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(Lyy L,) mapping properties of convolution transforms
by
G. SAMPSON, A. NAPARSTEX and V. DROBOT (Buffalo, N. Y.)

Abstract. Let % and f be two Lebesgue measurable functions on R®. Then the
equation

bxf(@) = [ k(z—t)ftyde
R

defines the convolution transform of % and f. Let T(f) = Exf. In this paper we give
necessary as well as sufficient conditions for 7 to map Lp—L, continuously. We show
that our results are sharp in the sense that we exhibit a class of funetions ¥ such that
the mapping interval we obtain is maximal except for endpoints. For example, for
k(t) = l%)1® we give the exact mapping properties. We also give the exact mapping
properties for a class of kernels in R™.

Introduction. Let % and f be two Lebesgue measurable functions on
R". Then the equation

Texf(z) = flc(m—t)f(t)dt
Rn

defines the convolution transform of % and f. Let T (f) = k«f. In this paper
we give necessary as well as sufficient conditions for T to map I,~L,
continuously. We show that our results are sharp in the sense that we
exhibit a class of functions % such that the mapping interval we obtain
is maximal except for endpoints. For example, for k(f) = ¢**/jtP we
give the exact mapping properties (see Cors. 3.22 and 4.29).

The most basic result in this direction is Young’s inequality [4].
It states

() WZ (Mg = W flly < Wellyya 11l s

where 1/p—1/¢g =1—14, 0K AL,

Hardy and Littlewood [1] extended this theorem to include the
functions k(x) = 1/l#]*, 0< i< 1, as well as the Hilbert transform.
Riesz, Thorin and then Marcinkiewicz [5] proved a general mapping the-
orem that not only included all the previous cases but also gave other
proofs that the Hilbert transform maps L,(R)—L,(R) for 1< p < oco-

_ Hormander [3] has weakened the condition %eL'* (see (%)) by giv-
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ing a strictly larger class K’ (see Def. 1.3) which includes the Hardy-
Tittlewood kernels and the Hilbert transform. His theorems apply also
in R For example, if ke<X* and 1': Ly,—>Ly, for some py and ¢, then
T maps L, into L, for all p and ¢ such tha

1Up—1lg =1jpy—1jgy =1 —4 with 1<p<g< oo,

For the case L,(R")--L,(R"), Hirschman [2] has given conditions
on k and % which are sufficient for 7' to map L,—L, over finite intervals
of p, ie, 1< py< p<py< co. He shows by an example that this p
interval cannot he extended.

We extend Hirschman’s result; see Corollaries 1.13 and 1.14. Further,
we obtain theorems for the L,—IL, case when 1/p—1/q = 1—2; the
methods of proof depend on A That is, the method used for 1/2 <A1
differs from the one for 0 <A< 1/2.

We also give, in a systematic way, necessary conditions on & in order
that T maps.

1. Sufficient conditions on % such that T(f) = kxf maps L, (R")
— L, (R™ continuously. All the functions f, g, ..., k that appear in this pa-
per are locally integrable on R". Unless othelwme specified, we will use f
to denote a function with compact support, whose Fourier transform

feL (R™.
We begin with convolutions defined through limiting processes, such
as the Hilbert transform. A suitable way to define the Hilbert transform

1 . -
H(f) = > fin R is to approximate L/t by locally integrable funetions

g, (%) that are zero in a symmetric neighborhood of both the origin and
infinity and coincide with 1/t everywhere else. Then we define

1
— xf = limg,«f.

To ShOW it nmps L,—~L, for 1 < p < oo it is essential to get g()od estimates
of |{x: DI > y}| for each y > 0. We will start by looking at all trans-
forms ﬂldﬁ are defined in this manner.

DrrrNrrioN 1.1, Given a sequence of bounded functions {g,} with
compact support, then if ¢, «f converges in measure for each f, weo define
H(f) = limg, «f,

where here the convergence is in measure.
DEFINITION 1.2. For 0 < 4 < 1 we define the weak 1/1 norm of a fune-
tion g by

gl = supy [{: lg(@)] > y}f*.
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DrriNiTioN 1.3 (Hoérmander [3]). We say ge K (M , &) if there exists
a compact set M < R" and a neighborhood of the origin N (0) < R"

such that
B\ 1/2 2
A(g; %) = sup { f t"”[g(fy) —g(—f—)] m} < oo,
' i

>0
ven( €N

A clags of functions on R which are in K = K'(M,N) is defined
as follows: Let g be such that |g' (1) < 1/% and for each n g(£) is abso-
lutely continuous for 1/n <t < n )

DurINriioN 1.4. We will say geLy(R, O) if

o = sup 10l
felLy, ”f lxp

It will sometimes be more convenient to write gequ,(R”) without
showing the constant C.

TeroREM 1.5 (Hoérmander [3]). If

(i) gmel* (I, L), m =1,2,..., and

(ii) QmEL%%(Rn; Om); m = Ov m = 17 2, 1/1’0_1/90 =1-4,
then

(9 *F72 < 2111l [1yalfls
and
I (F) 5 < 25upl] g5l lya I,
Sfor m =1,2,..., where
“lgml”l/l = 2711&0_%/1}0)0?07 ml/llml +9A(gm)

The proof is adapted from Hormander ([3], Theorem 2.1). Condition
(ii) of Theorem 1.5 implies |H(f)lly, < Cliflp,, and combining this with
Marcinkiewicz’s interpolation theorem [5], we obtain the following:

CoroOLLARY 1.6 (Hormander). If

(1) Jme L"z(l:)(u ]m,)7 m = 17 EERRRS] and

(i) (/7115147»%(1?" Co)y Cu<C,m =1,2,..., 1/py—1/go = 1—4,
then H e L (RY) for all 1< p < g< oo with 1/p —l/q =1—-4A

By means of Theorem 1.5 and Corollary 1.6 it is easy to show the
full mapping properties of the Hilbert transform and the Hardy—Little-
wood kernels. But there are other classes of kernels to which this theorem
does not apply. For example, it does not apply to kernels which map
only in a partial range.

