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Making use of the result of Grothendieck mentioned above that for
(DF)-spaces the “probléme des topologies” is seftled in the affirmative,
we get as an immediate consequence of Theorem 3.3 and Lemma 4.7 the
following:

TEROREM 4.8. Let B and T be locally convem spaces of type (DF) and

let o be o Hom-stable ideal which is equivalent to its injective hwll. Then
E®,T is of type co-s if and only if B and I are of type co-of.
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Two weight function norm inequalities
for the Hardy-Littlewood maximal function
and the Hilbert transform

by

BENJAMIN MUCKENHOUPT* and RICHARD L. WHEEDEN*
(New Brunswick, N.J.)

Abstract. Necessary conditions are obtained on non-negative funetions ﬁ(m)
© o0
and V(2) so that [ ITf (@)U (z)ds < O [ 1f@PV (@)dw, where 1<p< oo,
-0 —0o0
T'f (w) denotes either the Hardy-Littlewood maximal funetion or the Hilbert transform
of f and ¢/ iy a constant independent of f. In the case p = 1, the necessary condition

is also shown to boe sufficient; in case p > 1 the necessary conditions are ghown to be
sufficient if varions additional rostrictions are placed on U(x) and V (z) or on flz).

1. Introduction. The first norm inequality of the form

(1.1) [ @P U@dw<0 [If@)PV(2)d,
where ‘
f*(@) = sup %wzf!f(t)ldt

‘i‘s the Hardy-Littlewood maximal function of fand 1 << p << oo, was proved

in [2] with U(®) == V(o) = 1. The first norm inequalities of the form

]

(1.2) [ @ U@do<0 [ f(@)PV(@)da,
where

floy =tim [ W

j(M) W.“ER: o =p|>8 z—y dy

% Supported in part by N. 8. . Grant GP-38540 AMS 1970 Subject Classifi-
cations: Primary 44A10, 26A86.
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is the Hilbert transform of f and 1< p<C o, were proved in [9] for
U@ = Vo) =1 and in [3] for U(n) = Vi = o —l<ae<p—1.
Many results have been proved for both (1.1) and (1.2) with U(@) = V():
a hecessary and sufficient condition for (1.1) with U(#) = V(@) and
1< p< oo appears in [8]; a necessary and suificient condition for (1.2)
with U(#) = V(#) and p =2 was obtained in [4]; a necessary and suf-
ficient condition for (1.2) with U(®) = V(@) and 1< p< oo appears
in [3]. Simlifications of the proofs in [5] and [8] can e found in [1].
Tnterest in inequalities (1.1) and (1.2) stems from the fact that they
imply inequalities of the form

fis.(f, 0P U@do < 0 [1f(@)"V (@)do,

where 8,(f, #) denotes the nth partial sum of an orthogonal expansion
of f. Tnequalities of the form (1.3) imply mean convergence results for
orthogonal expansions. Inequality (1.1) i often useful in estimating
ervor terms and in proving mean summability and almost everywhere
convergence of summability methods for various orthogonal expansions.

TInequalities (1.1) and (1.2) are of interest with U(w) = V(@) for sev-
eral reasons. In the firgt place, for some expansions such as Laguerre
and Hermite expansions for p < 4/3 or p =4, inequalities of the form
(1.3) with U(#) = V() are impossible; see [6]. Another interesting feature
of the general problem of determining pairs of non-negative functions
U(®) and V() for which (1.1) and (1.2) are true is that the results are
very different from the results for U(a) = V(s) and, evidently, much
more difficult. If U(s) = V (o), then the condition

1 1 . ) 21
—_— i ~1f{p=-1) -
(IIi !U(m)dw)(lll 1[ [V (@)] 1490) <,

(1.3)

(1.4)

where I is an arbitrary interval, 1 < p < oo and ¢ is independent of I
is necessary and sufficient for (1.1) and (1.2). If U(w) = V(»), condition
(1.4) is also necessary and sufficient for the two weak type inequalities

