

B. Muckenhoupt and R. L. Wheeden

7] - Hardy's inequality with weights, Studia Math. 44 (1972), pp. 31-38.

294

Math. Soc. 165 (1972), pp. 207-226.

[9] M. Riesz, Sur les fonctions conjuguées, Mat. Zeit. 27 (1927), pp. 218-244.

[10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton 1970.

[11] A. Zygmund, Trigonometric series, Vols. I, II, Second Edition, Cambridge University Press, New York 1959.

Received July 18, 1974

(867)

STUDIA MATHEMATICA, T. LV. (1976)

All separable Banach spaces admit for every $\varepsilon>0$ fundamental total and bounded by $1+\varepsilon$ biorthogonal sequences

bv

A. PEŁCZYŃSKI (Warszawa)

Abstract. It is proved that in every infinite dimensional Banach space X for every $\varepsilon > 0$ there exists a biorthogonal sequence (x_n, x_n^*) such that (i) linear combinations of the x_n 's are dense in X, (ii) if $x \in X$ and $x_n^*(x) = 0$ for all n, then x = 0, (iii) $||x_n|| ||x_n^*|| < 1 + \varepsilon$ for all n.

The proof bases upon the following result due to Milman:

(M) If E is a finite dimensional subspace of an infinite dimensional Banach space X, then, for every $\varepsilon > 0$, there exists a subspace F of X with dim $F > \varepsilon^{-1}$ such that

$$||e+f|| > (1-\varepsilon) \max(||e||, ||f||)$$
 for every e in E and f in F .

A proof of (M) is included.

Introduction. It is known (cf., e.g. [1], p. 238 or [15]) that if X is a finite dimensional Banach space (say, $\dim X = m$), then X admits a biorthogonal sequence $(x_n, x_n^*)_{n=1}^m$ with $||x_n|| \cdot ||x_n^*|| = 1$ for $n = 1, \ldots, m$. In the present paper we improve results of [3] and [11]. We establish the following.

THEOREM 1. Let X be an infinite dimensional separable Banach space. Then, for every $\varepsilon > 0$, there exists in X a fundamental total and bounded by $1+\varepsilon$ biorthogonal sequence.

Recall that a sequence (e_n, e_n^*) , where e_n are elements of X and e_n^* are elements of X^* —the dual of X, is biorthogonal if $e_n^*(e_m) = \delta_n^m$ for $n, m = 1, 2, \ldots$, is total if, for every $x \in X$, the condition $e_n^*(x) = 0$ for every $n = 1, 2, \ldots$ implies x = 0, is fundamental if, for every $x^* \in X^*$, the condition $x^*(e_n) = 0$ for every $n = 1, 2, \ldots$ implies $x^* = 0$, is bounded by a $c \ge 1$ if $\|e_n\| \cdot \|e_n^*\| \le c$ for every $n = 1, 2, \ldots$

The paper consists of two sections. Theorem 1 is proved in the first section. The proof bases on the following result due to Dvoretzky [5] and Milman [10], Theorem 5.8:

(D-M). Given $\delta > 0$ and positive integers n, m, N. There exists a positive integer $K = K(n, m, N, \delta)$ such that if Y is a Banach space of dimension greater than K, then, for every n-dimensional linear subspace E of Y,

and for every linear subspace Y1 of Y of codimension m, there exists a linear subspace F of Y such that

(i) $\dim F = N, F \subset Y_1, F \cap E = \{0\},\$

296

(ii) if G = E + F, the direct sum of subspaces E and F, then

$$\max(\|P\|, \|I_G - P\|) < 1 + \delta,$$

where $P:G \xrightarrow{\text{onto}} F$ is the projection with $\ker P = E$,

(iii) there exists an isomorphism $T: l_N^2 \xrightarrow{\text{onto}} F$ such that

$$\max(||T||, ||T^{-1}||) < 1 + \delta.$$

Here by I_G we denote the identity operator on G and by l_N^2 the Hilbert space of dimension N.

The second section of the paper contains a proof of (D-M). We concentrate ourselves on the case of complex Banach spaces which is not treated by Milman [8], [10].

Acknowledgement. The author would like to express his gratitude to Dr Tadeusz Figiel for valuable suggestions concerning the second section of the paper.