Hirschman [2] introduced the idea of decomposing the kernel k and
applying the Riesz—Thorin interpolation theorem. Naturally, other de-
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compositions and estimates could be used. For example, one may replace
the Riesz—Thorin estimates by Marcinkiewicz or Hormander or other
suitable estimates.

We first decompose

= Z’ Un(t), teR?,

m=1
in which we agsume that the series converges almost everywhere. In addi-
tion, for each A4 > 0 let

o0

[ 1@ —t)di< oo

m=1 |t
for almost all zeR". Also, we assume that ffm exists for each m, and
Untf = § 1 (Taf),
where
~ 1 i
(o) =§(0)(a) = s lim [ o=i=* T(0ar.
(27':)"_ @—00

[zl <e

Remark. If U,eL, for m =1,2,..., then the latter properfies

would easily be satisfied.
LemMa 1.7. If k() = i Un
(1) NUnm*fllz < ”Um”oo”f”21 and
(i) o xfll, < 2-:1 HUm*pr for L<p< oo
DEFINITION lmg Let |Ullx = sup [T #f)}.
DEFINITION 1.9. Let g be any cfxlfe of the f()llowing functionals:
(F-Milay ox JI-[. Set

Gp ({Um} , 0)

(t), then

[ <1l s

'VIL) ](2 Np)/p -

= 2 1Tl Lo (T,

TrROREM 1.10. Let 1<p < 2. If 8,({U,}, o) < oo, then ke LL(R").
In fact, ke Li(R™) for p <r< p'.

Proof. We shall prove the theorem in the cases ¢ = |-k, Ill*|l:;
the proof of the other case is similar and will be omitted.
We have

1T+ fI < o (U) Ifly 1T % flls <
By a theorem of Marcinkiewicz, this implies

1Ty < Cp T, &2 [

and ” Um”oo ”./”2

L,

icm®
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where C,, depends only on p. Therefore, bV Lemma 1.7,

W% £, < ZHU *fl, < O, If1,S,

m=

({TUn}; 0)-

One can, in fact, prove that

S, (T}, 1) < 0028, (T}, 11-111) < 0= &y ({Tn}, [-[a) < 0.
Lemma 1.11. If A;> B;>0, then

A,4,...A,—B,B,.. Bngg[A -By) A]

i=1

J?ﬁi
Proof. By induction we can show

A,4,...4,—B,B,...B
= %(.Al-—Bl)(AZA,,...A,,,+B2B3...Bn) +
U 4
1 .
+?,,—_T(Au—l_Bn—l)(‘Al'*_Bl)(A2+B2)"'(An-—2+Bn—2)(An +Bn)+
+ = 2%._ (4, —B)(4;+B)(4,4+By)...(4,_,+B,_,)
<[ 4i-Ba[] 4]

i=1
J#i

A useful decomposition [2] of % is given by
Un(t) = k(t){B(t/8,) —B(¢/8,,)} for
Uy (t) = k() R(t) e Ly,

with RB(0) =1, R continuous at the origin and §,, oc. For Corollaries
1.13-1.15 we will set

R(t) = R(ty, tay -y 1) =1/ (L+EY(1+5%)...
= R1(t1)R1(ts)--'R1(tn) -

m>1,

(L+69

Leya 1.12. et teR. If Ry(t) = 1/(1-+8™), then
(i) there cwists an A and b> 0 such that | B, (f)] <

(i) f A

Prooﬂ For (i) we use contour integration to show that there exists
an 4 and b > 0 such that |B,(t)] < Ae ®™. To show (ii) we use the facts

Ae™ and

VAt =0 for 1<j<2m—1.
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PR (8)eLy N Ly, for all j and R,(f)eLyn Ly, which imply

f R, (v) dv

—00

| R, (1) N
N Yar
and

0 id..d & ib
RO () = Vor f "o’ Ry (v)dv.

—00

But
BI(0) = f PR (0)dp =0 for 1<j<2m—1.
) 27

—00

OoroLLARY 1.13. Let 8,/ o0,
/8wy - < Speas

() =11, BpnK B < By
/10, 11> 8

ml
and suppose for some positive integer &

) [ o010 8 <a;
Rr" )
@ | R RS — RS )} e < Do,
R’Il:
and
3 N - @D < oo,
(3) | 5 a o,

then kel (R™).
Proof. Since k(f) = 2 U,,(t), then using (2) together with Theorem

1.10, it is sufficient to show HUm[l1 Ow,,, where C is an absolute constant.”

Let
4, = 1.;.(1/ 1) and B, = L14(4/8,)*

Therefore, by Lemma 1.11,

ﬁ B)/ f ] A, B

tm /Siﬁd\ ‘tI/Sm—Dz

R(t/‘gﬂn) _R(t/sm—l) = (l—"] Aj_'

J=

< Jlu-so[] 4]/ [T45,<

=1 J=1
J#i
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Therefore,
Ul = [ B8 [R(2]8,,) — R(1/8,,_y)| at

R

<20° [ [0 (D] [16(8)] 88 < 20"
o)

In the following corollary, for the sake of simplicity, we assume

:‘ilmijai“k yat|< [P ()],

where P is o polynomial and M is wufficiently large.
CorornAry 1.14. Let Icelnp(a) oz [aJ-I—l, and S, = 2™. If

f [(pm :]2“]7" ‘dt < A2 ( ﬁ)7

nﬂ
where A. is independent of m, then k < L3 (R™) for
2042 (——— ——ﬁ) 2042 (—2« ——ﬂ) "
I i —, 0<a, 0< << —.
) T g
2
Proof. From the proof of Corollary 1.13 we see . )

