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All separable Bamach spaces admit for every &> 0 fundamental total
and bounded by L -z biorthogonal sequences

by
A. PEECZYNSKI (Warszawa)

Abstract. It is proved that in every infinite dimensional Banach space X for
every &> 0 there exists a biorthogonal sequence (x,, z)) such that (i) linear combi--
nations of the a,'s are dense in X, (ii) if #eX and aj;(z) = 0 for all n, then z = 0,
(i) flogll okl < 1+ ¢ for all o

The proof bases upon the following result due to Milman:

(M) If IV is a finite dimensional subspace of an infinite dimensional Banach space
X, then, for every e > 0, there exists a subspace F of X with dim F> e~ such that

lle - fil > (1 — &) max (liell, If1)
A proof of (M) is included.

Jor every e in B and f in F.

Introduction. It is known (ef., e.g. [1], p. 238 or [15]) that if X is
a finite dimensional Banach space (say, dimX = m), then X admits
a Diorthogonal sequence (w,, #3)™., with |,/ =1 for n =1, ..., m.
In the present paper we improve results of [3] and [11]. We establish
the following. .

TurOREM 1. Let X be an infinite dimensional separable Banach space.
Then, for every e > 0, there emists in X a fundamental total and bounded
by 1+¢ biorthogonal sequence. ) )

Recall that a sequence (e,, ey), where e, are elements of X and ¢ are
elements of X*—the dual of X, is Dbiorthogonal if e)(e,) = o7 for
nym = 1,2,..., s total if, for every x¢X, the condition e (@) = 0 for
every m =1,2, ... implies @ = 0, is fundamental if, for every a"<X",
the condition @*(e,) = 0 for every n = 1,2, ... implies #* = 0, is bounded
Dy a ¢z Lt (e, lenll < ¢ for every n =1,2,...

The paper consists of two sections. Theorem 1 is proved in the first
section. The proof bases on the following result due to Dvoretzky [5]
and Milman [10], Theorem 5.8: ‘ ‘

(D-M). Given 8 > 0 and positive integers n, m, N. There emisis & posi-
tive integer K = I (n, m, N, 8) such that if ¥ is a Banach space of dimen-
sion. greater than I, then, for every n-dimensional lincar subspace B of Y,
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and for every linear subspace ¥, of Y of codimension m, there ewists a linear
subspace F of X -such that

(i) dimF =N, Fc ¥,, FnE = {0},

(ii) if @ = B+ F, the direct sum of subspaces B and T, then

max ([P, g~ I’Il)(l**"5

where P G ———xT is the projection- wufh kerP &, .

(1ii) thew emsts an zsomomhwm 7 N~——>F such that

max (||T]]5 JT7H) < 1+6.

Here by I we denote the 1denut.y operator on @ and by 13 the Hilbert
space of dimenkion N.

The second section of the pa.per contains a proof of (D-M). We con-
centrate ourselves on the case of complex Banach spaces which is nob
treated by Milman [8], [10]. i

Aeknowledgement The author would like to express his grati-
tude to Dr Tadeusz Figiel for “valuable suggestions concerning the second
section of the paper.. « i .

1. Proof of Theorem 1. Since X is separable, there exist sequencey
(%;). of elements of X and (w}“) of elements of X* such that

(1‘) f se¢X and x; ( ) —0 for all j, then # =0,
Vif 5" e X* and @ (ml = 0 for all j, then #* = 0.
‘After fixing such: gequences (%) and (#]) and & with 0<<s<<1 we
defme inductively a sequence (6,,),, of elements of X, a sequence (em)mso
of elements of X*, and an mcrea,smg sequence (M,,),=o of the indices so
that, S i
(2) the sequence (€5, €z, -..
e =1,2,

3)  llel efll < 14-e for 1<j<

y@ngi €1y €.y ) i Diorthogonal for

<n, and for ¢ =1,2,...,

{

(4)  SPAR(€))jany,_, @ SPAR(Bylpee fOr ¢ =1, 2, ...,

(8) span(e,),%zq o 8pan (@h),q for ¢ =1,2,...

(By qpa,n(a,),<k we denote the smallest linear subspace spanned by the
Vectors @y, Go, ...y Qy.)

We put ¢, =0, ¢ =0 and n, = 0. Assume that, for some ¢ 0,
elements ey, 6, ..., ¢,,, functionals ey, e, ..., e, and indices ny, fy,. .-
.., m; have been defined to satisfy conditions (2)—(5) for all s< . We
shall define the next index #,,,, the elements ¢; and the functionals 6;‘ for
1y < j < myy,. We consider separately two cases.
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17 ¢4-1 =29 —~1 for some ¢ =1,2,... First using the standard
Sdnmdt 1)]0]‘1;1102‘011&:116& ion procedure and the inductive hypothesis, we
pick a yeX and y*eX* so that

(6) span (e, ¢y, vy by y) > bpan( ) 1<p<q

and
(7) the sequence (e, ey, ...

