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Some ideals of operators on Hilbert space

G. BENNETT (Bloomington, Ind.)

Received May 14, 1974 (829) Abstract. For q an even integer and ¢ < p < oo, it is shown that IT, 4, the class
of (p, q)-absolutely summing operators on Hilbert space, coincides with the ideal
generated by the Lorentz sequence space lapjg . This differs from all previously known
results (wherein I7,, , turns out to be a Schatten r-class for some r = 7 (p, ¢)) and settles
negatively a conjecture of Kwapied and a problem of Pietsch.

1. Introduction. Following Mitiagin and Pelezytiski [13], we say
that a bounded linear operator 7 between Banach spaces X and Y is
(p, q)-absolutely summing, 1< g<p < oo, provided that the following
eondition holds.

(1) There exists a constant M (independent of #) such that, for all

finite subsets {4, ..., #,} of X, we have
( 2 5,12 < 21 sup ( 2 Ky, £ 19
Lfilx+

Condition (1) is clearly equivalent to

(2) Z‘ [Tt ]|Y< ) Whenevel {#;)72, is a sequence of elements of X with

the property thatb 2 [<a;, F>|%< oo for each feX*.

Such operators have received a good deal of attention in recent years,
but their totality, 17, (X, ¥), has not been characterized even when X
and Y are Hilbert spaces. In this case the known results are described
below. For the statement of these results, we denote by &, the so-called
Schaitten r-class [19]. Thus &, is the set of all bounded linear operators
on I, which admit a factorization, UVW, where W is a unitary operator,

U is an isometry on the range of V (ie. |[UVsz| = ||Va| for each zel,),
and V is a diagonal operator from I, (i.e. Vo = (1;;)5-; for some fixed
Ael).

) If p = q< oo, then I, , = G,.
1 1

YIf p= o0 or — —-;2 X then every bounded linear operator
q

on 1y belongs to 1T, ,.
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1_—

then I1,

oy = Sy Where

1 1 1
I ey 2 il
If p p<2 ond ¢ <2, I
1 1
— p + 5
VIf 2<g<p<< oo, then (1) Gy s Iy, and (i) II,,<G,.

(A) is due to Pelezyiiski [15]; (B) to Kwapied [10]; (C) and (D) (i)
to Mitiagin [10]; and (D) (ii) to Pietsch—Triebel [18]. Special cases were
discussed earlier by Grothendieck [8] ((A) when p = 1); Pietsch [16]
((A) when 1< p < 2); and Orlicz [14] ((B) when p =2, ¢ = 1).

To complete these results, Kwapien [10] has suggested the following

CoNIECTURE. If 2 < ¢ < p < oo, then I, , S Gy

Part (I) of our main result shows that this conjecture is false. Indecd,
‘denoting by &, the ideal of operators generated by the Lorentz sequence
space I, , (defined below in Section 2), we have:

TrEOREM. (I) If 2< ¢< p < oo, then Guypyp S I q-

(IT) There is equality in (I) if q s an even integer.

Part (II) answers negatively a question raised by Pietsch ([17],
Problem 14.5.5), and gives new results for every value of ¢ > 2. It seems
likely that II,, should coincide with G,,,, whenever 2 < g< p < oo,
but this I have been unable to prove.

The proof of (I) borrows techniques from interpolation theory and
is given in Section 3, following a br1ef discussion of the Liorentz sequence
spaces 1, . The proof of (IT) is glven in Section 6 and relies on the concept
of mulmple orthogonality, developed in Section 5. This concept in turn
relies on certain number theoretical considerations which are treated in
Section 4.

2. The spaces l,q+ In this section we give a brief account of the
sequence spaces I, .. These spaces were introduced by Lorentz in [11],
special cases having appeared earlier in connection with certain problems
in harmonic analysis. We begin with a technical result, which, for conve-
nience, is not stated in the most general form possible.

LeMMA 1. Let (4)5, be a decreasing sequence of non-negative real num-
bers. Then, for 2 < p-<C 00, 2< < oo, the following conditions are equiv-
alent.