1. Proof of Theorem 1. Since X is separable, there exist sequences (x_i) of elements of X and (x_i^*) of elements of X* such that

(1) if
$$x \in X$$
 and $x_j^*(x) = 0$ for all j , then $x = 0$, if $x^* \in X^*$ and $x^*(x_j) = 0$ for all j , then $x^* = 0$.

After fixing such sequences (x_i) and (x_i^*) and ε with $0 < \varepsilon < 1$ we define inductively a sequence $(e_m)_{m\geqslant 0}$ of elements of X, a sequence $(e_m^*)_{m\geqslant 0}$ of elements of X^* and an increasing sequence $(n_m)_{m\geqslant 0}$ of the indices so that

- (2) the sequence $(e_1, e_2, \ldots, e_{n_o}; e_1^*, e_2^*, \ldots, e_{n_o}^*)$ is biorthogonal for $s = 1, 2, \dots$
- $||e_i|| \cdot ||e_i^*|| < 1 + \varepsilon$ for $1 \le j \le n_s$ and for $s = 1, 2, \ldots$
- $\operatorname{span}(e_j)_{j \leq n_{2q-1}} \supset \operatorname{span}(x_p)_{p \leq q} \text{ for } q = 1, 2, ...,$
- $\operatorname{span}(e_j^*)_{j \leq n_{2q}} \supset \operatorname{span}(x_p^*)_{p \leq q} \text{ for } q = 1, 2, \dots$

(By span $(a_i)_{i \le k}$ we denote the smallest linear subspace spanned by the vectors a_1, a_2, \ldots, a_k .)

We put $e_0 = 0$, $e_0^* = 0$ and $n_0 = 0$. Assume that, for some $t \ge 0$, elements $e_0, e_1, \ldots, e_{n_t}$, functionals $e_0^*, e_1^*, \ldots, e_{n_t}^*$ and indices n_0, n_1, \ldots ..., n_t have been defined to satisfy conditions (2)-(5) for all $s \leq t$. We shall define the next index n_{t+1} , the elements e_t and the functionals e_t^* for $n_t < j \le n_{t+1}$. We consider separately two cases.

t+1=2q-1 for some q=1,2,... First using the standard Schmidt biorthogonalization procedure and the inductive hypothesis, we pick a $y \in X$ and $y^* \in X^*$ so that

(6)
$$\operatorname{span}(e_1, e_2, ..., e_{n_l}, y) \supset \operatorname{span}(x_p)_{1 \le p \le q}$$

and

the sequence $(e_1, e_2, ..., e_n, y; e_1^*, e_2^*, ..., e_n^*, y^*)$ is biorthogonal. Next we pick an integer $r \ge 1$ so that

(8)
$$2^{-r/2}(\|y\| + \|y^*\|) < \varepsilon/4$$

and we put $n_{t+1} = n_t + 2^r$. Now applying (D-M) we pick, for Y = X, $N = 2^r - 1$, $E = \text{span}(e_1, e_2, ..., e_{n_i}, y)$, $\delta = \varepsilon/4$, $Y_1 = \text{ker } y^* \cap \bigcap \text{ker } e_j^*$, a linear subspace F of X which satisfies conditions (i)-(iii). Let $(v_i)_{1 \le i \le N}$ denote the unit vector basis of l_N^2 and let $(v_j^*)_{1 \leqslant j \leqslant N}$ denote the coordinate functionals on l_N^2 . Let us set $f_i = T(v_i)$ and $f_i^* = (T^{-1})^*(v_i^*)$ for $1 \le j \le N$. (By S^* we denote the adjoint of a linear operator S.) Furthermore, let $(w_{i,i}^r)_{1 \le i, i \le 2^r}$ be the $2^r \times 2^r$ Walsh orthogonal matrix, i.e. $w_{i,i}^r$ $=2^{-r/2}w_i(2^{-r-1}(2j-1)),$ where $(w_i)_{1\leq i<\infty}$ denotes the Walsh orthonormal system (cf. [7], Kapitel IV, § 6). For $i = 1, 2, ..., 2^r$ we put

$$e_{n_l+i} = w_{i,1}^r y + \sum_{j=2}^{2^r} w_{i,j}^r f_{j-1},$$

and we define $e_{n_l+i}^* \in X^*$ to be any norm preserving extension of the linear functional g_i^* defined on G = E + F by

$$g_i^* = w_{i,1}^r y_G^* + \sum_{j=2}^{2^r} w_{i,j}^r P^*(f_{j-1}^*),$$

where y_G^* denotes the restriction of y^* to G.