Lk K fe T
1enyp U5 €1y €y ey by, y") I8 biorthogonal.

Next we pick an integer 7= 1 so that
(8) 27 Iyl -+ 1) < e/
anid, we put 9y, =n,--2" Now applying (D-M) we pick, for ¥ = X,
Now= 91, B =span(ey, 0y, ..., 6,,Y), § = ¢/, ¥, =kery*n . (| kere],
I<i<ny

o linear subspace F of X which satisfies conditions (i)—(iii). Let (2;)1cjen
denote the unit vector basis of 1% and let (v )1<J<N denote the coordinate
functionals on . Let us set f; = T(v;) and fj = (T7H)*(v]) for 1<j< N,
(By 8% 'we denote the 'adjoint of a linear opemtm 8.) Furthermore,
let (w},)1.jr e the 2" x2" Walsh orthogonal matrix, ie. wj;
= 2y, (2771 (2] ~1)), where (w);qicc denotes the Walsh orthonormal
gystem (cf. [7], Kapitel IV, §6). For ¢ =1,2,...,2" we put

. 2 .
T a
Oyt = Wiy Y + 2 Wi ifi1s

jet

- and we defm@ aw +1¢ X ¥ to be any norni preserving extemlon of the 111163:1

functional ¢f defined on @ = E+F by

{/f = wz lJ(}“I'Z,wl,jP* fj’ 1

J=2

where y;% denotes the restriction of y* to G-

To complete the induetion in case 1° it remains o verify that the
sequences (6)yggan,; ond (e}) /g smmsfy conditions (2)-—(5).

By the ln(hl("lV(\ hypothesis, e} 616) = 8 for 4, k<< n. If 1< my and
/m < I <5 myyy, thon ef (¢;) == 0 because € F(y) = 0( by (m wnd forl1<j< N,
q (fy) = 0 (because fell @ kew,) I o< i<n,, and k<n, then
Gi((;‘) = ,,,(a,) = 0 bocause y*(e,) =0 (by (7)) and for 1<j< N,
PN (eg) == ff (1’ (¢)) = 0 (because eyl =kerP). Tf my<i, k<M,
then ¢f(¢;) = /", (ex) = 0f because the sequence

(?/:./?ufay ‘--7fy§ Y P, P (), P*(f.z?l))
is biorthogonal and the matrix (W},),«sjcr 15 Orthogonal. This proves (2).
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To check (3) observe that [w],] =2~ for 4,j = 1,2, ..., 2" Thus,

by (8),
27‘
loagll < 1277+ [ 7 3wl s0,-0) | < e/ 1TIQL—277)

<egfd+l+tefd<L-te.
Similarly,

lle all = lghll < ly*127™ -+ P 1 (T [Wmem

< el +(1+e/4)* < L +s.

The above inequalities together with the inductive hypothesis prove (3).
Finally, since the matrix (wi;);<;j<r 18 invertible and since the
elements ¥, fi, fa, ey fx are linearly independent, we infer that

span(y, fu, fi, <y ) = SPAN(Cypprs Cpppay - En‘+1)-

Hence, remembering that t+1 = 2¢—1, we get, by (6),

span (6 )1<j<nzq 1 = sPa’n(wp)lg:p\q !
This proves (4) for ¢-+1 ~2q —1. Condition (p) for ¢41 = 2¢—1
follows directly from the inductive hypothesis.
) 2° ¢+1 = 2q for some ¢ =1, 2, ... Similarly as in cawe 1°, we first
pick yeX and y*eX* so that

(6*) Spa’n(q: 0:7 tesy 9:“ Yy ) = span(z, )1:&27\11
and

” * % s :
(7*) the sequence (61, €ay ...y €ny Y €1, €5y - -5 e:‘, y*) is biorthogonal.

Next we put n,,, = n,+2", where r > 1 is an integer satisfying (8).
Now, by (D-M), we pick for ¥ = X*, N =2"—1, B =span(el, ¢, ...
oy %)y Xy.=Teryn () kere;(where kers = {#" ¢ X*: 2™ (2) = 0})and

1<i<ny
6 ==¢/4 a linear subspace F of X* which satisfies conditions (i)~(iii).