(i) 387 (2)8 < oo.
k=1

2

[

(i) t’”” - ﬂ(zzk) < .

k=1

tq/za —1-a2( 27‘ )cz/2< 0.

o~

?Mg 1|[:\,_]g

(ii)
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0o al+1 3
w 2 tq(llp—l/“( y ZL)QI°< 0.
i=1 k=2
Proof. (i)=(ii). This is nothing more than a discrete version of

Hardy's inequality [4], valid even when (4
1< p< oo, 1< g< oo,
(ii)=(i). This is valid whenever 0 < p < oo, 0 < g << oo, and follows

t
easily from the fact that 4, < M4, t =1, 2,

k=1
(i)«(iil). Apply the equivalence, just established, of (i) and (ii) with
(p, q) replaced by (p/2, ¢/2) and (4;,) replaced by (13).

(i)<=(iv). This follows easily from the monotonicity of (4;) by appro-
priate regrouping of the terms.

The importance of the lemma for us lies in the equivalence of the
conditions (i), (ili} and (iv). We use (ii) in the definition of the spaces I, ;
the equivalent forms (iii) and (iv) being used in Sections 3 and 6. Condi-
tion (i), though interesting in itself, is essentially used only to establish
the equivalence of (ii), (iii), and (iv).

For a sequence A = (1,)%; of complex numbers with limi, =0,
T—co

) 18 not decreasing, and when

..., for (4;) decreasing.

we define the decreasing rearrangement, 1, of A by

A, = min max |A;]
|Ki<n kiK

(n=1,2,....),

where |K| denotes the cardinality of the set K < {1, 2,...}. The Lorentz
sequence space 1, .1 << p < oo,1< g< oo, is defined to be the set of

all 2 for which
Z’tqlp 1-g (Zﬂk)

k=1

A, =

The mapping A->|12ll,,, is 2 norm, under which 7, , becomes & (reflexive)
Banach space.

The following well-known inclusion relationships will be of interest
in subsequent sections.

ProrosrrioN 1. Let 1< p,q,r<< co. Then

(]) Z]),T) = Z’_p;
(i) b4 < by if @< 7, and the inclusion is proper;

(iil) 1, , < Lo if 2 <7, and the inclusion is proper.

Proof. The first part follows trivially from the definition and Lemma 1,
(i)<=(il). To esmbhsh the inclusions given in (ii) and (iii) use the fact,
easily proved, that Ak = O (k~Y?) whenever Aely o To see that these inclu-
sions are proper consider sequences of the form 7 e = k*(logk)? for suitably
chogen « and f.
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3. Extension of Mitiagin’s result. For 1<p< oo, 1< g<< o0,1,,
is a solid, symmetric sequence space in the sense of [6], and 1, , < ¢,
80 we may consider the ideal, say &, ,, of operators generated by I, ,
For 2 < ¢ << p << oo, Proposition 1 shows that Sy, , properly contains
Sapjgy S0 the following result is a genuine improvement on the one obtain-
ed by Mitiagin (D) (i)).

TarorEM (I). For 2< ¢ < p < oo we have Sy, € I,

Proof. Since Ty, , = 6, it follows that every member of Sy,,,
is compact. The argument (spectral- and polar-representation theorems)
of Mitiagin ([10], p. 335) therefore applies, and it suffices to prove the
theorem for diagonal operators. Thus, according to (1), we must establish
the following inequality.

If delopgy and o, ..., a™ely, then

(Z(y A |2 )v/*) < M sup (2’2 <af”1/4

=1 k=1 [ e R
where M = M(4,p, q) is a constant depending only on i, p and q.

‘We notice (by rearranging the coordinates of z®,..., ™) that the
last statement is independent of the order of the terms 4, and so, without
any loss of generality, we may assume that (|4;])i=, is a decreasing sequence.

Suppose then that &Y, ..., s®™el, ave fixed and that

® oup (31 1ot~ .

fllg=<! 721 " =1
We must show that

2 hd P ifp
@) (2 mapry™) " < a2, 9, 0.
J=1 k=1

To do this, choose and fix a positive integer t. For § = 1,2, ..., n, let

VM PP Z}A,Lw(f)ﬁﬁ— E [P = w;--w; (say).

& fre [y B
Now :
[=<]
) 2 )2
Wy < SUP Ay E ||
k>t k=i41
< Al mmx Zim sinee |4, is decreasing
SIS fo=
= A 'max sup l wﬁ”]ﬂ by Landau’s theorem [9]

1<isn Ifla<s) 21

< A4 PN* Dby Jensen’s inequality and (3),
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so that
A.Tq t
(5) maxw; < —- 2 2417
1<i<n t =
On the other hand,
[ n [ ; y
e\ @Gela2 '1 2/g
S = 3 (3 i< (5 )"
F=1 F=1 l=1 k=1 j=1

by Minkowski's inequality in the space I,

(ZM | )ql maxZ]x(’)!q _ ( }*IM | )g/7 sup lew(’)f;l

=1 ISk § Il =<<

by three applications of Landau’s theorem

< > %)
k=1

by Jensen’s inequality and (3), so that -

(6) %< Fm Z .