10, < 427 7).
Now we show & elip (@) implies ||lA7,,,HC,o < A27™e,

Una) = [ = (t) {R(£]8,,) — R(8/S,1)} dt

»

i

[ ol +0) {SBE(Sut) — 82y B (S,st)} dt

y g )
= [ (@ +)8,) ~F(@+]8, )} B(5)d
nn
Fur‘th(sr,
Jo (o1 1/8,) = () + @, (@) (88, + @ (@, 2, 8,) 111°/85,,

1= el =[]
Where g == (fyy flay - ooy fy) 38 & multi-index, |u| = ug+pa-+. .4 py, &
= e, t, and for o suitable constant 4, |e(®,1, S,) <4 for all
@, t and 8,,. Therefore,
Oa@) <] 3 aulo) {480 =180} Bt +
LAV (2] RV
+24 [IR(1)] [H°/S5 dt.

R"
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Since E(t) = By(t) By (ts). . Rulty),
JrR®a =0, 1<|ul<[al.
RrR
Therefore,
1Tl < (A[S50) [ H“B(t)d8 < A2

R
Now to show (3) of Corollary 1.13

ot 4—f) =il <
A o--ma(2—2/n) 2’” ( ) - A o —m{e(2~2/D)-(P~ni2)2—p)p}

This series converges if a(2 —2/p)+(B—n/2)(2—p)[p >0, or

2 (a-l— " B
P> 2
P ’
| 2t (5 -1)
‘COROLLARY 1.15 (Hirschman [21). If keLip(a) and FeLip (2, B), then
LeLZ (R for .

2a+2(%—,3) 2a+2(% —,3)

n %
2 - —_
o+ (5 ) (5
Proof. The proof follows from Corollary 1.14 by using the condition
keLip(2, B). :
CoroLLARY 1.16. If there emists a sequence S,/ oo such that

@ [ mwa<a,,

S — 1< <Sy,

<p< . 0<a, 0<ﬁ<—;f.

(2) ” k() e“"‘dt”w < by,
. Sy SH<Sy

and

(3) 2 alt=—PNnpGr-2p - co,

m=1
then keLZ(R).
Proof. Take U,,(¢) with B(¢) the characteristic function on the closed
unit ball. Then we find
1Unh <an  and  [Uple < b
The result follows by Theorem 1.10.

e ©
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Remark. In Corollary 1.16 we could set

B(8) = By(t) By(ty)... By (1),

where
1, <1
Ry = |7 WD
0, elsewhere.
TuroreM 1.17. If there ewists o continuous = 0 and f co such that
(1) [ m@iat = o(F(s)1)
UES]
and
. 1 78
. e‘ft~f¢]{;(t)din =0 ([_ﬁ] )
. lm:‘L i G
where a > 0, > 0, then keLb(R") for
2(a+p) 2(a+8)
at2p <p< P

Proof. Choose §,, such that _}”(Sm) = 2™, Then there is a constant
A sueh that

()] dt < A2™me
S—1<SIH<Sy, )
and
” [ éehnat Hm < Ajem1ye,
Sip—1<I <,

But here Corollary 1.16 applies and gives the result.

Remark. It follows from Theorem 1.17 that the functions (sin#’)/
and 1/tlog([t]+¢) are in IZ(R) for 1< p< oo; and ¢ s in LZ(R)
for3/2 < p < 3.

2. Necessary conditions on [ such that T(f) = fxk maps L,(R") —L,(R™)
continuously. Tt is well known that T(f)=Fk+f maps L,—I, continaously
for 1< p < oo if and only if keL,. Thus in this section, we will only look
at 178 ¢y . As & matter of fact, the basic idea in this section is to study the
interplay hetween the partial derivatives of & and the way the L,-norm of
% goes to infinity.

Tor a given function k(3),teR", and with & = £1, T;> 0, we set

. ot Ic(t)’ Tj < ejtj < sz for 1<j<m, :
0p(t) =

. elgewhere.

4 — Studia Mathematica LV.1
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We also seb
I(g) - f dtl... f dtn]g(t)l'

Ty<eyty <27y Tn<enin <2
Leymma 2.18. If
(1) there emist positive constants A and B(B < 1/2), and functions o,
such that

n ’
I(k(‘)—k(wv)}@Azfujz(a)j) for 0K < BI, 1<j<n

and
(2) there exists a positive constant C < 2.4Bn such that
— I(k) .
lim < C or 1<jign
T T () f Isn,
and .
J— 1-+njg
(3) lim (L ) = 0o,
Tg>o0 H Tllp) H( )Ilq

reA(s

where Z (s) is a subset of {1, 2, ..., n} which includes s, and T',—oco as T~oo,
reZs, while T; remains fived for ie{l,2,...,n}\Z,. Here A and B are
absolute constanis and s is exactly one of the mtegws 1 2y iy N
Then ¢ LE(R™).
Proof. By (2), this irplies for T, large
I(k)
< 0T,
I(w) = 77
Now consider only those #’s in R” for which
I(k)
S 2 And ()

for 1<j<n.

Then for 7, large,

< BT;.
Therefore for these »’s we have

(%) — Tsop(0)] < T{T(+) —To(-— AZ@JI o) < L (H).

