< B, 4<l} is bounded and since the unit ball of
X is w(X, Y) closed, {y,; «< B} is & bounded net. Now, if f> 6> q,
then

A\

a

FoBuys) =0 =f(y,) for y
and
TA8ays) =T (Ws) = 45 for  y<a<é.

Thus, by the totality of {f,} on X,
Slyd_‘./u for a<(5<ﬁ

Thelefme by the B-bounded completeness of {S,; a< &}, {ya, a<< B}
is norm convergent to some ¥;. Now we observe that if ¢ > g, then

fs(yg) = liﬁ;lf,j(y,,) =0
and if d< B, then
folyg) = ]in}ifd(ya) = lg-
Moreover, if § > 8, then
» fs(8g2;) =0
and if 6 < 8, then
Ly, (S,0;) = limf, (o) = .

Thus Limf;(8,2;) = fs(y,) for all 6, showing that HmSy®; = y, in the

w(X, ¥) sense. Hence the inductive proof is finished. If we take now
a = & and put # = y,, then we obtain

limSew; = lime; =y, =@
1 i

in the w(X, ¥) sense and f (#) = 4, for a < & The proof is thus finished.

(iii) From the definition of the w* basis of ¥ easily follows that if
T: X~ X[Yis the canonical mapping, then {If,, ¢,} is & basis of X|¥
Thus sp {Zf,} = X /¥ and thus 5p {f,} is norming on Y.

In the connection with Proposition 6 let us remark that W, Johnson
proved in [12], p. 173, that a coefficient space of a bmm(led]y comple m
Markufevié basis of X is norming on X.

If {8,} is a countable Schauder basis of X, then its Diorthogonal
coefficients {f,} are norming on X (cf. e.g. [16]). We show it here briefly
“or completeness:

It is known that X can be renormed so that {8,} is orthogonal
(o] = sup IS, 2l). Let ze X, |»| =1 and let &= 0. Choose feX™ with

|fl = f(2) = 1. Then
1 = f() = lim f(8,2) = Hm (P} ) (x)

Weal compact genevating in duality 15

Let » be such that (Pjf)(z) > 1—s. Evidently
Pofesp{f} and [Pifl<|fl =1.

Thus Proposition 6 says that in the separable case is a basis M-bound-
edly complete iff it iy S-boundedly complete (c.f. [12], Theorem II 3.(1).
We will need the following two observations.

Levwma 13, Let {@,; a << & be a linearly independent long sequence.
Define on sp{w,} the projections S,,

Sa(Zzimi) = Zﬂiwi.

<a
Then {m,; a << £} is basic iff
sup {85 a < &} < oo.
Proof. 8,4 is obviously continuous on sp{z,} and thus continuous
on sp{w,} since sup{|S,]; a< & < oco.
LevMMA 14. Let {P,; a < &} be a long sequence of linear projections of
a Banach space X such that
sup{IP,/; a < &} < oo
and
PPy =PyP, =P, if a<p and P,#P,,.
If 0 # @,e(P, ., —P,) X, then {#,; a << £} is a long basic sequence where
{P./Z; a < &} is the associated projectional basis of Z = spf{w,; a<< &}

If moreover the function a—P .z t8 norm continuous on ordinals and

0 % yas('Pa-}-]"_-Pu)*X*:

then {y,; a<< &} 18 @ w* long basic sequence with its biorthbgonal Junctionals

fue(Poyy—P)X and with the associated w* projectional basis {Pi/Y;

ek £ of ¥ = w*sp{y,}. Furthermore

denssp {z,} = denssp Yo} = E.