(1.5) f U (w)dn < Ca™ f | (@) (27 (o) dao
Ha)>a -0

and

(1.6) i [ U@ < ¢a? [ @)V (@) do
[f@)>a —00

for @ > 0. These results are contained in [1], [5] and [8].
’ If the requirement that U(w) = V() is dropped, then (1.4) is still
a necessary condition for (1.1), (1.2), (1.5) and (1.6); the proof for (1.1)

e ©
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and (1.5) is in [8], and the proof for (1.2) and (1.6) is a corollary of Theorem
3 of this paper. Condition (1.4) is also sufficient for (1.5) as shown in [8].
Condition (1.4) is not sufficient for (1.1), (1.2) or (1.6). For p = 2, a simple .
example of a pair that satisfies (1.4) but not (1.1) consists of the Functions’
U(w) = —aloga on (0, §] and 0 elsewhere and V(#) = #(loga)? on (0, 31
and oo elsewhere. The function f(2) = 1/(wlog®s) on. (0, 3] and 0 elsewhere
makes the right-hand side of (1.1) finite and the left-hand side infinite
for p = 2. For p = 2, a simple example of & pair that satisties (1.4) but not
(1.2) or (L.6) consists of the functions U(w) = o~ '|log 2|~ on (0, }]
and 0 elsewhere and V(#) = 2 '{logz|~*® on (0, 1] and oo elsewhere.

. The function f(@) =1 on (0, 4] and 0 elsewhere clearly violates (1.2)

and (1.6). Also interesting in this case is that by Theorem 7 this pair does
sabisty (1.1). Examples for other values of p, 1 < p < o0, can also be obta-
ined easily. o

Typical of the results contained in this paper is the fact that (1.1)
for 1 << p < co implies the existence of a constant B such that

. U N (2
(l,. l) ( Tfj (l]l T I{)]v«-mll)p (1:7/') ( [I‘l"

00

0

v »-1
[tranoa)” <z,
J

where I is any interval and #; is the center of I. This and related results
for p = 1 and the Hilbert transform ave given in Section 2. In Sections
3 and 4, various theorems are proved in which (1.7) and some additional
conditions on either U and V or on f(#) are assumed in order to prove
(L.1). The theorems are stated for funections with support on [0, co];
this can be easily modified so that the support is any semi-infinite or
finite interval, and by putting two or more such integrals together, results
for functions supported on (—oo, co) can be obtained. The additional
conditions used to prove (1.1) are not necessary conditions, and we con-
jecture that (L.7) implies (1.1) without additional assumptions.

Section 5 containg & similar proof that the necessary conditions deri-
ved in Seetion 2 for (1.2) are also sufficient with some additional assump-
tions. Minally, in Section 6, the necessary condition derived in Section 2
for U and V' which satisty (1.1) or (L.2) with p = 1 is gshown to be suf-
ficient without additional assumptions.

Two theorems from [77 will be needed frequently in Sections 3, 4
and 5 and are quoted here for veference in a modified form. They are
the following. : :

Timsonm A. If 15 p < oo, there is a finite C, independent of f, such
that

f ‘ff(t)dt YU (@) do < cf ()P V (@) deo
0 0 1]
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if and only if there is a finite B, independent of r, such that for » > 0,
oo r Vp—-l ]
[J U@ ao| [f (7 (@)1 Paa]”™ < B.
r T

TusorEM B. If 1 < p < oo, there is o finite C, independent of f, such
that

o0

| [P v@a< o f 1j@P V@i

0

eg

if amd only if there is a finite B, independent of v, such that for v = 0,
r L0 B
[f v as)[f [V (@)]¥Vda|" ™ < B.
0 r

Throughout this paper the convention 0+ co = 0 is used, |I| denotes
the length of the interval I, and C is used to denote constants not necess-
arily the same at each occurrence.

2. Necessity results. This section congists of the proofs of the f(;llowing
four theorems. ‘ ;

TEEOREM 1. Assume that U(x) =0, V(2)=0, 1< p< oo and that
there is a constant C such that

o0 o

(1) [ @PU@d<c [ If@PV(o)d.