(5) and (6) show that

i
. N oN?
’Ultqlzl - W[tq/:!] 7 E }.Ll

where [s] denotes the least positive integer greater than or equal to s.
Now at most 2[#7%]—2 values of u; = v;--w; can exceed ygz._;-+Wyaiz;,
50 that

¢
. 2N? s
(1) By < Tt }; 7"

(7) holds for t =1,2,...,50 we have

2127 -2

n

Amig /2
Dt = § At =3 3t = 0l ) gy
i=1 i=1 it "s=oual—1 ¢

o0 |1
<aNPO(g) 3w (SR by (7)
t=1 =1
< N?C(p, ) 1Ay, by Lemma 1, (ii)<(iii).

Thus (4) holds with M (1,9, q) = C(2, " 2llapgm -
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The observant reader will perhaps have noticed that the above
proof could be shortened by using a generalized form of the Marcinkiewicz
interpolation theorem ([4], p. 189). However, we have not required any-
thing like the full force of this deep theorem, and for this reason have
preferred the self-contained treatment given above. The idea of looking
at decreasing rearrangements in this general context goes back, of course,
to the original paper of Marcinkiewicz [12].

4. A combinatorial lemma. A (finite or infinite) sequence (a;), of
positive integers is called an 7-sequence, r = 1,2, ..., provided that

(8) ap ety =yt

only when {ji, ..., j,} = {ks, ..
are distinet.
‘We turn now to a powerful combinatorial lemma of Bose and Chowla
[8]. Their result itself is striking, its (short) proof even more so. For this
reason, and for the sake of completeness, we provide the details.
LeMMA 2. Let r be a fized positive integer and let n be any prime number.
Then there exists an r-sequence (o), With

{9)

.y b}y e, r-fold sums of terms from (),

I<y<...<a, <.

Proof. Let 8, ..., B, be a listing of the elements of the Galois field
GTF(n). The non-zero elements of the extended field, GI'(n"), form a cyclic
group under multiplication ([5], p. 248). Letting y denote a generating
element for this group, we may choose % positive integers 1
<< %" such that

-
T Uy eevy Uy

v =y+p, (k=1,2,...,n).

(ax)k—1 is then an r-sequence, which satisfies (9) after relabelling. To see
this, suppose that
a; +..

ctoy, =t a,u.rn'md(%r —1).

Then
(y+Bs) - (r+B) = (4B (v + By

After cancelling the highest power of y from both sides we ave left with
an equation of degree r —1 in y, with coefficients from GI'(n). This con-
tradicts the fact that y iy a generator, and the lemma iy established.

We remark that the above proof works whenever # is a prime power,
and even shows that equality in (8) may be replaced by congruence modulo
n"—1. We shall use these facts in the proofs of Proposition 2 and The-
orem (II).

Given a sequence (a), of positive integers, let us denote by ¢,(a),
# =1,2,..., the number of terms of (e), that do not exceed n. Then
we have the following

icm®
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COROLLARY.
o 6 (a)
liminfmax =1 (r=1,2,...),
N=~00 a In’

the mawimum being taken over all r-sequences «.
Proof. Lemma 2 shows that

(10) max ¢, (a) = p

for every prime p. If » is an arbitrary positive integer (= 27), we may
choose consecutive primes p and ¢ so that p" < n < ¢". Then, by (10),
we have :

ta(a)

opr(a) P
'

2l max 2~ > 2
nir = a

> —.
q q I
Since the quotient of consecutive primes tends to one, we obtain the desired
result. : . -
Though we shall not need the following observation, it is interesting
to note that the corollary is best possible in a certain sense. To see this,
suppose that « is an arbitrary »-sequence. Then it is easy to check that all
combinations of the form

ey = gy oo+ (=1,

max

a

with 1<k, < by < ... < by < 6, (), must be distinet. Moreover, there are
(cnr(a)) such combinations, and each takes its values from {1,2,...,n—1}.

Therefore (G”T(a)) <n—1, and we have ¢,(a) < (r! )" +r—1.

