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On the hyperbolic metric on Harnack parts
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Abstract. If B is a ("-algebra with unit element e, § a subspace of B which con-
taing e, and I a Hilbort space, then a compact Hausdorff space 2 and a subspace
A < Op(R) ave constructed in such manner that there is one-to-one correspondence
between completely positive maps from § into L(H) and positive functionals on ..
Using this “scalarization”, a new proof of Arveson’s extension theorem [1] is given
and a relation between Harnack parts [14] and Gleason parts [5] is established. Hyper-
bolic metrie on Harnack parts is introduced and a characterization of convergence
in this metric is given,

Introduction. Qur initial goal was to find a “Bear schema” (see [5])
in which the Harnack equivalence for the completely positive linear
maps on a subspace of C*-algebra B into L(H) (see [14]) turns into the
Gleason equivalence for the positive functionals on a suitable function
space. Looking for this “scalarization”, we remarked that it permits us
to study completely positive maps on a subspace of B as positive func-
tionals on a linear space of real valued continuous functions on a compact
Hausdorff space. As the first step we present in Section 1 a mew proof
for the Arveson extension theorem ([1], [2]) (in a slightly more general
form). More about implications of Choquet theory in the study of boundary
representations, Silov boundary for noncommutative case and other
problems related to Arveson’s papers [2], [3] we will take up in a subse-
quent paper.

In Section 2 we introduce the Harnack equivalence and establish
ity relation with Gleason equivalence. In analogy with scalar case we
define in Section 8 the hyperbolic metric on Harnack parts and prove
fhe oquivalence between metric convergence and norm convergence: of
the corresponding (generalized) Radon-Nikodym derivatives.

Finally we make some remarks on continuous selection of mutually
absolutely continuous spectral dilations and integral kernels, but the
main facts in this direction remain for the further studies.

1. Let B be a C*-algebra and 8§ = B a linear subspace such that the
identity ¢ of B belongs to 8. For H, a Hilbert space, #(B; H) (respect-

ively #(S; H)) will denote the vector space of all bounded linear maps
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of B (respectively 8) into L(H). For r > 0, let 4,(B; H) denote the closed
ball of radius r in #(B; H).

We shall endow % (B; H) with the BW-topology. The BW-topology
is the strongest locally convex topology on %#(B; H) which coincides on
each ball ,(B; H), r > 0, with the topology given by the following conver-
gence: a net p,e%,(B; H) converges to gpe®,(B; H) if ¢,(b)-—=p(b) in the
weak operator topology, for every beB. :

By standard arguments #,(B; H) is BW-compact for any r > 0 (xce
[(11], [2]).

An element ue®(B; H) is positive if p(b) is a positive operator on
H for any positive beB. .

Let n be a positive integer. M, will denote the (*-algebra of all sealar
# Xn matrices. BOM, denotes the C*-algebra of all nxn matrices
over B with the usual involution (u;)* = (u4;). For a matrix (uy) over B
we put

Re(uy) = % [ (o)~ (2g)*7.

The matrix (uy;) over B is positive, if there exists a matrix (vy) over
B such that (uy) = (v5)*(vy).

We say that an element pe%(S; H) is completely positive it for each
integer n 2> 1, for each n xn matrix (uy) over § for which the matrix Ro (1)
is positive and for each n-tuple hy, ..., &, of elements of H we have

ReZ(‘P(Wj)hg’: h,;) =0.
i
IE 8 is self-adjoint then ¢ is completely positive if and only if for each
n =1, for each positive n xn matrix (uy) over § and for each n-tuple
hy..., I of element of H we have:

2(‘P(“¢j)hj; B)>0.
0

This-is the definition of complete positivity used by W.F. Stinespring
in [13] and W.B. Arveson in [1], [2].