Ja=al

This implies
I(k) l

o
S

J=1

‘{?JER”: [k oy ()] >

(L, Lg) mapping properties of convolution transforms ’ 51

Therefore,

(%)
2

( I )1+n/q
ﬁ ( )llq
§=1
But if & is to map L,—L, this would imply the existence of an absolute
constant C such that

=>D

I(k)
{v: w0y () >(7}

(I(k))l-l-n/q
L ] (I (e ))1"’

But on letting T'; 1 oo this contradicts the hypothesis (3) and thus k¢ LE(R").
TaroreM 2.19. If

OTi"... T > D

(1) 0< e, <1+p;  for 1<i,j<n
@) O T, .. T = I (k) 3= G, 1., T%
and

ok

7 | S ol o 1<i<,

where these estimates hold for large ; and Ty, and Cy, Cy, Cy are absolute
constants.
Then k¢Ly(R"™) for

%+ Z": (4B —a)

1,J=1
() P> =
2 a;
=1 )
Proof. We shall apply Lemma 2.18 with 7, =T, = ... =1T,. Set

w;(t) = 0.t

Then by (3) there exists an A such that

n
, T, .
Ik(-)—k(-—v)) < 4 E oI (w) for 0<wj<—2i, 1<jign.

Since 0 a; < 14y f01 1<<i,j << n, then
I(k)

< 0Oy

g

Iw)
and. therefore for 7', large, 1. < j < n, we find
I(k)

lim ———— =0
'y ~+00 Tl (wj)
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TFinally,
i Lo oy~ —1 ap~Bip—1
—  (L(g))re L
lim — = 05 lim = T'n/:p
Lo v [T (I{w;))"® = '
o ] 7te)

This implies k¢ L5(R") for p satisfying (+).

To see how Theorem 2.19 works, take k(f) = ¢™'", r2> 2 and n = 1.
At this point we could also make some straight-forward observations.
Tt is well known that 7(f) = &+fmaps L,~ L, continuously implies 7' maps

ali"

L,~>L, continuously. Therefore, if "ohe right-hand side of () is < 2, then

k¢ Ly (R") for any p.

A way of showing keLj(R") is to firsh localize % and then study
both the L,-norm as well as the Fourier transform of this localized version.
We could give a theorem which is in & sense a partial converse, by investi-
gating the L;-norm of the local version of k and the Fourier transform
of & to determine when k¢LZ(R"). Its proof would be similar to that of

. Theorem 2.19.

3. Examples to show our theorems are sharp. To show our theorems
_are best possible we give the exact mapping properties of & certain class
of functions. For R" (n > 1) we consider the class of functions ¢¥®/g(2);
while in R we consider other classes as well. We shall divide this section
into parts A and B. In Part A we shall consider R-examples and in Part
B we shall consider R"-examples, # > 2.

A. Exavpres 1IN R.

THEOREM 3.20. Tet k(t) = ¢7®]q(t) with te R, where f(t) is real-valued
and ¢(t) > 0. Also, '

if @it gt for >0,
@, g for t<0,

and [f" (1)} is larger tham a fizmed positive comstamt outside a compact sel.
Finally, we will assume 1[g(%) s locally integrable and

2T 1 -1 1
W7 [ odi=co and  lim? [ —dt=
e 4 9(8) oo _y, 9(0)
If
| 11»«2[]) od 217&(1-—2/1)’)

T X
1;}{?& g(8)177 (8 |1/p < oo and Z 2™ fu 21n [llp = 00,
=1

(Lp, Lg) mapping properiies of convolution transforms 53
j=1,2, where &g =1,¢ = —1, then

keL{(R) for p<g<yp'
and
k¢LE(R) for g<p and ¢>p'.

Proof. First we will show ke LI(R) for p < ¢g<p’'. We define for
m>1, ' ‘

&) L
I L P L
Ve (t) = l 9(t)’ = ’
0, elsewhere,
&0 .
_gm <t< __gm~
Van-a(t) = [ 9@’ ’
0, elsewhere,
and
k(t) = 2 Vm(t)
m=0
Now
-1 m~—1
Vamll < W: NV om—ilh < m
and
. 1 . 1
1V ol o < W amilloo <

Tg@If @
Thus, for 2 < g¢< p’ consider

2_ Ve V=2 < j AN
P am 2mily = g 2m f” 2m 1/p" ‘f” om lllq—llﬁ

=0

g( _zm—l) Ifll( _2m—l)l1/2 .

But this series converges since

— 2m(1—2/p’)

ljm "—""'—T"_L_’—'f < o0

mevoo §(2™)|f (2™
Similarly, we get the same estimates for the pair [[Vy,_ilh, ]}Vm_lnw.
Hence, by Theorem 1.10, this implies ke LI(R).

To complete the theorem we shall show k¢ Li(R) for ¢ > p’. To do
this we shall use Lemma 2.18. Without loss of generality we eould assume
k(t) = 0 for ¢t < 0, and for ¢ large f' (1) > C.

Sinece f'' (1) > O for ¢ large we have

f)—f(4)=0—4] (A—fixed).
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Therefore,
]_f’(t)|>§fl’ for t>1T.
Since f” () > 0 and |f'(t)|—>oo this implies for ¢ large f'(f) > 0 and in fact
| f’(t)z—g—l’ for t>1T.

Now we shall employ Lemma 2.18 and hence assume 0 < v < 1'/2, and T
sufficiently large.

IB()—k(-—) = [ I6(t)—k(t—0v)d

rt<2d
MO D) ) i)
= b — + —
reicz 190 90 g glt—0)
< d,;_..l;_ |61 - gifE-v)| 1 e + &
T<t<2T ( ) r—ogt<T g(t) 2P —p<t2 g( )
a 9] [v]
< Jol — 17O () + +
0@ T O Gy T ey
2
J(#) v v
v — b4 -
h J‘mw g(T—v) ' g(aT—v)
Tz .
oy [T
x 4
4 900
Hence,
20
I(k(:)—ht—v) <20 [ 0@ with o) =f@)/g)
‘ 7
and 0 <o << T2,
Now we consider
oa
Iy & g()
TIHw)

20 ‘
.. '’ t
r fL0,
@ 9@
. , q, L
But since f'(t) > ET for t > T, this implies

linl—ﬂﬂ)—<lim 1 =0
T-ro0 .TI(CD) \T-—wo cre e

©
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Finally, we must show for ¢ > p’,