To complete the induction in case 1° it remains to verify that the sequences $(e_j)_{0 \leqslant j \leqslant n_{t+1}}$ and $(e_j^*)_{1 \leqslant j \leqslant n_{t+1}}$ satisfy conditions (2)–(5).

By the inductive hypothesis, $e_i^*(e_i) = \delta_i^k$ for $i, k \leq n_i$. If $i \leq n_i$ and $n_t < k \leqslant n_{t+1}$, then $e_t^*(e_k) = 0$ because $e_i^*(y) = 0$ (by (7)) and for $1 \leqslant j \leqslant N$, $e_i^*(f_i) = 0$ (because $f_i \in F \subset \ker e_i^*$). If $n_i < i \leqslant n_{i+1}$ and $k \leqslant n_i$, then $e_t^*(e_k) = g_{t-n,t}^*(e_k) = 0$ because $g^*(e_k) = 0$ (by (7)) and for $1 \leqslant j \leqslant N$, $P^*(f_j^*)(e_k) = f_j^*(P(e_k)) = 0 \text{ (because } e_k \epsilon E = \ker P). \text{ If } n_t < i, k \leqslant n_{t+1},$ then $e_i^*(e_k) = g_{i-n_i}^*(e_k) = \delta_i^k$ because the sequence

$$(y, f_1, f_2, \ldots, f_N; y_G^*, P^*(f_1^*), P^*(f_2^*), \ldots, P^*(f_N^*))$$

is biorthogonal and the matrix $(w_{i,j}^r)_{1\leqslant i,j\leqslant 2^r}$ is orthogonal. This proves (2)

To check (3) observe that $|w_{i,j}^r|=2^{-r/2}$ for $i,j=1,2,\ldots,2^r$. Thus, by (8),

$$\begin{split} \|e_{n_{\ell}+i}\| & \leqslant \|y\|2^{-r/2} + \Big\| T \Big(\sum_{j=2}^{2^r} w_{i,j}^r v_{j-1} \Big) \Big\| < \varepsilon/4 + \|T\| (1-2^{-r})^{1/2} \\ & < \varepsilon/4 + 1 + \varepsilon/4 < 1 + \varepsilon \,. \end{split}$$

Similarly,

$$\begin{split} \|e_{n_{t}+i}^{*}\| &= \|g_{i}^{*}\| \leqslant \|y^{*}\|2^{-r/2} + \|P^{*}\| \|(T^{-1})^{*}\| \cdot \left\| \sum_{j=2}^{2^{r}} w_{i,j}^{r} v_{j-1}^{*} \right\| \\ &< \varepsilon/4 + (1+\varepsilon/4)^{2} < 1 + \varepsilon. \end{split}$$

The above inequalities together with the inductive hypothesis prove (3). Finally, since the matrix $(w_{i,j}^r)_{1 \leq i,j \leq 2^r}$ is invertible and since the elements y, f_1, f_2, \ldots, f_N are linearly independent, we infer that

$$\mathrm{span}(y, f_1, f_2, \ldots, f_N) = \mathrm{span}(e_{n_{\ell+1}}, e_{n_{\ell+2}}, \ldots, e_{n_{\ell+1}}).$$

Hence, remembering that t+1=2q-1, we get, by (6),

$$\operatorname{span}(e_j)_{1\leqslant j\leqslant n_{2q-1}}\supset \operatorname{span}(x_p)_{1\leqslant p\leqslant q}.$$

This proves (4) for t+1=2q-1. Condition (5) for t+1=2q-1 follows directly from the inductive hypothesis.

2° t+1=2q for some $q=1,2,\ldots$ Similarly as in case 1°, we first pick $y\in X$ and $y^*\in X^*$ so that

(6*)
$$\mathrm{span}(e_1^*,\,e_2^*,\,\ldots,\,e_{n_l}^*,\,y^*) = \mathrm{span}(x_p^*)_{1\leqslant p\leqslant q}$$
 and

(7*) the sequence $(e_1, e_2, ..., e_{n_t}, y; e_1^*, e_2^*, ..., e_{n_t}^*, y^*)$ is biorthogonal.