Then there is a constant B such that for every interval I

|I|p1 [ . /_ ]1)—1
2.2 ¥ w-1q < B,
22 [ <|1|+|w wxl ] |1,f[ @

where |I| denotes the length of I and %y s the center of I.
TEBOREM 2. Assume that U(®) >0, V(#) =0, 1< p< oo, and that
there is a constant ¢ such that

0o
(2:3) @) U(@)ie< ¢ f f@P V(@
— '
Then there is a constant B such that (2.2) holds for every interval I.
TamorEM 3. Assume that U(x) >0, V(a) 20, 1 < p < oo, and that
there is a constant C' such that for every a > 0

(2.4) f U(z)dw < Ca™" J |f (@) [P V (@) d.

Fx)l>a
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Then there is a constant B such that for every interval T

1 |I|17 -1 [V( ]~1/(i7—1) p—1
| T d Pl NS4\
[llllf @) ”” [Trie— @] <5

—ro

A
)
Tt

where p' = pl(p—

TimoREM 4. Assume that U(w) = 0, V(z) = 0 and either (2.1) or (2.3)
holds with p == 1. Then there is a constant B such that for almost eve'ry i

A Uly)
0.0 ey < BV ().
=0 J, lw——?/|dy\B (@)

It should he noted that since (2.3) implies (2.4), then (2.3) implies
(2.5). The fact that (2.3) implies (2.5) could also be obtained from Theorem
2 by a duality argunment. Thiy duality argument, however, is not partieu-
larly simpler than the proof of Theorem 3, and Theorem 3 is of interest
sinee it suggests what bhe necessary and sufflelent condition for the weak
type inequality (2.4) i

It should also be no‘ned that a simple argument shows that (2.6) is
equivalent to condition (2.2) with p =1 with the usual interpretation
of the L™ norm, ) v

To prove Theorem 1, fix an I and let @ = { [V (z)]"YPVp. 1t Q = 0,

(2.2) follows for any B because of the conventlon 0-00=0.If Q = oo,
[V ()] iy not in I?" on I, where p’ = p/(p—1). Then there is a function
g{®) tham it m L? on I such that g(z)[V(x)]"%? is not integrable on I.
Let f(x (@)[V (#)]"*" on I and 0 elsewhere. Then since the right-hand
side of (2.1) is finite for this f and since f*(#) = oo, it follows from (2.1)
that U(w) == 0 almost everywhere. This implies (2.2). If 0< Q< oo,
leti f(w) = [V (@)]"¥*~Von I and 0 elsewhere. Then f*(#)> (|I| + & — #,)"*Q.
Substituting this into the left-hand side of (2.1) and dividing by @ gives
(2.2).

To prove Theorem 2, again fix an I and let @ = [ [V(2)]" Y@ Yy,

1

IL @ == 0, (2.2) follows ay before, If @ = oo, let J be any subinterval of
I for whwh JIV(@)] "4y = co. Let g(m) be a funection that is in
g

L? and is 0 outside J, but such that ¢(@) V (@)~ is not integrable on J.
Let f(m) = g(@)[V(®)]~"? on J and 0 elsewhere. Then the right-hand
side of (2.3) v finite for this f and | f(w)| = oo for @ not in J. Therefore,
U(w) == 0 almost everywhere outside J. Since repeated bisection of I
produces s that arve arbitrarily short, U(w) = 0 almost everywhere in
(=00, o0) und (2.2) follows.
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If 0< Q< oo, let I =[a,a+h] and choose 7> 0 so that

a+r
[ 7@ evae =@f2.

Now let f(z) = [V(2)]"V®~" on [a, a ++] and 0 elsewhere. Then for
2> a7, ]_f o) = (@ —a;| + |I])7" @/2. Using this fact in (2.3) and div-
iding by @ then shows that

;o Ua)de
@1 f (II|+(1m) g &S0
Similarly, by taking f(@) = [V (2)]"%*~Y on [a -7, a--1), it follows that

a-+r

2.8 — PP (]
(2:8) (IIH-M @;)? 7 ¢ 0.