Lim (I ))H-]/q

Tooo TH(I ()2 =
Now,
IF' &) —F(A)] = 1f(Olt—A] (4 is fixed) T<t<2T
< 4Tf"(2T).
Therefore,
F) <8I 2Ty for T<tL2T.
Hence,
I
D aw
fim 2 Y )

o 2T pr g
r T%fme
90
( I )1+1/q

Fra g(1)
> Olim e 5 >0lim —— .
2 el (o )l/a(fT G ) 70 §(2T)(f" (2T
)

— Ti—2a

But by hypothesis
i gm—2ip’) '
m r/ m 1[7) = 09,
£ g@m (2™
which implies for ¢ > p’, o
— -2l

lim ——————— =00
00 9 (T) (£ (D))
and hence our result. N
&7 )
Tusornm 3.21. Let k(t) =m with teR, where f is real-valued,

gt) >0, and 1[g(t) is locally integrable. Also,
IF @, gyt for t>0, "1, g(t){ for t<0.

Linally, we assume

< (IS8 +1f(8

28
_.m _ S| .
m J (! f 18] Targe.
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If
TR SPIF (@28 for some p<2
m ———— e < 00 Him |87 = oo - for some B <
I81c0 9 (8) [f (28) 1 " IS ‘ ’
and
> om(i~1/p")
- = 00
ﬂ; 9(e2 @ (G2 ) [+ (2" e
j=1,2, wheree =1, & = ~1, then
keLi(R) for p<q<p’
and
E¢LI(R) for gq<p and g>p'.

Proof. First we shall show keLi(R) for p < ¢ << p’. With the same
decomposition as in Theorem 3.20,

=1 m—1
Wamh < 7@ NV emalh < (=
and
. R 1
1V amlt oo < 7@ [ @) ||Vzm—1|]m\ T [ g R
Thus, f01 2<g<y’

m(l—2/p’) gm(2/p'~2/a)

”V"m”a:qllvm“ —2/q m
2 e ,; g(2™)]

Now for m large enough,

17 oM\ 11/p | 17 1;L+1 1ig—-1/p" *
@@

2m(1 —2[p°)
—— s L O
gEmIfr @
and
1
(zmﬁ lf” (2m—}-1) ])llq—l/p’

<0.

Therefore,
i 2 jom(z—A)(1/a—1/p"
Wﬁ L0 /2m(- )1/a~1/p")
Hence,
Z ‘]V2m1]%altvﬂ1n||}~2/q< 00,

me=1

and we get the same estimates for the pair Vo, _1ll, “VW 1l - Hence, by
Theorem 1.10, this 1mp11e.s keLZ(R). To complete the theorem we shall
show k¢ LZ(R) for ¢ > p'. To do th1s we shall use Lemma 2.18. Without

icm
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loss of generality we assume %(f) = 0 for t< 0 and f(t) > 0.- Now in
applying Lemma 2.18 we can assume 0 <o < T /2.
2T

I(k(-)—k (mq;)) f [To(t) — o (— )| @
(L) 21v|
<P !f o O T O
But
@) = (D) =17 1t —T1;
hence
FOISTIFD+f(T)  for T<t<al
Therefore
27
at
I{l(-) = (- —o)} < 8 0| (TIf" (T)| - If (T .
( 0) <3 [0I(TIf" (T)]+ If( )f)Tf e
Setting
wlt) = TIf" (D) +|f (1) for T<i<ar,
g(%)
we have
27
I(k()—k(-—v)) <30 [ o)
7

Now we consider
27 dt
I (%) # g(t) , 1
TTI(w)

= < N
T \Tijf“(T)] —~+0 as T-o0

TZ IIT T /T
(T*1f (T +T15( )I)T IO}

Finally, we must show for ¢> p’,
= (T()
i L@
2oe TP (1 ()]
Now

27

Tt g
= (J %)

" g ()4 1f(

24
1 ] g
(mye{ [ —
(Tf g(t>)
TI -1/q
= lim
‘oo ERT){T (" (T) |+ If ()} "
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But
*® 27%(1 ~1/p")

2 g zm zm_llf” 2m—- \“‘]‘],f’(zm_l)l}]m’ =

=1

and
Clim TP [f(T)| = oo for some f< 2
L0
implies our result. For, if
M-l

=0< o,
}ﬂng T *

then
gm(L—1jp') gm(1/p’—-1/g)

g @ I @+ I @I @) (@M
< 0+1  for m large.

Hence, , :
2m(1—1[;p') {zmlfu (27)z)| + |fl (2M)l}l/(1~1/1)'
sE e+ ey <O =0
(C+1)
= 21)1(2/17/_2/;[) lf” (2m) Il/])'-—-l/a
(0+1)

= 2m(2—-ﬁ)(llp’—l/q)(2mﬂ ’f“ (zm) l)l/_‘[)’—I/Q’

which is a contradiction and hence our result follows.
COROLLARY 3.22. Let k() = /[P with teR, a %1, b<1 and
12)a+b> 1, then

LeLI(R)  for <g<

@
a+b—1
and

k¢ LL(R) f(rr 4> hd «md fm < i

H) 1
Proof. Case 1. Here we apply Theovem 3.20. f(t) = [0|*, & =2, g(t)
= [¢]* implies
0] = e —1)jye-?
and since (1L —5)/a < 1/2,

o pHY ey

2 S
) = Z ey _}J 1=
Me=1 2mb2 a . Mye= “a M=)
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Also,
1 21-0)
im i —
im ——— = =}1m 1=1,
E4VII

and hence we get our result.
Oase 2. f(i) =1i[*, 0<a<2, ¢ 1, and g(2) = [tP;