Next we put $n_{t+1}=n_t+2^r$, where $r\geqslant 1$ is an integer satisfying (8). Now, by (D-M), we pick for $Y=X^*$, $N=2^r-1$, $E=\mathrm{span}\,(e_1^*,e_2^*,\ldots,e_{n_t}^*,y^*)$, $Y_1=\ker y\cap\bigcap_{1\leqslant j\leqslant n_t}\ker e_j$ (where $\ker x=\{x^*\epsilon X^*\colon x^*(x)=0\}$) and $\delta=\epsilon/4$ a linear subspace F of X^* which satisfies conditions (i)-(iii). Let us set, as in case 1° , $T(v_j)=f_j\epsilon F\subset X^*$ and $(T^{-1})^*(v_j^*)=f_j^*\epsilon F^{**}$ for $j=1,2,\ldots,N$ and define for $i=1,2,\ldots,2^r$ the functionals $e_{n_t+i}^*$ by

$$e_{n_{t}+i}^{*} = w_{i,1}^{r}y^{*} + \sum_{j=2}^{2^{r}} w_{i,j}^{r} \cdot f_{j-1}.$$

Let $e_{n_t+i}^{**} \in X^{**}$ be any norm preserving extension of the linear functional g_i^* defined on G by

$$g_i^* = w_{i,1}^r y_G + \sum_{j=2}^{2^r} w_{i,j}^r P^*(f_{j-1}^*)$$

(where $y_G \epsilon G^*$ is defined by $y_G(g) = g(y)$ for $g \epsilon G \subset X^*$). Finally, for $i = 1, 2, ..., 2^r$, using Goldstine's Theorem we define e_{n_l+i} to be an arbitrary element of X such that

$$egin{aligned} e_k^*(e_{n_l+i}) &= e_{n_l+i}^{**}(e_k^*) & ext{ for } k=1,2,...,n_{l+1}, \\ \|e_{n_l+i}\| &\leqslant \|e_{n_l+i}^{**}\|(1+arepsilon/16). \end{aligned}$$

We omit the verification (similar to that of case 1°) that such defined sequences $(e_j)_{0 \leqslant j \leqslant n_{l+1}}$ and $(e_j^*)_{0 \leqslant j \leqslant n_{l+1}}$ satisfy conditions (2)–(5). This completes the induction and the proof of the theorem.

Remarks. A. The proof of Theorem 1 gives also:

If X^* is separable, then for every $\varepsilon > 0$ there exists in X a biorthogonal sequence (e_n, e_n^*) bounded by $1+\varepsilon$ which is fundamental (equivalently the e_n^* 's are linearly dense in X) and such that the e_n^* 's are linearly dense in X^* .

B. We do not know any example of a separable Banach space which does not admit any fundamental and total biorthogonal sequence bounded by 1.

2. We begin with some notation (cf. Dvoretzky [5] and Milman [8], [9]). By S_K we denote the unit sphere of the K-dimensional real Hilbert space \mathscr{E}_K . By $\mu_{K,m}$ we denote the rotation invariant normalized Borel measure on the Grassman manifold \mathscr{E}_K^m of all m-dimensional linear subspaces of \mathscr{E}_K . Clearly, $\mu_{K,1}$ can be regarded as the normalized Lebesgue measure of symmetric Boral subsets of S_K . Given a symmetric Borel subset A of S_K a $t \geqslant 0$ and m = 1, 2, ..., K, we denote by A_t the set of all points of S_K whose geodesic distance from A is $\leqslant t$ and we put

$$A^m = \{ H \, \epsilon \, \mathscr{G}_K^m \colon \, H \cap A \neq \emptyset \} \, .$$

Clearly, if A is measurable, so are A_t and $A_t^m = (A_t)^m$.

The basic tool for the proof of (D-M) is the following result due to Dvoretzky [5], Theorem 2(B) (for some details of the proof of [6]).

For every t > 0 and for every symmetric Borel subset A of S_K , we have

$$(\mathrm{D_1}) \qquad \mu_{K,1}(A_l) \geqslant [\mu_{K,2}(A^2)]^{1/2} (1 - e^{-2l((K-2)\mu_{K,2}(A^2)/2\pi)^{1/2}})^2, \ K = 3, 4, \ldots$$

$$(\mathrm{D}_2) \quad \mu_{K,2}(A_l^2) \geqslant \mu_{K,m}(A^m)(1-e^{-\frac{l}{m-2}((K-m)/2\pi)^{1/2}})^{m-2}, \quad K=4,5,\ldots, \\ \qquad \qquad m=3,4,\ldots,K-1.$$

The next lemma shows how the above inequalities work.