‘Let p be an elements of #(B; H). Stinespring theorem. [13] says that
# is completely positive if and only if there is a Hilbert spaco I, a bounded
linear operator V:H-—K, and a representation = of B on K such that
w(h) = V*a(b) V for every beB. For every completely positive u we have:

@Il = 1V*x () VI < IV* V] 8] = u(e)l]Bl],

henee |lull = [lu(e)].
In what follows we denote by @ = Q(B; H) the set of all completely
positive linear maps p: B—L(H) such that lee ()l = 1.
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It is easy o see that Q is BW-closed, and because Q = %,(B; H)
it follows that £ is BW-compact. ’

Lot 4 be the set of all functionsw: QR for whic hthere exist an # X n
matrix (uy)eS®M,, n=1, and hy, ..., h,eH such that for every meQ
we have
(1.1) w(p) =Re > (u(uyg)hy, ).

0
It is clear that any function w of the form (1.1) is a real valued continuous
function on £.

Immma 1. We have

(i) A is @ linear subspace of Cp(2).

(i) There emists we A such that for any meQ,w(u) > 0.

(iii) For cach we M there ewist n = 1, ¢ matric (4,)eSQM,, and a or-
thonormal m-tuple ey, 64y ..., e H such that

w(p) =Re D (uliig)e;, 6) (ne@).

=t

Proof. (i) For w,, w,es of the form

fm P
wy(p) = Re 2 (ﬂ(""«ij)h}’ 77’;‘)’ wy(u) = Re Z (.“(“:::{)hj 5 hi)
gl f5=1

and a, feR the tunction w; = aw, + fw, can be written as
wy(p) = RGZ(M(WWJ‘: hi)
]

where the matrix (uy) is

(aty 1, i< m,
(1.2) Uy = Blgomgem, WALILEGF<m+p,
0, otherwise
and , )
[ 1<i<m,

‘ TR, mil<i<mtp.
Tonce wye J, i.6. A in a linear subspace of Cp(£2).

(i) Liet o bo in 2. Sinee [up(e)ll = 1, there exists iy <H 50 that () o,
ho) # 0. The element w, e 4 defined by w,,(u) = (e(€) o, o) is positive
since u is completely positive. We have w, (1e) = (s(€)ho, hg) > 0.
Since £ is BW-compaet, we can find a finite system. Wyy Wyy -ony Wy OF
positive functions in 4 such that for any ueQ there exists wy, 1<k,

n
sabistying wy(u) > 0. If we put w =721wk’ then w(x) > 0 for any pef.
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(iii) Let we.# be of the form (1.1) and let €4, ...y (M <<n) be an

orthonormal bage for linesr subspace spanned by hy, ..., &, in H.
Then
' m
h; = 20,5,;6,” i=1,..,0
Ie=1
and we have:
m
w(p) = Re 3 (u(ug) by, hy) = RGZ( ) Zoj,,ep,Zo,”e,r)
[ li=1
= Re > > aplug) ey ek)
kp 47
= Re Z‘ (:“ ( Cri O “z‘]) s cIc)
kp %7
= RGZ(M(uhp),@p7 eIc}'
k,p

In the proof of the following lemma, which is the key lemma in
our considerations, we have been inspired by some arguments used in
Averson’s proof of this extension theorem [2].

LeMMA 2. Let w be an element of M:

= RGZ (‘“‘(Mfy‘)dw 61‘);
~
with orthonormal ey, ..., e,<H. Then w =
is positive.

Proof. We consider B embedded in L (X), where K is a Hilbert space.
Let ky, ---, &, be an n-tuple of elements of K. Since ¢, ..., ¢, are linearly
independent vectors in H, there exists a bounded linear operator V: H—K
detined by Ve; = k;, 1 <i < m, and V = 0 on the orthogonal complement
of the linear subspace spanned by e, ..., ¢, in I. :

We consider up :B—>L(K) defined by

= 0 if and only if the matriz Re(uy)

wuﬂ vy

The map ppeR. Indeed [up(e)|l =1, and for each positive matrix
(by;) e BQM,, and each hy, ..., hye H we have

1 m
Z (s (o) WZ(V by Vg, )

%,9=1

wrlb) = (beB < L(K)).

m
|]V|]2 ) (by Vhy, Vi) =
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We have:

huz (g7t

4

k;)

= Re Z (uy; Ve;, Vo) =
o]

RelVIE D (up(ug)e;, o) = IVIPw(uy) = 0.
(¥

Rez V'w Ve;, 6)

I

TIence the operator matrix Re(w,) is positive. It follows that Re(u;)
is a positive matrix over B.
Conversely, if Je(uy) i8 o positive matrix then

w(w) = jl'{oZ (w(usg) 0, ) = 0,
o

By the complete positivity of ge .