Adding (2.5) and (2.6) proves (2.2).
To prove Theorem 3, fix an I = [a, a-h], let

V(2 ]A1/(11~1) 0
K@) = IR = C(2)d
c@ (I + lo—a,)? and @ ;!o £ (o) dw

It @ =0, (2.4) follows from the convention 0: co = 0. If 0< @ < co,
choose r so that [ K () dy = @Q/2 and define f(@) = [V (@) (| — @] -+ |[])]~ Y@~

on [, oo) and 0 elsewhere. Now if @ is in I n(—oco, #] and ¢ is in [r, o),
then 0 < t—w < [t—ay]+ |8, — 0| < |t — 2, +|I]. Congequently, if & is in
Iﬁ( — o0, 7']7

)=J{~%—dt>!1f(t)dt f——Q/Z-

Using this. fact in (2.4) with 4= @/2 shows that

(2.9) [ Uwaw< 0(@J2)~?.
(00,11

A similar argument shows that

(2.10) [ U@ oQ2y-e,

[r,00)nI

Adding (2.9) and (2.10) gives (2.5); this completes the proof if 0 << @ < oo,

icm
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If @ = oo, let ¥, () = 1/n+V (#). Then (2.4) is true with the same

ant i Vs 1 , . ® V(e oD
sonstant if V' iy replac . n
const placed by V. Since —-ofo T dw < oo,
it follows from the last paragraph that (2.5) helds if V is replaced
by V, and the constant does not depend on n. Then letting % —oo and
applying the monotone convergence theorem shows that (2.5) is true
and completes the proof of Theorem 3. This proof for the case @ = oo
is due to D. Kurts.

To prove Theorem 4, let I be an interval with center @;, let a =

ess inf V(y) and, given &> 0, let ¥ be the subset of I where V(»)
mI
< a+ e et f(») equad | B~ leeh the characteristic function of B. For y

1101) in I, both [f(y)| and f*(y) are bounded below by (le;—y|-+ 1IN
g0 the hypothesix of ’[‘heowm 4 shows that

g U(y)

) g1 ¥ < ff s oo

Since & was :mrbli;ra.ry, it follows that

f U(‘_)iy__ < O essinf V(y).

2.11
S o=yl +11 = Ty

yer
Now let I == [@~—h, # 7] and take the limit of both sides of (2.11)

as h->0%, The left-hand sidle converges to [ U(y)le—y|~ dy by the mono-

o
tone convergence theorem. The proof of Theorem 4 can then be completed
by showing that for almost every o
(2.12) lim [essinf V(y)] < Vi(®).
hs0t e—ylsh
If (2.12) failed on a set of positive measure, then there would be a set
D -of positive measure and rationals » and s such that r < s and, for # in

D, V(w)< r and lim [essint V(y)]1> s. Let # be a point of density of
Resd7F ey sl
D. Then every interval about 2 containg a set of positive measure where

V(w) < r; therefore, for every h> 0, essinf V(y) <. Since z is in D,
however, lo-wi<h

lim [essinf V(y)]> ¢ > r;

T gyl
this contradiction proves (2.12) add completes the proof of Theorem 4.

3. Maximal function sufficiency theorems. The following theorems
are typical of the sufficiency theorems of this paper. Variations in the
hypothesis U (w) << 4V (y) for o/4 <y < 4o are discussed in Section 4 as
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are comments about the applicability to intervals other than [0, co).
Theorem 5 is the basic one; Theorem. 6 is useful when combining inter-
vals on which different sufficient conditions ave satisfied. An interesting
feature of Theorem 6 is that it requires only the necessary condition
derived in Section 2 as an hypothegis. This section consists primarily
of the proof of Theorem 5 ; the proof of Theorem 6 is gimilar and ix sketiched
at the end of the section.
THEOREM 5. Suppose that U(x) = 0, V() 2 0, 1< p < oo, f(w)

for << 0 and there ewists a constant A such that U(w) < AV (y) /01
o<y <dw and 2> 0. Assume also. that for every interval I < [0, o)

L MIPT U(e )d”)(i_ o .,_]‘,(1,__1)‘,)7‘ i
(31 U T+ jo—a,ly m-f (Vo™ da) < B,

where oy denotes the center of I and B is a constant independent of I. Then
there is a constant O, independent of f, such thet .

oo 00

(3:2) [ @Y U(@)dn< C [ 1f(@)V(a)do.