LIEMMA 2.1. Let $\varepsilon > 0$ and let positive integers s and $m \ge 3$ be given. Then there exists a $C = C(\varepsilon, s, m)$ such that, for every integer K > C and for every symmetric Borel subset A of S_K with $A^m = \mathscr{G}_K^m$, there exists an s-dimensional linear subspace H of \mathscr{E}_K such that $S_K \cap H \subset A_{\varepsilon}$.

Proof (1). First observe that, given $\varepsilon>0$ and a positive integer s, there exists an $\eta=\eta(\varepsilon,s)<1$ such that if B is a symmetric Borel subset of S_s with $\mu_{s,1}(B)>1-\eta$, then B is an $\varepsilon/3$ -net for S_s . This is obvious because the Lebesgue measure of a geodesic sphere (in S_s) of radius $\varepsilon/3$ is positive. Since $A^m=\mathscr{G}_K^m$, it follows from (D_2) that for every t with $\varepsilon/3>t>0$ and for K large enough (precisely $K>C_1(\eta,m)$),

$$\mu_{K,2}\left(A_{t}^{2}\right)\geqslant(1-e^{-\frac{t}{m-2}\left((K-m)/2\pi\right)^{1/2}})^{m-2}>(1-\eta)^{2}\,.$$

Thus, by (D_1) applied for A_t , we get

$$\mu_{K,1}\big((A_t)_t\big) > (1-\eta) (1-e^{-2t((K-2)(1-\eta)/2\pi)^{1/2}})^2$$

for K large enough. Since $(A_t)_t = A_{2t}$, we infer that $\mu_{K,1}(A_{2t}) > 1 - \eta_{\gamma}$ for K large enough (precisely for $K > C_2(\eta, m)$).

Now, for each $H \in \mathscr{G}_K^s$, let $\mu_{s,1}^H$ be the normalized rotation invariant Borel measure on $S_K \cap H$. By the uniqueness of the normalized rotation invariant Borel measure on S_K , for every symmetric Borel subset B of S_K , we have

$$\mu_{K,1}(B) = \int\limits_{\mathscr{G}_K^g} \mu_{s,1}^H(B \cap H) \cdot \mu_{K,s}(dH) \, .$$

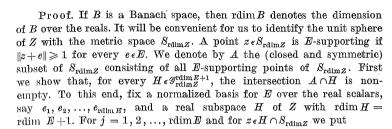
Applying this formula to $B = A_{2t}$, for $K > C_2(\eta, m)$, we get

$$1-\eta < \int\limits_{\mathscr{G}_K^{\theta}} \mu_{s,1}^H(A_{2\ell} \cap H) \, \mu_{K,s}(dH) \, .$$

Hence, for some $H \in \mathscr{G}_{K}^{s}$, $1-\eta < \mu_{s,1}^{H}(A_{2t} \cap H)$. Thus, by the choise of η . $A_{2t} \cap H$ is an $\varepsilon/3$ -net for $H \cap S_{K}$. Thus $S_{K} \cap H \subset A_{\varepsilon} \cap H$ because $t < \varepsilon/3$. Hence $S_{K} \cap H \subset A_{\varepsilon}$ for $K > C(\varepsilon, s, m) = C_{2}(\eta(\varepsilon, s), m)$.

Our next lemma goes back to Krasnosel'skii, Krein, Milman [16] (cf. also [3]). We state it for a strictly convex Banach space, i.e. such a space whose unit sphere does not contain intervals.

LEMMA 2.2. Let $1 \geqslant \varepsilon > 0$ and let s and $m \geqslant 3$ be positive integers. Let Y be a finite dimensional strictly convex Banach space which is a direct sum of its subspaces E and Z. Assume that $\dim E = m$ and Z is isometrically isomorphic to the Hilbert space l_L^2 with $L > C(\varepsilon/6, s, m+1)$ in the case of real scalars and $L > C(\varepsilon/6, 2s, 2m+1)$ in the case of complex scalars, where $C(\cdot, \cdot, \cdot)$ is the function of Lemma 2.1. Then there exists a linear subspace H of Z with $\dim H = s$ such that the projection $P \colon E + H \xrightarrow[]{}$ with $\ker P = E$ has the norm $\|P\| \leqslant 1 + \varepsilon$.



$$a_j(z) = egin{cases} 0, & ext{if } \|te_j + z\| \geqslant 1 & ext{for every real } t, \ & ext{the unique real number } t
eq 0 & ext{such that } \|te_j + z\| = 1, ext{ otherwise }. \end{cases}$$