[F'] = ala—1] g2,

Now we will apply Theorem 38.21:

1
,_ Ma-1 a—1 1-b l—b
) = (21T < (la(@—1)||T|** +a|T| )(1_19) (2 1) 1T}
since
ZNTP<OITI  as  |T|->oo.
Also,
)
vy |T| “ T
;1_13’0 == zlvl_ﬂ 1=1
\rpir) -
and
Im|TP |72 = 0o . if f>2—a.
T—oo
Finally,
1) —b -
o (1_(1a )) ) 1 a+a - Zm(a+z 1)
Z b {gin=T (gm—Tya~2 | gim=-T)(e- 1)}(1 Wia = E) Z I 0o.
m=1 2 a

‘When b < 0, a similar argument applies.
We would like to point out that these methods show

1
Z:(t)zl tog (i)’ It > e,

0, fl<e

maps L,—L, for 1< p < co (apply Theorem 1.17), hut Je¢ Liip (8) for any
8 > 0. This extends a result of Hirschman ([2], Theorem 4e).

If /'eLK,( ) for 1 < p< oo, then it follows that if |0,|< oo, then
2 0nfo () e IB (R) for 1< p << oo. One can then ask whether 3 C,.f,, () e L5 (R)
forl<p< o0 When D0y] = co.
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Congsider the example
o0
niep = B (),
=1
where

1
—t_ * X—nli2,nll2) = fn

is the Hilbert transform applied to the characteristic function of the inter-
val [—n'? n'®]. Setting

( __1)271—1 1

_ 1)2% i
—t_ * X @en—1)t2, @n-1)42] +

an 7" * X1-@en)Ll2, @n)ti,

BTy
we were able to show, by employing Theorem 1.10, that B(-)<L3(R)
for 1< p< oo.

B. Exampres IN R".

COROLLARY 3.23. Let teR", n> 2, and 0 < o < 1, then

¢ . 2n 2n
k(t) = LE(R ]
O = s e B Jor mr<P<TTg
and
' " 2n 2n
E¢ILZ(R™ for p > 5 and p < Py

Proof We apply the remark following Corollary 1.16; thus we
need to estimate

[ at, e (t) ~ ... | dtneﬂ-mk(t)} -
18118 lEpl<Sm, E1<8Sm—1 It < Spp—1
n
. [ a, dy [ e [ @R
F=1]<Spmey -1l 8m_y Sm—1<ly1< S 1541l St lepl o Sy
< aty... o [ at,et )
J=1 W< Sy S —1<llf1 <8y 1yl 5 S,
¢
s,
and
n
> [ an. dty... [ @,k < o8

S 15 1G1< S lonl < S

iom

©
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Now set S, = 2™. Then we just need to find those » = 2 such that
""‘(1"2/17)(”‘“2’1)) had —*m(4a —n+2a+ i—i'—- ~m +2u n
2 =32 '? 2
Hence we need
2n 2n
—+2a—n>0 or .
» p< n—2a
We apply Theorem 2.19 to show k¢ ZZ(R") for p > 2%2 .
n—2a
We set
P T L 4y < 2T
ou(t) = ’ D
0, elsewhere,
21jn aplin 1
I(h) = f it ... f o
i A T
Therefore ‘
D, T2 < I () < 0, T2,
Also, '
o §2;60° 2uge- 16" o
o T G ‘.’.aj 5a T 1%a Zu] 203 and ‘_C H'llbw
My B E T (e ot
and thus with a; = = a, =1—2a/n
s 1—2a, 8 =j,
s = .
s 0, 8 #j,
we get k¢l (R") for p > 2n/(n—2d). By the same methods we can

also show. e“” ¢ L2 (R for p £ 2, while for p = 2, ¢ I2(R").

4. Conditions on % such that T'(f) =f+%k wmaps IL,(R™~L,(R".
In this section we shall obtain some analogues of the results of the first
chapter, ‘without going into complete generality. However, we believe
that these methods could be used to obtain essentially all of the results
which are analogous to the L case. It turns out that the problem breaks
into two parts. We will first study the cases where 1/p—1/g = 1—1
and 2> 1/2, and then the case where 0 < 1< 1/2. The reason A = 1/2
iy the dividing line depends heavily on the behavior of ||ﬁ[{1/(1_1) as
a Tunetion of A. That is, in the examples we study, where 2 > 1/2, []ffll”(,_;)
is reasonably small; while for 0 < A< 1/2 it is too large. Intuitively, one
can see this by means of the Riesz—Thorin Theorem.
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Part A 12 <1 <1.
LemMA 4.24. Let 1/2 < i<< 1. If
ca .
B(t) = ) Unlt) with Lfp—1]g =1—1,
m=1
then

(i) nUm*fnz\ Ol Unlyoy Iflaosn o0

(ii) ukxfnq\ZHU,n*fuq for 1<q<

m=1
- Proof. Part (ii) of the theorem (which also appears as part (i) in
Lemma 1.7 of the first chapter) follows from. Minkowski’s inequality.
To show (i) we note,

1T fIB = 11U 18
1 2
<10 AT
< 1T T,
and hence our result.

COROLLARY 4.25. Let 1/2 << A<< 1. If

Ly, L) mapping properties of convolution transforms 63

Part B. 0 << 1< 1/2. Tt will belp us to study the following picture:

Y

T R e e .
%w L
gx“"\ X <
1,—,1V‘< 1,1
\ }(2 p)
L N

YTy S—

A Tt_1
2 2 s

Fig. 1

Here we will think of y as 1/p and o as 1 /g, and hence study the estimates
along the line y = @+ (1—A1).

Lmvya 4.26. Let 0 << A< 1/2 with 1/p = 1/24+v and ¢t = 2ip/(3p —2).