5. Multiply orthogomal matrices. An m Xn matrix 4 ={a;) with
complex coefficients is called r-orthogonal, r =1,2,..., if, whenever
L<uyeey oy ey oovy B <1, We have

1
0

m T

20 [ B, =

F=1 h=1

for y Brds

(o s ey = {bay oo

11
) otherwise.

(Thus a l-orthogonal matrix is precisely one whose columns are pairwise
orthogonal in the usual sense.) If, in addition to (11), we have

(12) [l =m™ (j=1,2,...,m;k =1,2,..,n),

then 4 is called r-orthonormal. Given positive integers » and n it is clear
(by choosing m = m(r, n) sufficiently large) that we can find an r-ortho-
normal matrix of order m X#. Denoting by m,(n) the smallest value of
m for which such a matrix exists, we have

3 — Studia Mathematica LV.1


GUEST


34 G. Bennets
LeMmaA 3.
. M, (1) :
lim sup q’of < (r=1,2,...).
N—=>00 .

Proof. Let » and > 0 be fixed. By the corollary to Lemma 2, we
may choose a positive integer N, (> 1/¢) so that

(13) maxey(a) = N (1—e)

whenever N > N,. Let n be any positive integer > N(
N = N, so that
(14)

This last step is possible since

(L —e) (V1) — N} < e

1—¢) and choose

n< NI (L—e) < m(l+s).

whenever N > N,

Using (13) and (14) let (e)2.., be an r-sequence with

(15) < ... <a, <N,
and define the matrix 4 = (ay,) by ;
2nijay ) . B
(16) @ = (a‘N)‘””exp(——l]—a'—) (G=1,2,..,7N;k =1,2,...,n).
rN
Then we have
ri T N 90ci .
- T ! : . i
} H 5,3 B, = () IZGXP 7f(ai1+"‘+air~a’ﬂ1— = )
= 1 h=1 j=1
i g ety = ot g (mod )
0 otherwise
_ 1 it afl+"‘+afr=ak1+"'+akr
0 otherwise (by (15))
- 11 {j, i) =y B}
0  otherwise (since « is an r-sequence).

This, together with (16), shows that 4 is an r-orthonormal matrix, and
it follows from (14) that

m,(n) < rN < r (n(l-l—s))‘

1—¢

Therefore limsup

n—>00

iy (1)
n?‘

<7, as desired.

iom
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The importance of r-orthogonal matrices lies in the fact that their

norms as operators from I, to I, can easily be estimated. To see this, let
A = (ay) be such a matrix of order m xn. Then, for any complex sequence

(@)h-1, We have
’ m n

Z|Zamwkl

L=

. "
2 [T03 s, 2 )

h=1 jp=1

m

SSPPI o] R
n 85, _q!(Z‘]m,y) .

ey} 1=1 k=1

Yoo =hogsens
It follows that [All,, < (r1)#".
It is convenient to summarize our results as follows.
PRrOPOSITION 2. Let q be o fized even integer. Then, for any positive
integer n, it 18 pomble to construct an m xn matriz with the following prop-
erties

() A, < ((g/2)!)M,

(i) Jagl =m™V (j =1, ..., m; k =1,...,m),

(i) m = %n"/z—ko(n),

Moreover, if n is a prime or a prime power, then (iil) may be 'replaced by

(iv) m < n?.

“Proot. For (i (i), (ii) and (iii), we take ¢ = 2r and construct an 7-ortho-
normal matrix as above. For (iv) we modify the above argument, replac-
ing (16) by

ay, = (W —1) """ exp (2 i —

and noting, in Lemma 2, that equality in (8) may be replacéd by congruence
mod (n" —1).

In the next section we shall be interested in construeting an infinite
matrix from a given sequence of finite ones. For this purpose it-will be
convenient to first consider so-called “block diagonal” matrices. A matrix
A = (@)% Is called a block diagonal matriz if there exist sequences

.
(mp)2., and (n)je, of positive integers with 1 = m; <m,<<...,1=m

) (4 :1,2,..’.,%"?1; k =1,2'7 ooy M)

< Ny..., such that ay =0 If (j, k)¢[my, me,) X [y Myyn) fo1 any ¢
Putting J, = [my, My, and K, = [ny, m,) for t =1,2, ..., the blocks
AY are defined by" »

PR L (3, B)ed, x Ky,

% =10 otherwise.
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‘We then have 4 = ZA(” where the summation is performed coordinate-
wise. =1
Conversely, if a sequence of finite matrices, (AM)2,, is given, we
o0
can construct the matrix 4 = 3 4® as above. A will then be called the

=1
block diagonal matriz associated with (A®),. The norm of 4 is computed
as follows.