Since Y is strictly convex, all $a_j(\cdot)$ are well-defined continuous functions on $S_{\text{rdim }Z} \cap H$. Now we define $\Phi \colon S_{\text{rdim }Z} \cap H \to \mathscr{E}_{\text{rdim }E}$ by

$$\Phi(z) = (a_1(z), a_2(z), \dots, a_{\text{rdim } E}(z)) \quad \text{for } z \in S_{\text{rdim } Z} \cap H.$$

Clearly, Φ is a continuous antipodic function. Thus, by the Borsuk Theorem [2], there exists a $z_0 \in S_{\mathrm{rdim}Z} \cap H$ such that $\Phi(z_0) = 0$. Evidently, the point z_0 is E-supporting because there are rdim E straight lines passing through z_0 supporting the sphere $S_{\mathrm{rdim}Z} \cap H$ at z_0 and parallel to the linearly independent vectors $e_1, e_2, \ldots, e_{\mathrm{rdim}E}$, respectively.

We have just proved that $A^{\operatorname{rdim} Z+1} = \mathscr{C}^{\operatorname{rdim} Z+1}_{\operatorname{rdim} Z}$. Thus, by Lemma 2.1, the assumption imposed on L yields that there exists a real subspace H_R of Z such that $H_R \cap S_{\operatorname{rdim} Z} \subset A_{e/6}$, and $\operatorname{rdim} H_R = s$ in the real case and $\operatorname{rdim} H_R = 2s$ in the complex case. Since in the case of complex scalars A is circled, it follows that if H is the smallest complex subspace containing H_R ; then $H \cap S_{\operatorname{rdim} Z} \subset A_{e/6}$. Thus in both cases of the real and of the complex scalars there exists an s-dimensional subspace H of H0 such that $H \cap S_{\operatorname{rdim} Z} \subset A_{e/2}$. To complete the proof we show that such chosen H1 has the desired property. To this end, pick H2 with H3 ince $H \cap S_{\operatorname{rdim} Z} \subset A_{e/2}$, there exists a H3 such that H4 such that H5 such that H6 such that H6 such that H6 such that H7 such that H8 such that H8 such that H9 such that

$$\|z+e\|\geqslant \|z_0+e\|-\|z-z_0\|\geqslant 1-\varepsilon/2>(1+\varepsilon)^{-1}.$$

Hence, by the homogeneity of the norm, we get

$$||z+e|| > (1+e)^{-1} ||z||$$
 for every $0 \neq z \in H$ and every $e \in E$.

The last inequality implies that the projection $P: H + E_{\overline{\text{onto}}} \to H$ with $\ker P = E$ has the norm $\|P\| < 1 + \varepsilon$.

Proof of (D-M). First observe that given a positive integer n and $\delta > 0$, there exists an integer $d = d(n, \delta)$ such that the unit sphere of any n-dimensional Banach space admits a δ -net consisting of less than

⁽¹⁾ The author has learned this proof from T. Figiel.

d points. Thus the standard Mazur's technique of constructing basic sequences (cf. e.g. [13]) yields the existence of a subset B of the unit sphere of Y^* such that B consists of exactly d points and if $Y_B = \bigcap \ker y^*$, then the projection $Q \colon E + Y_{B \, \overline{\text{onto}}} {\succ} E$ with $\ker Q \, = \, Y_B$ has the norm $\| Q \|$ $< 1 + \delta$. Now, by the Dvoretzky Theorem (cf. [5], [14]), for every positive integer L, there exists a $D = D(L, \delta)$ such that if dim Y > D + d + m $\geqslant D + \operatorname{codim} Y_R + \operatorname{codim} Y_1$, then there exists a linear subspace W of $Y_B \cap Y_1$ which admits an isomorphism $T_W \colon W_{\overline{\text{onto}}} > l_L^2$ with $||w|| \leqslant ||T_W(w)||$ $\leq (1+\delta)^{1/3} ||w||$ for every $w \in W$. Using Lemma 1 of [12] we can construct a Banach space Y_W which contains l_T^2 isometrically and has the property that the isomorphism T_{W} admits an extension to an isomorphism T from E+W onto Y_{W} satisfying the condition $||x|| \leq ||T(x)|| \leq (1+\delta)^{1/3} ||x||$ for every $x \in E + W$. The finite dimensional space Y_W admits a renorming such that in the new norm Y_{W} is strictly convex and the ratio of the new norm and the original norm of every element belongs to the interval [1. $(1+\delta)^{1/3}$]. Being a little bit careful we can do the renorming so that in addition the new norm coincides with the original norm on $T(W) = l_f^2$. In the sequel we denote by \tilde{Y} the space Y_{vv} under this new strictly convex norm and we regard T as an isomorphism from E+W onto \tilde{Y} . Now, assuming that $L > C(((1+\delta)^{1/3}-1)/6, N, n+1)$ in the case of real scalars and $L > C(((1+\delta)^{1/3}-1)/6, 2N, 2n+1)$ in the case of complex scalars, we can apply Lemma 2.2 to choose an N-dimensional linear subspace of l_L^2 so that the projection \tilde{P} from T(E) + H onto H with $\ker \tilde{P} = T(E)$ has the norm $\|\tilde{P}\| < (1+\delta)^{1/3}$. Finally, we put $F = T^{-1}(H)$ and $P = T^{-1}\tilde{P}T$. We admit