Proof. Put 8, =.Pa/b]_){:va}. Then for 2= JAmesp{®,} we have
that S,z = 3 Ax; and thus {#,; « < £} is a long basic sequence, according
to Lemma T’Su If moreover the function a—P,% is continuous and y,e
(Pypy—P)* X* we put 8,=P;/Y. Then 8,y is a w* continuous function
on ordinals, S, Y < ¥, sup{|8.; a < & << co. Thus {8,;e< & is a w*
projectional basis of ¥. It follows from P;¥ = ¥ that P, ¥, =« ¥ .
Consider the duality (Z, ¥, where Z= XY, and denote by S the dual
of 8, in Z (we use the w* continuity of Pj). Then if z,e(Sh ,—80Z is
so that #,(y,) = 1, then {(2,,¥.)} is a biorthogonal system and if z,ez,,
Bye X, then {(Pay—Po)%a) Yo}, forms a biorthogonal system. The sta-
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tement on the density of sp{x,} follows from the fact that

z, @ 1 ! @, g 1| =, 1
- > 2 (P, —P, - ) == =
gl |7 2 (P )(w tmpl) 2| |l 2
if a 8.

Remark. A similar approach to that in Lemma 14 is contained in
119]. We will now use the following variant of the result of Johnson and
Rosenthal ([13], Proposition IL.1) which has also a similar proof by using
Proposition 6 with the remark under it. We enclose it: here for the comple-
teness.

PrOPOSITION 7. Assume that {y.; o< & = X* and T: X—X/{y,),
be the quotient map. Then

(@) {yo; @< &} is w* basic iff X[{y.}, has a basis {w,; o << & with
associated biorthogonal fumctionals {w}} such that T*w: =y, a<< £ Thus
if {Ya; a < £} is w* basic, then {y,; a < &} is basic.

{b) The following are equivalent: )

(1) {Ya; @< & ds an 8 (= M here)-boundedly complete long w* basic
séquence; .

(i) {yaj @< & is w* basic and SP{y.} = wsp s

(1)) X/{y.}, has a shrinking basis {w,; a << &} with associated biortho-
gonal functionals {#y} such that T* s =y,.

(€) Yoy a<< &} 45 @ shrinking w* long basic sequence iff X [{y.}, has
an M-boundedly complete basis {m,; a < & with associated biorthogonal
Junctionals {a%} such that T*u} =y,.

Here and also in the sequel the term {y.} is a shrinking w* long basic
sequence means that {y,} is a w* long hasic sequence which is shrinking
a8 a basis of sp{y,} (see (a)). Similarly for the case of bounded complete-
ness.

In the sequel we present some results which are nonseparable analo-
gues o some results of [13] and have nécessarily different proofs. In these
results in [13] is often a typical assumption that some space, say Z, has
separable dual Z*. We consider two generalizations of this assumption
in nonseparable case: Z* is WCG or Z is f. They both coincide in the separ-
able case. Thus our propositions have two alternatives.

PROPOSITION 8. Let X be o WCG Banach space, ¥ < X*, u be the first
ordinal of cardinality densY. Assume that

(i) X* is WOG or

() X has an equivalent Fréchet smooth norm and ¥ is WOG.

Then there is o boundedly complete w* basic long sequence {y,; a < u}
< ¥ {Yo; a << u} may be orthogonal if ¥ is nonseparable.

icm
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Proof. If dens ¥ = Ny, then there is a proposition P: X—+X, |P| =1
such that PX is separable and P*X* > ¥ ([1]). Now we may use Theorem
III. 2 of [13] for PX, ¥ = P*X* = (PX)*, since in both cases densP*X*
=Ny ([15]). If dens ¥ > ¥, let |-| be the norm of X and II']l be an equiv-
alent norm on X such that its dual on X* is LUR (c¢f. [10], Proposition
9 for case (i) and [11], Theovem 1 for cage (ii)). Then in both cases there
is o long sequence of linear projections {Ps; o< a<< pu} of X such that
ol =1Ll =1 for a>w,P;Y <« ¥,Piy =y for ye¥, Pt %P, on
Y and the functions a—+P,», a—P*y are norm continuous for all weX y
ye¥ (by Proposition 3(a), (b)).

I we take 0 # ¥, « (P;,,—P}) ¥, we have a w* basic long sequence
(Lemma 14) which is orthogonal (|P,}< 1) and exactly as in the proof
of Theorem III. 2 of [13] we show that §p{y,} is w* closed: if Yy ew*sp{y.},
then im S,y = y in the w* sense and since ||y|| > IS, ¥ll, we have by the w*

U=t
lower semicontinuity of ||| on X* that lim |9, 4] = |y|| and by the LUR
of -], im |8,y —yll = 0. Now by induction, S,y csp{y,} and the resnlt
follows by using Proposition 7(b).