0 .0

THEOREM 6. Suppose that U(w)= 0, V(#) 20, 1< p < co, fo) =
for @ < 0 and there ewists a constant B such that

[
&2 U (lll+la;~—a:z!)”] [TITJ Vi) s

for all subintervals I of [0 co). Then there is o constant O, independent of
[y such that

0 ©
(3.4) J I @U@ <¢ [ 1f@)P V(o).

To prove Theorem 5, let y; denote the characteristic function of the
interval I. Then the left-hand side of (3.2) is bounded by 3” times the
sum oi

0 on-tl
(5.3) > [ @ zua @) 0y s,
N -0 21L
, &,
(3.6) 2 [ [F @ gpn-sgnin (@)]? U (@) do
and . "bw " .
o gn--1
(8.7 2 I 1(7(@) ggamvs o (@) P12 U () .
E N=—00 2%
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The proof of Theorem 5 will be completed by showing that (3.5),
(3.6) and (3.7) are bounded by the right-hand side of (3.2).
Tirgt, since 27 iy less than the length of any interval about an @in
n—1
[g", 2"*'] for which the integral of fyg, -1y i3 mot 0 and since. f |f(5)| %

is an upper bound for the absolute value of any integral of fl[o g1y, 1t
follows that the right-hand side of (3.5) is bounded by

o o1

oM | 1
|21~" f(t)[dt]” U(2)do.
0

s =00 gl
This in turn is bounded by a constant times

00 gt

oo >[5 flf wia] v = [ [ yona) L0

w00 gl

Now let » be any positive number and take I = [0, r] in hypothesis (3.1).
It i’ollowa that

[ f —%%”fl dm] [ f [V(m)]-l/(7'~1idw]p"1< B.

By Theorem A, (3.8) is bounded by the right-hand side of (3.2). This
completes the proof for (3.5).
To estimate (3.6), let U, be the essential supremum of U(x) on

"[2*, 2"1]. Then (3.6) is bounded by

ant1

(3.9) Z U, f[ @) 1,043 (2)) ] P dar.

N 7= =00

By the unweighted norm theorem for the maximal function, [11], Vol.
I, p. 82, (3.9) is bounded by & constant times

00 g2
(3.10) > [ U@l
P = TQ zn-‘
The bhypothesis that U(e)< BV(y) for sfd<y <o implies that

U, < BV (w) for 2" < o< 2", This completeﬁ the proof that (3.6) is

bounded by the right-hand side of (3.2). I
To estimate (3.7), it will first be shown that if o is in [2", 2 1, then

ok+1
(8.11) [£(@) gan-r2,0 (@) < 4&2&2"1{ f@ae.

6 ~— Studia Mathematica LV.3
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If the right-hand side of (3.11) is infinite, the inequality iy trivial.
T the right-hand side is finite, eall its value 48. Then

ok+1

(3.12) [ 1f@lae< 2
2k

for k> m-+-2. Given y > 22, let j be the integer such that 27 < y < 2941,
Then if & is in [27, 2"'].

o1
e 1
J If@ < ST ontl L

9n+2 ke=n-2 gl

(3.13) IF(8)ldt.

y—a

Applying (3.12) to the right-hand side of (3.13) shows that the
right-hand side of (3.13) is bounded by 48. Inequality (3.11) follows
immediately from this.