PropOSITION 3. Let (AD)2, be a given sequence of fimite matrices,

and let ||-|| denote the operator norm from I, to 1, 1 <p< 00,1 g< o0.
Then we have ‘ i
|34 = (X aor)”,
t=1 t=1
where
P4 .
—— if p>yq
= ‘ P—q s
0o if p<gq.

Proof. Given a sequence (w;);—, of complex numbers and a q|ubs4e‘t
I of the positive integers, we denote by (I) the restriction of o to I viz:

kel,
0 otherwise.

z, if

$IG(I) = ‘
‘We then have

|54

=sup{]y(Z”’A“>)| lolly < 1, Iyl < 1}

=1
[y (J,) APz (K,)|: anK,II,) 1, Z\ly(Ja)H }

t=1 } t=1

~sup{2| (Jouq.nA“’uuw (I, llp: an E)p<1, leu TG <1

b=l
( 2 o)™,

ag desired.
In this paper we shall only need Proposition 3 with 2 = p < ¢ < oo,
in which case 4| = sup [A®). We have stated and proved the general

Ms

= sup{

case since other values of p and g are considered in [2].

icm
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6. Extension of the Pietsch-Triebel result. In this section we establish
the converse inclusion, 17, , = Gzl,,,“,, to that given in Section 3, at least
when ¢ is an even integer. It is easily seen from Proposition 1 that this
is a substantial improvement on the Pietsch—Triebel result (D)(ii) —
even for non-integral values of g. The proof relies heavily on the results
of Sections 4 and 5.

TueorEM (II). If ¢ is an even integer, and g << p << o, then I, , & Gapyg -

Proof. It follows from Theorem 1 (iii) of [1] that the identity oper-
ator on I, is not (p, g)-absolutely summing, and so, by Calkin’s theorem
[19], (the two-sided ideal) II,, consists entirely of compact operators.
Thus the argument of Mitiagin again applies, and it suffices to prove
the theorem for diagonal operators. According to (2), we must establish
the following inequality.

If 2 is a sequence of complexs numbers with the property that

00

f}( D han ) < oo

=1 k=1

a7

= (@ )ip=1 1S @& Mmatriz satisfying

51| Siae

J=

whenever A

(18)

‘< co for each mel,,

hen Aelyy, -

Before proceeding with the proof, we notice (by changing the order
of the columns of 4) that the last statement is independent of the order
of the terms A,. Moreover, by taking a; = oy, j, k = 1,2, ..., it follows
at once that Ael, (Pietsch~Triebel result), so that }:, the decreasing rear-
rangement of A, must exist. Thus, without any loss in generality, we shall
assume that (|1;])5,; is & decreasing sequence.

‘We construct a single matrix 4 satisfying (18), which, via (17 ), forces

2 to belong to lzp,q »- A will be a block diagonal maitrix, 4 = ZA(’) where

each 4@ is # (= g/2)-orthonormal. Tt transpires that the quzmtlty (17)
depends critlca:lly on the location of these blocks: if they stray too far
from the “curve” j = k", the estimates given below deteriorate con-
siderably. For this reason, we choose A® of order 27x2%,¢ =1, 2,
which choice is possible by Proposition 2 (iv). The block A(‘) then occu-
pies the rows J; and the columns K;, where

2r(t—1)+2rt 2rt —1
J=E, = {1}, J, = [_—_@27_1 it ]
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and
E, =[2% 2"Yy,  t=2,3,...

Since each A% is r-orthonormal, it follows from Propositions 2 and
3 that A satisfies (18). In fact, we have

© o0

v
sip 3| Mg = sup| A0, <r!.
t :

lzlo <1 521 ‘=1

Consequently, by (17),

o> B S = 5 3( 3 o)

j=1 k=1 L fedy keKy
0 00
_ : i — 0f2 ()2 —1/2 2\ p/2
— 227‘ (27) D2y ( Z Mln‘z) — 2t17(q/zp 1/2) ( Z‘ Ml\: z)]’/ :
=1 ke Ky t=1 kel