$$\begin{split} K &= K(n, m, N, \delta) \\ &= d(n, \delta) + m + D \left(1 + \left[O(((1+\delta)^{1/3} - 1)/6, 2N, 2n + 1) \right], \delta \right). \end{split}$$

Added in proof. After this paper was submitted for publication, the author discovered the following simple derivation of (D-M) from the Dvoretzky Theorem. The essential part of (D-M) is:

(*) Given positive integers k and n and $1 > \varepsilon > 0$, there is an integer $N = N(k, n, \varepsilon)$ such that if X is a Banach space with $\dim X > N$ and E is a linear subspace of X with $\dim E = k$, then there exists an ε -Euclidean subspace F of X with $\dim F = n$ such that

$$||e+f|| > (1-\varepsilon)||f||$$
 for every $e \in E$ and $f \in F$.

An n-dimensional Banach space F is ε -Euclidean iff there is an isomorphism $U\colon l_n^2\to F$ with $\|U\|\,\|U\|^{-1}\|<1+\varepsilon$.

Proof. The Dvoretzky Theorem says: given $\delta>0$ and a positive integer q, there exists a positive integer $d(q,\delta)$ such that every Banach space B with dim $B>d(q,\delta)$ contains a δ -Euclidean subspace C with dim C=q. Put $\delta=\min\left(\varepsilon,\left(1-\varepsilon\right)^{-1/4}-1\right)$, $N=d\left(d\left((2n+2k-1),\delta\right)-k,\delta\right)+k$. Let $h\colon X\to X/E$ be the quotient map. Since

dim X/E > N-k, there is a δ -Euclidean subspace C_1 of X/E with dim $C_1 = d(2n+2k-1,\delta)-k$. Thus dim $h^{-1}(C_1) = d(2n+2k-1,\delta)$. Hence there is a δ -Euclidean subspace C_2 of $h^{-1}(C_1)$ with dim $C_2 = 2n+2k-1$. Since dim E = k, there is a δ -Euclidean subspace C of C_2 with dim C = 2n+k-1 and such that $C \cap E = \{0\}$, i.e. h restricted to C is an isomorphism. Thus there are isomorphism $U: l_{2n+k-1}^2 \to C$ and $V: h(C) \to l_{2n+k-1}^2$ such that max $(\|U\| \|U^{-1}\|, \|V\| \|V^{-1}\|) < 1 + \delta$.

Next recall the Krasnosel'skii–Krein–Milman Lemma [16] (cf. Lemma 2.2 in this paper) which says: If E is a linear subspace of a Banach space X with dim E=k, then for every linear subspace Z of X with dim Z=k+1 and $E\cap Z=\{0\}$ there exists a $s\in Z$ such that $\|z\|=\|h(z)\|=1$ (h: $X\to X/E$ is the quotient map). The lemma yields that the operator T=VhU: $l_{2n+k-1}^2\to l_{2n+k-1}^2$ satisfies the condition

(+) If G is a linear subspace of l_{2n+k-1}^2 with dim G=k+1, then there is a $g \in G$ with $\|g\|=1$ and $\|Tg\|>(1+\delta)^{-2}$.