Now (8.11) shows that (3.7) is bounded by a constant times

0 gnt1 ak+1

> [supz—kkf lf(t)[dt]’]U(m)dm.

n=—co gn kzn 42

(3.14)

Since the inner expression in (3.14) does not depend on @,(3.14) iy bounded
by

0 ok+-1 o1
(3.15) sup [27F [ (f@)at]” [ U(w)dw.
n=—oo BZNA-2 ok on
. :
Now replace sup by Y and reverse the order of summation; this shows
N kzn+t2 k=n-+2

that (3.15) is bounded by

) k—2 ok+1 on+1
(8.16) >y [2-'cf if(t)mt]"f U(a)do.
k=—00 n=—co ok o

Performing the inner sumwmation shows that (3.16) is bounded by

00 gl 1 ot~
(3.17) DX 2~kp[f 1f(t)|ou]” fl U(w)do.
k=—00 ok 0

Holder’s inequality shows that (3.17) is bounded by

]S' [271 lFoe V(t)dt] [2ka [V(t)]—l/m—ndt]ﬂ‘l [zjfl o-kp U(w)dm];
=00 gk ok [

special arguments show that (3.17) is bounded by this even it V(@) equals
0 or oo on a set of positive measure.

icm
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With I taken to be [2%, 2¥*17in (3.1), it is immediate that the product
of the last two integrals is bounded by a constant independent of & and f.

. The whole expression then is clearly bounded by the right-hand side of

(8.2). This completes the proof of Theorem 5.

Theorem 6 is proved by first observing that the left-hand side of
(3.4) is bounded by 2% times the sum of )

0 -
C(3.18) 2 [ @) g am (@) U ) de
N0 gn 1
and
) o0 —o
(3.19) I (@) 20 00 @) P U (@) .

=00 _on+tl

With the same procedure as that used on (3.5), (3.18) can easily be shown
to be bounded by a constant times

x

[ [ 1rana]'a> (o),
0 .

0

and this is clearly bounded by the right-hand side of (3.4) by use of
Theorem A. Similarly, (3.19) is treated in the same way that (3.7) was;
Jo-+1
(F (@) om0 ()" Is Dounded by & constant times supz Jf@la it —2r < o
Jezzn gk
£ —2% and (3.19) is bounded by a constant tiines (3.14) with U(=»)
replaced by U(—w). The rest of the estimation is the same as that of
(3.14) except that U(w) is replaced throughout by U(— ).

4. Variations of the sufficiency theorem. Various versions of Theorems
6 and 6 can be proved; some follow directly from Theorems 5 and 6 and
one is based on different principles. The principal variations are given
in Theorem 7.

Trmonsm 7. Suppose that U(w) 2= 0, V()2 0, 1< p< oo, fl) =0
for << 0 and for every interval I < (— oo, oo)
[ f-" "1 U (@) do ][ [ v aea ]p“1< B

el S el o 7
L, (T te—ag)” 11T o

where B is independent of I and o, denotes the center of I. Suppose in addition
that one of the following holds:

() There emists A > 0 such that U(y)< AU (w) and V(y) < AV (2)
for o<y <20 and > 0. -

(1)
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(b) There emists A > 0 such that U(y) > AU (@) and V(y) = AV () for
2 <y < 20 and o> 0.

(¢) There emists A>0 and d>1 such that U(s) < AV (y) for m/d
<y<ds and x> 0.

(@) f(@) 4s monotone on [0, co).

Then there is a constant-C, independent of f, such that

(4.2) [ @PU@da<0[ If@IV (@)do.
—00 0 '

By translation and truncation or splicing, a version of thiy theorem
can be proved in which the set where f(z) # 0 is any interval. Further-
moie, if a finite number of intervals can be found such that on each one
an appropriate version of one of the conditions (a)—(d) is true, then a norm
inequality like (4.2) also follows. Such results are routine variations of
Theorem 7 and will not be discussed further here. It should be noted
that condition (a) includes the case of both U and V being monotone
decreasing; condition (b) includes the case of both U and V being mono-
tone increasing. Note also that parts (a) and (b) with the 2 replaced by
another constant greater than 1 are equivalent to the stated versions,
while condition (c) for a given d does not imply condition (¢) for a larger d.