If
DT 1Tl < oo,
m==]
then
8 23 ». - 1 1
keL(R") with s = and  ——— = 1—1.
. ros
Proof. Since 1/p = 1/2+v, we have
1Tl < O Tl IF 1
and
T %[ loo < | Uil U Il -
Thus, we are intm-polad:mgm]ong the line

— 2_

(

2
p)w—l—l (vee Fig. 1).

~We are interested in that 2 where

2 Nl a1 Ul < o,
m=
then . ‘
) 1 t(1—24)421 - 11
keLI(R") with — = E—-L and ——— =1-—2.
q 2 p» q
Proof. We know
N0 % flle < GA”Um”U(l x)”f”z/(s —24)
and
HUm*fnlli. < HUmHlM']f”l-
Therefore,
1Unxflly < OzllUmHu(x P IiUmHua 0 Nl
with
1 $H(1—24
__w. and _]_-..__1 =1 1.
q 2 P q
But
uk*fng va *fuq il )jnvmn - 1Tl

Mm=1
and hence our result.

2—-2p

(

)w—]—l =g+ (1—4).
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This implies

and therefore by Riesz—Thorin,

1T 0% lls < Oy 1T 1T il o 1
‘where

Putting this together with part (i) of Lemma 4.24, we get owr vesult.

ExAavries 1IN R.
Lmvma 4.27. Let 0< A< and a> 0. If

LN .
IG(Z) = —It[T-’ tGR, with b < /”-,

then
a 11
k¢Li  for g¢> T3 with ZJ“-E =1-A.
Proof. Let
op(—1) = 34“1“%[1’,21’]'
For i
ge
70(1) = W,
dk
< a—1-b
2| < 01t
for || sufficiently large, where ¢ depends only on a and b.
Then
20 )
< % 03,(0) — Jo 0 () <f (8) =T (t — )| dt < O fo] T*?,
r

which implies

> 014,

’ 1-b
{v: [k % gy (v)] > T2 }

But, if keI, there exists Op,q independent of 7' such that
e
:-g CZ,ATW'

Tl~b

{’Ui % % 0 ()] > T}

with 1/p—1/g =1—21.
But that implies

Tl—-b

10 =
m=bmp a)lq<0ﬂ,a1ﬂ/ﬂ.

(Lps Ly) mapping properties of convolution transforms 65

Thus, by Ly i (1=5) +(1—a)g> 1fp (lebting T o), or if ¢ > a/(2—b)
and 1/p—1/g =1 —4.

TrzormM 4.28. Let 0 << A << 1 with teR and k(t) = 8 °I1tP. If @ 1
a
b< A and El-[—(b-—-ﬂ) > 0, then

2

keL? for —— % -4
p I eI <4< T
and
BLE for > g L_ L _ 4
A—b P g
Prool. By Lemma 4.27, we have k¢ Lg for ¢ > a/(1—b). Now we set
- Pl '
Vm (t) = —mr {X[zm—l, 2] ~+ X[—2m, -—zm—lj} for m =1
and

e‘il”“
Vo(t) = -

CGage 1. Assume 1/2 < A< 1. To show keLi for <gq

a

Ala—1)+b
]

< T3 Ve will first use Corollary 4.25, which applies to ¢< 2 or

q>2/(24-1) We note o

1Vollya—sy < Call Vil < oo.

Now, :

1Valhya—s < T+IT+IIT,
and for ¢ > 1 we estimate as follows:

- aalm+2)(a—1)

N 6i|t|“6—iwt 1/(1—1)11—1
Wahian<i [ a0 |+
az{m--2)(a—1) g1
f o d(cﬂwe“i’“) Yl-2py1-2
- d(w —
? 5 (@) . 'E(ai"“l——m)tb }
n(me-t-2)(ee-1) g1
aglm—2Na-1) am a 6““9"1-”) MIM&)F—A
- d{x f e .
K { (@) (e — o)t |
oo oM=L

While for 0 < a <2 1 wo decompose the 2-axis into the intervals (—o0, 0),
[0, 2027 2=9), and [2620"eY, co), and estimate the corresponding
integralg,

5 — Studla Mathematica LV.1


GUEST


icm®

66 G. Sampson, A. Naparstek and V. Drobot (Iips Lg) mapping properties of convolution trangforms 67
Note that the estimates for the intervaly [ —2™, —2™ are similar, and
Thus, we obtain a
, 4> .
I <”fn'—b . (1 o) gmla—1)(1~4) _ ¢y 2’"{(“"1)(1—‘)—b~ —(‘L}z—l—}, le~1)+b
o . .
2 o . For the remaining values of ¢, the proof follows the same argument as
and worked out below in Case 2, but with P<i<l.
IT4ITT < ¢ 2™ -b—la-12) | , Oase 2. Assume 0 < 1 K 1/2. Since k() = 3'V,.() we have by part
Now, (i) of Lemma 4.24, "
a2 . ) ©
—b—(6-1)i< (a -1)(1-1)-1;-( 5 ), sinco  a> 0. Werflls < IV onflly+ D)1V,
Me=]
Hence s and by Lemma 4.26,
Pl < 02" (] g g, S 5
o e f e < 1V ollya I+ Vale 17,
where C' depends on @, b and 4 but not on m. Thus, N o S ¥ ohsfle ) P nle 1Vl 11,
I - - (S22} By with ¢ =2p/(8p—2), 1/r—1js =1—1 and 1/p = 1/2Lp.
L P A e e U TR PR3P —2), Lir-1] lp =12+
m=1 =1 ] As wo have shown in Case 1,
We are interested in those #s for which N ¢ 1 ¢
a2 Wonlo < g~z 37" and Vol <
{(a~1)(1—1)—~ (—2*)—b}t+(ﬂ~b)(1—t)< 0, ’
or . where € depends only on a, b and p but not on m. Now consider
o—2 ©
O T AT St
R —
or = 2mb 2m (a22) om
@ . 0 _
{"2“‘“1}77+(/1—b)< 0. _ sz{((a—l)(%—-})—(a %))t--b}.
Thereforé, * me=1
I—b Suppose
(A-b)<t{a(i—1)}, or tm -T2 ¢ —1)+1
’ a(d—1) _2’~< ﬁf})l’i (see Fig. 1),
From Corollary 4.25 we see the ¢’s we are looking for satisly |
1 - e 20— (24 1)1 ie. 2/t is & prospective ¢.
T e e v—v-——-»——---—-——-, - 4B
f ? 2 Set ¢ = 2(!-(1_5)-'«-7’—%(5 with 6> 0 bub & small. Since -
A=b (24—1) ’
21—a(A—3) (A—b)  Aa~1)+b i p 1 1 Aa—21-+2b—da