Let us set, as in case 1° T'(w;) LePcX and (I)*(v]) == fed™
forj =1,2,..., N and detine for i = 1,2, ..., 2" the functionals O DY

oF
* [T | ” ;
Ongat = Wiy + D Wl fiy.

F=2

* % * . . .
Let e,L +.«X™ be any norm preserving extension of the linear func-
tional ¢} deﬂned on G by

o
g:‘ = W;:,x?/a"F Zw?ﬁ‘,]‘l)*(.ﬁk—-l)

J=2
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(where yeG" is defined by yu(¢) = g(y) for ge@ < X*). Finally, for
i=1,2,...,2 using Goldstine’s Theorem we define ¢, ; to be an arbi-
trary element of X such that

O (Cny i) = Emyi(6) fbxf E=1,2,..,n,,
Hent N 1” Henﬁ l” 1 "1'3/16)

We omit the wverifieation (similar to that of case 1°) that such defined
\equencm((*,)m,,nmand(ej Josiangpy ‘watisfy conditions (2)—(B8). This com-
pletes the induetion and the proof of the theorem.

Remarks. A. The proof of Theorem 1 gives also:

If X* is separable, then for every &> 0 there ewists in X a biorthogonal
soquence (€,, o) bounded by 1--s which is fundamental (equivalently the
&.'8 are linearly dense in X) and such that the €;’s are linearly dense in X*.

B. We do not know any example of a geparable Banach space which
does not a:dmit any fundamental and total biorthogonal sequence boun-
ded by 1.

2. We begin with some notation (cf. Dvoretzky [5] and Milman [8],
[9]). By 8x we denote the unit sphere of the K-dimensional real Hilbert
space &x. BY pgm We denote the rotation invariant normalized Borel
meagure on the Grassman manifold #% of all m-dimensional linear sub-
spaces of &g Olearly, ux,, can be regarded as the normalized Lebesgue
measure of gymmetric Boral subsets of Sg. Given'a symmetric Borel
subset 4 of g at>0and m =1,2, ..., K, we denote by 4, the set of
all points of 8, whose geodesic distance from A is <t and we put

= (He®l: HNA 5 O}

Glea;rly,‘ it A is measurable, so are A, and Aj" = (4,)".
The bagic tool for the proof of (D-M) is the following result due
to Dvoretzky [5], Theorem. 2(B) (for some details of the proof.cl..[6])..
For every t > 0 and for cvery symmetric Borel subset A of Sk, we have
(DY) (4 2 ruAM<Aﬂu”’<~—e“““h g Y K= 8,4,
(K»-m)/!-rc)llz)m—z’ K =4, 5, ...,

) - ™ e (
(D2 (A = g (A (L e 7 =
‘ m=3,4,.., K-1.

The next lemma shows how the above inequalities work.

Tammnia 2.1, Let &> 0 and et positive integers s and m > 3 be given.
Then there emists a O = O(s, s, m) such that, for every integer K > ¢ and
for every symmetric Borel subset A of Sg with A™ = G, there ewisis an
s-dimensional linoar subspace H of &y such that SgnH < A,.
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" Proof (Y). First observe that, given &> 0 and a positive integer.
s, there exists an 5 = 7(s §) < 1 such that if B is a symmetric Borel

subset of 8, with p,,(B)>1—%, then B is an &f3-net for 8§,

This is obvious because the Lebesgue measure of a geodesic sphere (in
8,) of radius /3 is positive. Since A™ = ¥R, it follows from (D,) that
for every ¢ with &/3>¢> 0 and for K large enough (precisely I >
0y (n, m)),

. ((B—m)l2m)t?2

prald]) > (1—e P > (L=

Thus, by (D,) applied for 4, we get.

—2 ’..vr: - 12yg .
P ((Agh) > (1 —17) (1 — A D0=EER) f P

for K large enough. Since (4,);, = A, we infer that. ug,(A4.)>1 -77:\
for K large enough (precisely for K > Cy(n, m)). L

~ Now, for each H %%, let uf be the normalized rotation invariant
Borel measure on Sz NH. By the uniqueness of the normalized rotation
", invariant Borel measure on Sg, for every symmetric Borel subset B of
Sg, we have : . REEEEN

pra(B) = [ W (BOH) pg (dH).

Applying this formula to B = A, for K > Oy(y, m), Wé' get

1< [ (A OH) oo (AH)
%

Hence, for some He@y, 1—n< ulf(AynH). Thus, by the choise of 7.
AynH is an e/3-net for HNSg. Thus S NH ¢ A,nH because i < ¢/3.
Hence SgNH < 4, for K> 0(c, s, m) = Oun(g, 8), m).