To prove Theorem 7 with assumption (a), fix an #> 0 and observe
that by condition (a), ¥ (4m) < A*V (y) for w/4 <y < 4a. Because of this
and Theorems 5 and 6, (4.2) will follow by showing that there is a constant
0, independent of @, such that U(w) < OV (4z). Now, taking I = [4a, 8]
in (4.1) and reducing the interval of integration in the first integral shows

that
fuwati[1 1 i
| [ S5 [ rwnroa]” <z,
/2 4

Condition (a) implies that V(t)<< AV (4w) for do<t< 8z and U(Y)
> U(w)/4 for 22 <t< o Using these facts in (4.3) shows that
[w U(x)

S i |[LAT = ep < B,

(4.3)

(4.4)

and this easily reduces to the inequality U(x) < CV (4a).

The proof of Theorem 7 with assumption (b) iy similar to the proof
given above for assumption (a). In this case it is sufficient to prove that
U(x) < OV (0/4), and this is done by taking I = [#/8, #/4] in (4.1) and
using assumption (b). .
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) Theorem 7 with assumption (¢) follows from T' i
fma.tmp »of the proof of Theorem 5. The modiﬁedh;?;g;ni: 3111;1 :;rﬁf o
the, original proof of Theorem 5 except that the decomposition'in 3 !SalS
(3.6) and (3.7) is done with 2 replaced by @, and 2 is replaced b( . 1)27
in appropriate places thereafter. , " replaced by @

'(‘Do prove Tl]e?reln 7 with condiﬁion (d), write f as the sum of its
1lj)osﬂnve arnd ?aegsutlve parts. Bach part is monotone and it is sufficient
t]c;elgz})ve the theorem for each part separately. Without loss of generality

fore, assume that 2 i ,
, @ i wme that f(a) = 0 and monotone. If Sf(x) is decreasing, then

* _ 1 g
T (@) = - Dj S(#)dt and (4.2) follows immediately from Theorem A and

;fhef;ien‘; ﬁ If f(@) is increasing, then (4.2) is easily seen to be implied
by the following lemma, which implies that either the left- 51
(4.2) is 0" or the right-hand side is oo. Frirhand side of

B :;J]D]V'[‘MA.’ If U(kw) 20, V(#)20, 1<p< co and (4.1) holds with
independent of I for every I < [0, o), then either U(x) = 0 almost every-

P . *
where in (— o0, co) or [V (@)dw = oo for all # > 0.
r
To prove the lemma, assume that U(®)> 0 on a set of positive

AL ETTT T " : p
measure. Given » > 0, choose an % >'r such that f U@)de>0.IE n>0

and I == [2"h, 2" k], then (4.1) implies that -

h
L 1
2 ]
By Holder’s inequality, ‘
1 -1 1 v
[ﬁ[f v <[ If [7 )]s

Using (4.6) in (4.5) then implies that

(4.5)

-1

(4.6)

a1,

1 h
5 [ U(2)dw.
—h

Addingt.}heﬂe inequalities for n ==0,1,2,... then proves that ?V(m)dw
= oo, Sinee &> r, the conclusion of the lemma follows. B

V() de 3=
2hy,

. 5. Hilbert transform sufficiency results. The following will be proved
in this section.

Tuvorem 8. Theorems 5, 6 and parts (a), (b) and (¢) of Theorem T
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remain true with f* replaced by | f | provided that it is also assumed that there
is a constant D such that

1 o I'p _1[V ]—1/(21 1) ]p-1
— d f ~ di <D
(5 [m fU(“) ”’][ (Ti+lo—e =
where p’ [(p—1) and w; denotes the center of the imterval I. Condition

(b.1) is to be assumed for all I < [0, co) in the case of Theorem b, all
I (—o0, 0] in the case of Theorem 6 and all I = (— o0, o0) in the case of
Theorem 7.

In the proof of this modification of Theorem 5, the analogues of
(3.5) and (3.6) are treated in the same way that they were in the proof
of Theorem 5; the unweighted norm theorem for the Hilbert transform
[11], Vol II, p. 256, is used instead of the norm theorem for the maximal
function. The analogue of (3.7) is

oo gnetl

D (@ g, (@)

N=—00 gN

[P U

o) dw.