Remark. Let us observe that from Proposition 8 follows (in its
notation), that ¥ eontains a w* closed subspace of the same density.

Prorosrrion 9 (cf. Theorem IV. 1 of [13]). If X is a WOG Banach
space, then X has & guotient space of the density densX with a projectional
basis. If densX > ¥,, then this projectional basis may be orthogonal.

Proof. If dens X > N,, choose a long sequence of linear projections
{Po; a< & (& iy the first ordinal of cardinality densX constructed by
D. Awmir and Lindenstrauss in [1]). Then we use Lemma 14 and Prop-
osition 7(a).

The following is & nonseparable version of Theorem IIT. 3 of [13].

ProposrrIoN 10. Let X, ¥ be WOG Banach spaces, ¥ = X*. Assume
that Y admits an equivalent Fréchet smooth norm. Denote by & the first ordi-
nab of dens X. Then Y contains a shrinking w* basic long sequenceé {y,; « << &}.
If Y is nonseparable, then {y,; a« < &} may be chosen to be orthogonal. This X
has @ quotient space with an orthogonal M -boundedly complete basis and
Y contains a subspace isomorphic to o second conjugate space.

Proof. If dens ¥ =, we proceed as in the first part of the proof of
Proposition 8. If densY >N, let |-| be the norm on X and ||-|| be an
equivalent Fréchet smooth norm on ¥. By Proposition 3 (a), there is a long
sequence {P,; o < a<< & of linear projections of X such that [Py =
IPL/Y)| =1 for a> w,PiY c ¥,P:, #P* on ¥, a>P.s, a—Py are
continuous on ordinals for all e X, ye ¥. If wetake 0 £ y, ¢ (Ph, , —PH Y,
then {y,; a < &} is a w* basic sequence (Lemma 14), basic on 5p{y,} (Prop-
osition 7(a)). From the orthogonality of {P,} in the F-norm (-] it follows

2 — Studia Mathematica LV.1
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that {y.; « < & is shrinking (cf.e.g. Lemma 3 of [11]). The rest of the
proposition follows from Proposition 7(e) and [12], Theorem IL5.

Before proceeding we will need the following definition (cf. [16], [13]).

DEFINITION. A Banach space X is called somewhat reflewive if any
closed subspace ¥ — X contains a reflexive subspace of the same density.

PROPOSITION 11 (cf. [13], Theorem IV.2). Let X, ¥ < X" be Banach
spaces. Then Y is somewhat reflexive if

1) X, ¥ are WCG which both admit equivalent T'véchet smooth norms, or

(i) X, X* are WOG and Y admits an equivalent Tréchet smooth norm.

Proof. First, let us recall that if X, X* are WCG, then X admits
an equivalent Fréchet smooth norm ([10]). Now let Z « Y. If Z is sepax-
able, we proceed exactly as in the first part of the proof of Proposition
8 and use Theorem IV. 2 of [13]. Suppose densZ > §,. Z is WOG as a sub-
space of WOG space which admits an equivalent Fréchet smooth norm
([11] or Corollary (i) of Theorem 2). According to Proposition 8 there is
boundedly complete orthogonal w* basic long sequence {y,; a<< &} <= Z (&
is the first ordinal of densZ) which is orthogonal also with respect to a Fré-
chet smooth norm on Y. Therefore as in the proof of Proposition 10,
{y.; a << &} is a shrinking basie sequence.

THEEOREM 3. Let X, X* be WCG Banach spaces and let X* admit an
equivalent Fréchet smooth norm. Then X, X* arve somewhat reflemive.

Proof. X* is somewhat reflexive by Proposition 11 (ii). Now let
Y < X. Then ¥ =« X™ and ¥, X* are WOG Banach spaces which admib
equivalent Fréchet smooth norms (for Y this follows from [10] and Corol-
lary (i) of Theorem 2). Hence we may use Proposition 1(i).