Our next lemma gocs back to Krasnosel’skii, Krein, Milman [16] (cf.
also [3]). We state it for a strictly convex Banach space, i.e. such a space’
whose unit sphere does not contain intervals.

LeMMA 2.2, Let 12 e> 0 and let s and m > 3 be posttive integers.
Let Y be a finite dimensional strictly convex Banach space which is a direct
sum of its subspaces B and Z. Assume that AimB = m and Z is isometrically
isomorphic to the Hilbert space Ui, with L > C(e/6, s, m-+1) in the case of
real scalars and L > C(s/6, 28, 2m 1) in the case of complen scalars, where
C(+, -, ) 18 the function of Lemma 2.1. Then there ewists a linear subspace
H of Z with dim H = s such that the projection P: B -+ H '&EB’*H with ker P
= H has the norm |P|<<1+4e. .

() The author has learned this proof from T. Figiel.
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Proof. If B is a Banach space, then rdim B denotes the dimension
of B over the reals. Tt will be convenient for us to identify the unit sphere
of Z with the metric space S,gyz. A point zeS gz is E-supporting if
llg4-ell = 1 for every e<ll. We denote by A the (closed and symmetric)
subset of Spumz consisting of all H-supporting points of Spqinz. First
we show that, for every H¢#UmE+l the intersection 4 NH is non-
empty. To this end, fix a normalized basis for F over the real scalars,
NAY €y, Cpy -vey Goamuzgy &0 & real subspace H of Z with rdimH =

rdim B-1. For j = 1,2, ..., rdim¥F and for zeH N8y, We pub

@ 0, it fite; -2l = L
ay(2) =
g the unique real number ¢ = 0 such that |{te; 2| = 1, otherwise.

for every real ¢,

Since Y is strictly convex, all a;(+) are well-defined continunous functions
on Symz NH. Now we define @: S.q7 "NH—>8qimr DY

D(?) = (“1(@: ay(2), ..., a’rdimE(z)) for zesrdimz NH.

Olearly, @ is a continuous antipodic function. Thus, by the Borsuk
Theorem [2], there exists a 2yeSuqmz NH such that @(2,) = 0. Evidently,
the point 2, is H-supporting because there are rdim F straight lines passing
through g, supporting the sphere SygmzNH at 2, and parallel to the
linearly independent vectors e, ,, ..., éumm respectively.

We have just proved that AMmE+ — @rlimB+l - Thug, by Lemma
2.1, the assumption imposed on L yields that there exists a real subspace
Hy, of Z wsuch that Hy,N8yimz & Ays, and rdimHy, = s in the real case
and rdim H,, = 2s in the complex case. Since in the-case of complex scalars
A iy cireled, it tollows that if H is the smallest complex subspace containing
Hys then H 08yqmz < Ayg. Thus in both cases of the real and of the
complex scalars there exists an s-dimensional subspace H of Z such that
HNSygimz < Agp. To complete the proof we show that such chosen
H has the desived property. To this end, pick zeH with |l = 1. Since
HA8yuy © by, there exists a zeed such that le—2l < €/2. Thus,
for every eell, we have

et oll = llzg 4ol = lle —2ll 2 1 —2/2 > (L+2) 7.
‘Heuce, by the homogeneiby of the notm, we get

Iz 4ol = (L--e)tell for every 0 # zel and every ecl.

The last inequality implies that the projection P: H-- B> H with
kerl® == B has the norm |P| < 1 4e&.

Proof of (D-M). First observe that given a positive integer » and
8 0, there exists an integer d = d(n, ) such that the unit sphere of
any n-dimensional Banach space admits a d-net consisting of less than
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d points. Thus the standard Mazur’s technique of constructing basic