This is bounded by a constant times

© i

[f\_gi)lat]n oo - [[ 11

) is bounded by j |f(#)[? T () dz provided that there
0

] U(xydw.

By Theorem B, (5.2

is a constant ¢ such that for » > 0
! r ©
[ J U(m)dw][ [ [mﬂV(m)]-1/<ﬁ—1>dm]”“<0.
. 0 N o

This, however, follows easily from . (5.1) by taking I =110, 7]

The rest of Theorem 8 iy proved in the same way that the original
versions were proved.

The same procedures can be used to show that Theorem 8 iy valid
for the maximal Hilbert transform

sup

a0

jx—~t|>=e

The analogues of (3.5) and (3.7) have the same estimates as the correspond-
ing parts of Theorem 8. The analogue of (3.6) is treated by the unweighted
norm theorem for the maximal Hilbert transform, Theorem 4, p. 42,
of [10].
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6. Sufficiency for p = 1. In this case it iy edsy to show that the
necessary condition obtained in Theorem 4 is also ﬂufﬁc]ent The result
is the. following.

- THROREM 9. Asswme that U{w) = 0 0" and that th‘ere s @ co"nk-v

v, V(x) =
stant B such that for almost every @ ’

(6.1) f—%%?-lf < BV( )
Then ) "
fwf*(m) U(o)de < B fm f ()| V () dee
,“"‘l - -
f If(@)| U(e)de < B f (@)l V (o) de.

To prove this, observe first that by their definitions, f*(#) and | f(m)

: 7 d;
are both bounded above by f J%ﬂ% It is sufficient, therefore, to
—~00 .
prove that
00 [(IJ ]
f ( lw»~1/| )U(w)dw<B [ 7@ 7 (@)t

- OO -0
This follows trivially by using Fubini’s theorem on the left-hand side,
and then using (6.1).
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All separable Bamach spaces admit for every &> 0 fundamental total
and bounded by L -z biorthogonal sequences

by
A. PEECZYNSKI (Warszawa)

Abstract. It is proved that in every infinite dimensional Banach space X for
every &> 0 there exists a biorthogonal sequence (x,, z)) such that (i) linear combi--
nations of the a,'s are dense in X, (ii) if #eX and aj;(z) = 0 for all n, then z = 0,
(i) flogll okl < 1+ ¢ for all o

The proof bases upon the following result due to Milman:

(M) If IV is a finite dimensional subspace of an infinite dimensional Banach space
X, then, for every e > 0, there exists a subspace F of X with dim F> e~ such that

lle - fil > (1 — &) max (liell, If1)
A proof of (M) is included.

Jor every e in B and f in F.

Introduction. It is known (ef., e.g. [1], p. 238 or [15]) that if X is
a finite dimensional Banach space (say, dimX = m), then X admits
a Diorthogonal sequence (w,, #3)™., with |,/ =1 for n =1, ..., m.
In the present paper we improve results of [3] and [11]. We establish
the following. .

TurOREM 1. Let X be an infinite dimensional separable Banach space.
Then, for every e > 0, there emists in X a fundamental total and bounded
by 1+¢ biorthogonal sequence. ) )

Recall that a sequence (e,, ey), where e, are elements of X and ¢ are
elements of X*—the dual of X, is Dbiorthogonal if e)(e,) = o7 for
nym = 1,2,..., s total if, for every x¢X, the condition e (@) = 0 for
every m =1,2, ... implies @ = 0, is fundamental if, for every a"<X",
the condition @*(e,) = 0 for every n = 1,2, ... implies #* = 0, is bounded
Dy a ¢z Lt (e, lenll < ¢ for every n =1,2,...

The paper consists of two sections. Theorem 1 is proved in the first
section. The proof bases on the following result due to Dvoretzky [5]
and Milman [10], Theorem 5.8: ‘ ‘

(D-M). Given 8 > 0 and positive integers n, m, N. There emisis & posi-
tive integer K = I (n, m, N, 8) such that if ¥ is a Banach space of dimen-
sion. greater than I, then, for every n-dimensional lincar subspace B of Y,
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