Tyrsorsm 1 (Arveson [17, [2]). For each completely positive mapping
@: S8—=L(I) there cwists @ completely positive mapping u: B—~L(H) such
that )y = .

Proof. Tet ge: 8—+L(H) be completely positive. For w {in M of
the form

wel2,

n ’
= Re 2 (s (g gy Bg) 5

4,fe=1

w ()

K3 .
Tet us consider the sum Re Y (po(uy) by, hy). If w is positive, then this sum

4y el
is positive. Mo see this, choose an orthonormal base 01, ceey y (M M)

for the linear space spanned by Jiy, <., by In H. If b= 2 ol 1 =1,2,
.., %, then we have

]mZ( (thg7) Ty Tog) ReZ( (Z“m%ﬂ‘u) ep,ek)

%J T,
= 'Rez (i) €05 €1)
ke,
and
.Im?}T:(% U)oy Bg) = e = T{Aog (o ltup ) € er) -

Sinee 0 - 0, wsing Lenna 2, we cenclude that the matrix Re(uy,) s
positive and sinee g is mnnpl%(ﬂv positive, we obtain

ke 2, (o) By, ) = 0.

Turther, if wy, wye 4,

m 7

w0, (u) == Re 2 (w(ug) by, B}y wa(u) = Re Z (plug) by, 1),

&1 4,4=1
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and a, R, and if we write w, = aw, + fw, as in (1.2), then we have

m-+-0
Re Z’ (o (wi) Py o)
%,J=1
’ m m-+p
= Re Z ('Po(a h Iy )+R0 2 (‘Po(ﬁuz‘—m,j»—m)hl —m7 71 m)
fg=1 G § =1
= aRe 2 (o (uig)h;y he) + BRe Z {po (wig) By 1),
i,5=1

It is clear now that the map

m
w—>Re 2 (o (105) g5 Tr)
=1
is a well defined positive linear functional on .. Let us write

m

= Re Z tpo (1) By hy)
ij=1

Since, by Lemma 1 (ii), 4 contains a strictly positive function, it
results that .# containg an interior point of the positive cone of C,(R).
A familiar theorem of M. Krein (cf. [8], Ch. II, § 3, Prop. 6) implies that
L,, has a positive linear extension to C R(.Q) and, consequently, we can

extend L, 5o 6O & positive linear functional L 9, O a(R).
For beB and k, ke H let wyy, 5 be the funetion in (L)

Vi, 70).

defined by

W,k (u) = (M

It is easy to verify that for a fixed b in B, (7, Ir)—»Lq,O(w,, ai) 18 @ bounded
bilinear form. Then there exists an operator u,(h) in L(H) such that

( h 7‘;) = rpo wb shy Ic)

Now, let u, be the map from B into . (H) defined as uy: b-=u(b). A simple
calculation shows that w, is a linear extension of ¢, to B.

It remains to prove that w, iy completely positive. For this, lot
(by) e B® .M, be a positive matrix and Ay, ... 'le,n in M. Then:

2. (olby) gy 1) =

P¥]

(h, kell).

because L,,,O is positive and

D0y (B) = D (u(by) by, ) =0
g 4,3

The proof of the theorem is complete.

for every pef.
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2, Liet ¢ be a completely positive linear mayp of § into L(H). Arven-
son’s theorem says that ¢ has a completely positive linear extension
et Bo=L(H). Stinespring’ theorem implies that there exists a Hilbert
gpace K0, & bounded linear operator V:H—I and o representation = of
B on K such that

w(d) =TV*z(d)V (beB).

Sueh o triplet [, V, 7] we shall call a dilation of p. The dilation [K, V, a]
of ¢ is called minimal if I is the closed linear span of all vectors #(d) Vh,
bel#, hell. Th 18 ousy to seo that if ¢ has a dilation then it has a minimal
one. Tn what follows all considered dilation will be supposed to be minimal.

Tor gy, @y completely positive linear maps, let us write ¢, <@, if
gy @y I8 completely positive.