80 that Aely,,, by Lemma 1, (ii) @(iv).‘

7. Closing remarks. (i) Throughout this paper we have considered
. only complex Hilbert space. The extension to the real case follows easily
by considering real and imaginary components of the appropriate ,i1{~
equalities. :
(i) Theorem (II) can be used to obtain new information concerning
11, , for every q > 2 — provided that p is suitably restricted. To see 1;]‘1is-,
let s denote the smallest even integer exceeding ¢ (i.e. s > ¢). If p satisfies
1/p=1/g—1/s, and Teis (p, g)-absolutely summing, then T is also (r, s)-
$
ﬁ;@; (see [10], 0.7). Tt follows
from Theorem (II) that T'e@,,,,. The foregoing remark, however, is
proba}oly redundant. Indeed, it should be possible to interpolate between
even integral values and so extend Theorem (II) to arbitrary g > 2. This
T have been unable to do. .
(iii) The space /7, , becomes a Banach space when topologized by meuns
of the norm ' ‘

absolutely summing, where r =

I, ,(T) = inf{J: M satisfies(1)}.

Ex a recent ll)aI]Jer [7] ‘Garling has given a proof of (A) in which the norms
».p are calculated. The corresponding problem for IT,, appeurs to De
pr ey g p g ADPears to be

(iv) .Professor.A. P.elczyﬁski has kindly brought to my attention the
paper ngmometa*zg series with gaps, J. Math. Mech. 9 (1960), pp. 203-227,
by W. Rudm. Rudin uses combinatorial results of Brdos, Turdn and Stohr
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to construct certain trigonometric polynomials with small I -norms
(g =2,4,6,...). The central result (Proposition 2) of the second half
of our paper follows easily from Rudin’s estimates. (Note, however, the
Bose-Ohowla result (Lemma 2) gives slightly sharper estimates for 1T, ,(T)
(cf. (iii)) than do the results of Brdos, Turédn and Stohr.)

(v) The techniques of this paper, and of [1], can be used to give
many new results concerning diagonal operators between 1, spaces. We
remark, however, that we are still far from solving the following general
problem. Given real numbers p, g, 7, s satisfying 1 <p < oo, 1<g< o0,
1< § < r< oo, what are necessary and sufficient conditions on 1 so that
At 1,~1, be (r, s)-absolutely summing ?

Added in proof. An affirmative solution to the conjecture of 7 (ii)
is given in a paper Norms of random matrices (to appear in Pacific
J. Math.), written jointly with V. Goodman and C. M. Newman. Using
probabilistic techniques, an analogue of Proposition 2 is given for every
¢ > 2. The arguments of Section 6 then show that II, ; = Gyyq,, Whenever
2<g<p < 0.
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(Lyy L,) mapping properties of convolution transforms
by
G. SAMPSON, A. NAPARSTEX and V. DROBOT (Buffalo, N. Y.)

Abstract. Let % and f be two Lebesgue measurable functions on R®. Then the
equation

bxf(@) = [ k(z—t)ftyde
R

defines the convolution transform of % and f. Let T(f) = Exf. In this paper we give
necessary as well as sufficient conditions for 7 to map Lp—L, continuously. We show
that our results are sharp in the sense that we exhibit a class of funetions ¥ such that
the mapping interval we obtain is maximal except for endpoints. For example, for
k(t) = l%)1® we give the exact mapping properties. We also give the exact mapping
properties for a class of kernels in R™.

Introduction. Let % and f be two Lebesgue measurable functions on
R". Then the equation

Texf(z) = flc(m—t)f(t)dt
Rn

defines the convolution transform of % and f. Let T (f) = k«f. In this paper
we give necessary as well as sufficient conditions for T to map I,~L,
continuously. We show that our results are sharp in the sense that we
exhibit a class of functions % such that the mapping interval we obtain
is maximal except for endpoints. For example, for k(f) = ¢**/jtP we
give the exact mapping properties (see Cors. 3.22 and 4.29).

The most basic result in this direction is Young’s inequality [4].
It states

() WZ (Mg = W flly < Wellyya 11l s

where 1/p—1/¢g =1—14, 0K AL,

Hardy and Littlewood [1] extended this theorem to include the
functions k(x) = 1/l#]*, 0< i< 1, as well as the Hilbert transform.
Riesz, Thorin and then Marcinkiewicz [5] proved a general mapping the-
orem that not only included all the previous cases but also gave other
proofs that the Hilbert transform maps L,(R)—L,(R) for 1< p < oco-

_ Hormander [3] has weakened the condition %eL'* (see (%)) by giv-
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