COROLLARY. If X*, X** are WOG, then X, X* are somewhat reflemive.

Proof. X is then WCG space by Theorem 4 of [11]. X admits an
equivalent Fréchet smooth norm ([107]).

OoROLLARY. If X*, X* are WOG and densX =N, then X,X",
X* are all homeomorphic to the Hilbert space T,(N). _

Proof. Sinee X, X*, X™ are WOG, densX = dens X" = dens X*"
(Proposition 2.2 of [15]). Furthermore, X, X", X* contain reflexive
subspaces of density character ¥ (X that from X). Further wo use the
following results of C. Bessaga and A. Pelezyiski (ef. [6]): The first says
that all reflexive Banach spaces X with densX =N are homeomorphic
0 1,(X¥), and the second, the well-known Bessaga—Pelezyniski lemmu, says
that if & Banach space X of density character ¥ contains a subspace ho-
meomorphic to 1,(N), then X is homeomorphic to 1, (X).

VII. Appendix. Here we apply the above vesults to some prob-
lems discussed in [107.
Remark. Similarly as in Proposition 3, using Lemma 3 of [11] we
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see that if X is a WOG Banach space which admits an equivalent Fréchet
smooth norm |- and ¥ <« X* iy a WOG Banach space, then there is
a long sequence of linear projections {P,; 0 < a < &}, where & is the fivst
ordinal of densX such that [P, =1 for a> 0,P,P; =P,P, =P, if
a< f, dens P, X = dens(P,X)" < afor a < & P*Y < ¥, and the funetions
=P, a—P.3* are norm continuous on ordinals. (The assumption on
Y to be WCG is necessary — ef. [11].)

From this and the results of [10] follows that Propositions 5, 6, 7 of
[10] remain valid if the assumptions X, X* are WOG are replaced by X
is WOG and admits an equivalent Fréchet smooth norm and ¥ < X*
is a WCG Banach space.

Therefore if we say that a subspace Z = X is a quasicomplement of
asubspace Y it ZOY = X and ZnY = {0}, Proposition 7 of [10] (where
some results of [7] are used) gives:

TuroREM. If X is ¢ WOG Banach space which admits am equivalent
Fréchet smooth norm and ¥ < X* is a WCG subspace of X,* then ¥ has
a w* elosed quasicomplement.

a
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Localisation des sommes de Riesz
sur un groupe de Lie compact

par

JEAN-LOUIS CLERC (Princeton, N.J.)
Al
Résumé. Grice & une étude précise des noyaux des sommes de Riesz, on obtient

des résultats de localisation pour les développements de Peter-Weyl sur un groupe de
Lie compact.

Oe travail est la suite de Particle [3], dont il reprend les notations:
G est un groupe de Lie réel, compact, connexe et simplement connexe
(done semi-simple), de dimension n, et de rang I; si f est une fonetion
sommable sur &, on pose

s = 31 <l+ﬁ,l+ﬁ>)

Aed

dgaxf,

ol 620 et B> 0 (sommes de Riesz d’indice 8). L’opemteur s'inter-
Dréfie comme une convolution avec une fonction centrale s, dont un
développement a été obtenu dans [3], lorsque 6 > (I—1) )2

sp(exp H) = OfmZ(n a, H*FC))}’n/z.pa IH"‘CI)(

lely aeRT

ot #,(¢) = ¢7"J,(g) et J, est la fonction de Bessel d’indice v. On se propose
ici d’améliorer les estimations obtenues précédemment et d’obtenir des
résultats de localisation.

Lemum. Soit 6 > (1—1)/2, et soit & > 0. Il emiste une constante ¢ > 0,
telle que
n-1 n--1

e=|sh(z)| < CR * ¢

-8

veG@ et d(z,e)>
Rappelons que ¢ est un domaine fondamental d’un tore maximal,
centré & P'origine; et soit B, la boule ouverte de centre 0 et de rayon s.

Soit Hye@nCB,. Soit J I’ensemble des racines p0s1t1ves qui prennent en

(*) La série converge absolument pour tout H, et loe membre de droite de 1'éga-~
lite défini a priori pour H régulier se prolonge par continuité.
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