I
A

) Shm T , PR R e St Nl Yy Py sy
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feafi 352

- {(a )( «—2) ~f—2bw—~§a) _(a;-Z)(ZZ(a—J.)»{—2T)~—-(m)]

o o |
ba —8a’ |2 6
_daztetp o s o
a 2
Therefore,
[ a 1
foe 2 fo AN —— ez ] e
el T (a~—1)+b<Q<Z 5 v 7 p 1-2.

‘We note that by adding the Hardy-Littlewood lkernels 1. [It1*, we geti the
following: .
COROLLARY 4.29. Let 0< A< 1 with teR cmd k() = &™), 1f

a =1L, b2 and ——,H—(b —A) >0, thm

a a
kel p
G €.Lsy fO? l(a-—l)-—[—b <g<<

A—b
and

k¢If  for q>——
with 1fp—1jg =1—21. '

Examples in R,
Examrere 4.30. If

0{1”2 '
k(1) =W, nz2 and 0<<D< A,
then
2n 2n
kel (R™ o ——— e
>R nA+2b < nA—2b’
and

KeIZ(RY)  for e
Lo (R f 4= nl—2b’
with 1/p—1/q =1 —2.
Proof. Since this argument is very similax o the ones found in
Corollary 3.23 and Theorem 4. 28, we shall e brief.
We define

Pl

Vl(t) 'tllzb }"lt sz HX[ 1,1] 51
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and for m > 1,

G
Vm(t) = ]t [%—]- [t ‘% v R [t |2b f Xp—om, zm] nx[,zm—l 2m-—1] )]
j=1
We first do the case 1/2<1<1 and ¢<2 or ¢> 2 /(24 . We can
show
2mn(1 A) :
||Vm[]1/(1 S O —gww—  for m>1,
(Vilys < O2™-2) fop 1
and

1Vallya—sn < OV allyz, -
then apply Corollary 4.25 te show that
2n an

Lel?  for
o T ST er <4 T

and 1/p—1/q = 1—1. Here, ¢ depends only on =, b and 4 but not on m.
Tor the remaining cases, we show

, ¢
”Vm”oo< 21;;2(; H

” Ozmn(l/p—l/z)
“anl/u < ““—2%'@**—— for m>1,

and
IV flls < CUV yllya 15 Tl

where 1 /r—-i/s = 1—1, and here we apply the method of proof in Lem-
ma 4.26 in conjunction with Lemma 4.24 to show
2n 2n

el  for -
ety Ao -2 7< nA —2b

and Lfp—1/q = L~2. ‘ . ‘
To ghow L¢ Ly tor g o= 2n/(nd —20) and 1/p—1/g =1—2, we apply
Lemma 2.18 in conjunetion with Theorem 2.19.
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Abgixact. ot V be a Banach space, 1 < p < co. Two closed subspaces X, XL
are called I?-summands, if (algebraically) 7V = X@ XL and for all meX, aleXL

ll - 1P = []l? + oL P

(for p = oo [lw - wd|| = max{l(a], lxL[}). LP- -projections (with respect to these decom-
positions), are projeclions onto LP-summands.

Tt is shown that ¥ has nontrivial L?-summands for at most one p (the only exce-
plions: (R? | Il;) and (R || ). For p # 2 LP- -projections commute. g

L. Einleitong. Sei V ein K-Banachraum, 1<p < oo. Zwei abge-
schlogsene Unterrdnme X, X+ von V heiBen zueinander orthogonale L?-
-Summanden (Schreibweise: V = X@, X+), wenn algebraisch V = XX+
gilt und fir #¢X, o+ <X stots

[ e L

(bzw. fiw p = oco: [ +o"| = max{|z|, l-]}) ist. Projektionen e anf
IP-Summanden, die offensichtlich durch

Il = llev|[” + ljv — ev]

(fir p = co: |v|| = max{[lev]], [v—ev|}) fir alle veV charakterisiert sind,
heifien L? - Projektionen.

LV -Summanden und LP-Projektionen fir p =1, co wurden —aus-
gehend von Arbeiten von Cunningham [4], [5]—in letzter Zeit besonders
von [, [2], [6], [8] untersucht. Die Arbeiten [9], [10], die den allgemei-
nen Fall pell, oo} bohandeln, setzen die Kommubativitit von L”-Pro-
jektionon voraug (elwa inplizit dadurch, daf nur Réume betrachteb
werden, in donen die Norm der Clarksonschen Ungleichung gentigt) oder
besehriimkon sich aul dag Studinm maximaler kommutierender Fami-
liem von L7~ Projektionen.

Untiorsuchungen der Menge simtlicher .Z?-Summanden im Falle
klagsischer Banachriume V ergaben ([7], [11a, e, £]), daB dort fir p 2
I?-Projektionen kommutieren und da fiiv dim ¥V > 2 fiberhaupt nur ein
Typ von nichttrivislen L?-Projektionen. existieren kann. In der vorlie-
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