Using (+) and the observation that if H is a subspace of l_{2n+k-1}^2 with dim H=j-1 (1 < j < n), then

$$\dim \left(H^{\perp} \cap T^{-1}(T(H)^{\perp})\right) \ge 2n + k - 1 - 2(j-1) \ge k + 1$$

(\$A^{\perp}\$ denotes the orthogonal complement of \$A \in l_{2n+k-1}^2\$, we define inductively a sequence $(g_j)_{1 \le j \le n}$ in l_{2n+k-1}^2 so that, for $j=1,2,\ldots,n$, $||g_j||=1$, $||T(g_j)|| < (1+\delta)^{-2} \cap \cap g_j \in H_{j-1} \cap T^{-1}(T(H_{j-1})^{\perp})$, where $H_0 = \{0\}$, $H_j = \operatorname{span} \{g_1,g_2,\ldots,g_j\}$. Clearly, $(g_j)_{1 \le j \le n}$ and $(T(g_j))_{1 \le j \le n}$ are orthogonal sequences. Hence, for $g = \sum_{i=1}^n t_i g_i \in H_n$,

$$||\dot{T}(g)||^2 = \sum_{j=1}^n |t_j|^2 ||T(g_j)||^2 \geqslant (1+\delta)^{-4} \sum_{j=1}^n |t_j|^2 = (1+\delta)^{-4} ||g||^2.$$

Thus if $F = U(H_n)$ then, for every $f \in F$, we have

$$\begin{split} \|h(f)\| &= \|V^{-1}TU^{-1}(f)\| > \|V^{-1}\|^{-1} \|TU^{-1}(f)\| > \|V^{-1}\|^{-1} (1+\delta)^{-2} \|U^{-1}(f)\| \\ &> \|V^{-1}\|^{-1} \|U^{-1}\|^{-1} (1+\delta)^{-2} \|f\| > (1+\delta)^{-4} \|f\|. \end{split}$$

Thus, for every $e \in E$, the definition of δ yields

$$\|e+f\| \geqslant \inf_{e \in E} \|e+f\| = \|h(f)\| \geqslant (1-\varepsilon)\|f\|.$$

References

[1] S. Banach, Théorie des operations linéaires, Warszawa 1932.

[2] K. Borsuk, Drei Satze über die n-dimensionalen Euklidische Sphäre, Fund. Math. 21 (1933), pp. 236-243.

[3] W. J. Davis and W. B. Johnson, On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math. 45 (1973), pp. 173– 179.

[4] M. M. Day, On the basis problem in normed spaces, Proc. Amer. Math. Soc. 13 (1962), pp. 655-658.

[5] A. Dvorotzky, Some results on convex bodies and Banach spaces, Proc. Int. Symp. on Linear Spaces, Jerusalem 1961, pp. 123-160.

[6] T. Figial, Some remarks on Dvoretsky's Theorem on almost spherical sections of convex bodies, Colloq. Math. 24 (1972), pp. 241-252.

[7] S. Kaczmarz und H. Steinhaus, Theorie der Orthogonalreihen, Warszawa-Lwów 1935.

Banach spaces

- [8] V. D. Milman, Spectra of bounded continuous functions defined on the unit sphere of a B-space, Funkcional. Anal. i Priložen. 3, No 2 (1969), pp. 67-79 (Russian).
- [9] A new proof of Dvoretzky's Theorem on sections of convex bodies, ibid., 5,
 Nº 4 (1971), pp. 28-37. (Russian).
- [10] The geometric theory of Banach spaces, Part II, 26 (162) (1971), pp. 73-149 (Russian).
- [11] R. I. Ovsepian and A. Pełczyński, The existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space and related constructions of uniformly bounded orthonormal systems in L², Studia Math. 54 (1975), pp. 149-159.
- [12] A. Pelezyński, Projections in certain Banach spaces, ibid., 19 (1960), pp. 209-228
- [13] A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces, ibid., 21 (1962), 371-374.
- [14] A. Szankowski, On Dvoretzky's Theorem on almost spherical sections of convex bodies, Israel J. Math. 17 (1974), pp. 325-338.
- [15] A. E. Taylor, A geometric theorem and its application to biorthogonal systems, Bull. Amer. Math. Soc. 53 (1947), pp. 614-616.
- [16] M. A. Krasnosel'skii, M. G. Krein and D.P. Milman, On defect numbers of linear operators in Banach spaces and on some geometric questions, Sb. Trud. Mat. Inst. AN USSR, 11 (1948), pp. 97-112. (Russian)

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Received October 8, 1974

(899)