sequences (cf. e.g. [13]) yields the existence of a subset B of the unit

sphere of ¥ such that B consists of exactly d points and if ¥, = () kery*,
YR

¥ e

then the projection @: E + Yp——=>F with ker@ = Yz hay the norm [
< 1+ 8. Now, by the Dvoretzky Theorem (cf. [5], [14]), for every positive
integer L, there exists a D = D(L, 6) such that if dim¥ > D--d+m
> D+codim Yy +codim Y,, then there exists a linear subspace W of
Y;nY, which admits an isomorphism Ty-: W Om'o?lz, with {lew]] =< [T (w)]]
< (14 8)" lw| for every we W. Using Lemma 1 of [12] we can construct
a Banach space Yy which contains I}, isometrically and has the property
that the isomorphism 7'y admits an extension to an isomorphism 7' from
E+W onto Yy satisfying the condition [] < |17 (#)l < (1 -+ 8) | for
every zeE-+W. The finite dimensional space ¥y, admits & renorming
such that in the new norm Yy, is strictly convex and the ratio of the new
norm and the original norm of every element belongs to the interval
[1, (1+ 6)*]. Being a little bit careful we can do the renorming so that
in addition the new norm coincides with the original norm on T'(W) = I%.
In the sequel we denote by ¥ the space ¥y, under this new strictly convex
norm and we regard 7' as an isomorphism from BE-4W onto ¥. Now,
assuming that L > O(((1+6)"®—1)/6, N, n-1) in the case of real scalars
and L > C(((14 )" —1)/6, 2N, 2n-+1) in the case of complex scalars, we
can apply Lemma 2.2 to ~choose an N-dimensional linear subspace of
I so that the})rojection P from T(E)+H onto H with kerP = T(E)
has the norm |[P|| < (1 + 6)". Finally, we put F' =T~ (H) and P = T-'P7.
We admit :

K =K, m, N, ) ’
= d(n, ) +m+D(1+[C(((1+ 8" —-1)/6, 2N, 20 +1 ] 3).

Added in proof. After this paper was submitted for publication, the author
discovered the following simple derivation of (D-M) from the Dvoretzky Theoron:.
The essential part of (D-M) is:

(*) Given positive integers It and n and 1 > &> 0, there is an integer N == N (k, n, &)
such that if X is a Banach space with dim X > N and  is o linear subspace of X with
dim B = k, then there exists an e-Euclidean subgpace B of X with dim B = n gwoh that

lle+fll > (L—=e)lfli  for every 6cli and feF.

An n-dimensional Banach space F is s-Buclidean it there is an isomorphism
U: 12> F with |U||U]"Y < 1+ B )

Proof. The Dvoretzky Theorem says: given 6 > 0 and a positive integer g,
there exists a positive integer d(q; d) such that evory Banach space B with dim B >
4(q, 6) contains a 6 Buclidean subspace 0 with dim ¢ = ¢. Put § = min (e, (1= &)~ 1 R
¥ =d(d((2n+2k~—1), 5)~T, 6} + k. Let h: X — X/E be the quotient map. Since
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dim X /B > N —k, thore is a J-Euclidean subspace 07 of X/F with dim 07 = d(2n -+
+2k—1, 8)— k. Thus dim h=2(0;) = d(2n+2k—1, §). Hence there is a 5-Euclidean
subspace Oy of h™1(0y) with dim Oy = 2n 4 2k 1. Since dimE = k, there is a §-Euclid-
ean subspace O of Oy with dim O = 2n+ % —1 and such that 0 A ® = {0}, i.e. b restric-
ted to (s an isomorphism. Thus there are isomorphisms U: B, ;_; - O and V: h(0)—
= Ba—y Such that max (\T) 4T, (VI I7-Y) < 1+ 6.

Next rocall the Krasnosel'skii~Krein—Milman Lemma [18] (cf. Lemma 2.2 in
this paper) which says: If % is a linear subspace of a Banach space X with dim & = %,
then for every linear subspace Z of X with dimZ = k41 and BnZ = {0} there’
oxists o 2eZ such that jlg|| == (b2}l = 1 (h: X~ X/B is the quotient map). The lemma
yields that the operator T' =< VAU: 1,y ~ B, .y, satisfies the condition
(+)  If @ i8 a linear subspace of 13, 51 with dim G = k+1, then there is o g <G with

Nl = 1 and 1Tgll > (14 6)~2

Using (+) and the observation that if I is a subspace of #,, 5, with dim H =j—1
(1§« m), then :

dim (HL AT-H T (H)L)) » 2n4T—1—2(5—1) » k1

(41 denotes tho orthogonal comploment of 4 < 1%, . 5. _,), we define inductively a se-
quence (gy); w0 By g 80 that, for §=1,2,...,m, lgi=1, [T(g < (1+ )2

mgje oy A TN (Hyy) L), where Hy={0}, Hy=span {g;, g2, .-+, g5} Clearly, (g)1<j<n

n
and (1'(gy))1ez<n 0re orthogonal sequences. Hence, for g = 3 i;g;eH,,
’ j=1

n 11
W2 == 3 1PN (GIR > (L4 8)% 3] 1412 = (L4 8)~*liglP-
S Fu=l

Thug if 7 = U (H)) then, for overy felf, we have

> VLN O > (148 Al
Thus, for every eelf, the dofinition of ¢ yields
lle 71l > ini fle4-fll = k(A = (1= &) fli
celf
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