Tho following theorem was proved in [14] in the case B = O(X),
with X o compact Xausdorff space. Since the proof iy exactly the same
in the noncommutative case we shall omit it.

TiceoREM 2. Let ¢y, @a be completely positive linear maps from 8 into
L(H). The following assertions are equivalent:

(i) T'here ewists & constant ¢ (0<<e<'1) such that

- a1
0Py < Py K07 Py

(i) There emist a constant ¢ (0<e<1), an extension u, for ¢ and
an extension wy for @q such that

g S oy < 07 o

(i) There ewist dilations [Fq, Vi, m] | and [Ks, Vi m] of @1 and
@y respedtively, and a bounded linear operator S: Kg—>K1 with bounded
inverse, such that -

SV, =V, and my(b) =87 m(0)8  (beB).

Let us now eonsidor the set:
QS5 H) -

T wo endow # (8 H) with the BW-topology, in & similar way as 4(B; H)
was endowaed, Thon it iy eusy o see that ©2(8; H) is a compact convex
8§ ihoof @ (N5 H).

“h“\[\/ummd ( hut) Py Pref2(8; H) are Ilamwolr equivalent if they satisfy
ono of the (equivalent) assertions of Theorem 2. The equivalence classes
induced by this uquirm]enue relation will be ecalled ’rhfs Hmama-k pm‘ts
of @(8; H). The concept is analogous in noncommutative case to that
ol (.nlo wson parts defined in the context of function spaces (see [10], [7]

[, [51).

cx fpr N (TT) 5 g 0 ompletely positive linear map, lp(e)ll = 1}.
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Moreover we will show that in an adequate “Bear schema” attached
to 8 and B, Harnack equivalence turns into Gleason equivalence.

Let us recall “Bear schema” of Gleason parts in a slightly more gen-
eral case. Let 2 be a compact Hausdorff space and 4 < U5,(2) a linear
subspace which separates the points of £2 and containg a strictly positive
function (.# camnot contain non-zero constants). Let .’ be the dual
of . and denote by -

T, ={Leat'; 1,0, |L| =1}.

The space 2 can be embedded in ' as u point-evaluation functionals,
and then T, is the compaet convex closure (in weak*topology) of Q.
Two elements L, LyeT , are called Gleason equivalent if thore exists o con-
stant ¢, 0 < ¢ <1, such that for any positive function we # wo have

1
0Ly () < Lo(w) < '(‘}“I/l(’“')-

A consistent study of the Gleason parts induced by this equivalence
on T, was done by H.S. Bear in [5].

Let now Q2 = Q(B; H) and 4 < 0»(2) be as in the first section.
If e R(8; H), we have already seen how the positive functional L, on
A can be defined. In fact LyeT 4 and gL, i3 a onebo-one mapping
from Q(8; H) onto T ,. Indeed, it peQ(8; H) and w18 a completely pos-
itive extension of ¢ to B then lull = ol =1, ie. weR(B; H). For we 4
with |lw]| <1 we have

Ly(w) | = lw(p)| < 1.

If we take now heH such that |(p(e)h, h)| = 1 then
el ST and Ly (we,)| = |(p(e)h, b)| = 1.

It results ||Z,| = 1 hence Lyl . Clearly p—L, is a one-to-one mapping
from Q(8; H) into L 4. Tf Le T , then, using similar arguments as in the
last part of the proof of Theorem 1, we can consfruet weL2(B; H) such
E}mt f(W) =w(p),we #, and taking ¢ = uly we have pef2(8; 1) and
[ o=

e

THEOREM 3. ¢y, @ue Q(8; H) are Harnack equivalent if and only if

Ly, Ly, are Gleason ogquivalent.

Proof. Let ¢, g, be Harnack equivalent. T
if there exists ¢, 0 < ¢<<1 such that ep, o
for each matrix (u,;)eS®M, so that e (u,
.oy by, of elements of I we have:

cRe ;"((pz(%”)hj, b < RGZ((}%(%U)’% ) < (:"‘1]2162((/»2(11/“)'Iq,», hy).
% ] 8]

¥)

ris happens it and only
Loy or, equivalently,
= 0 and each a-tuple hy,

il =
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By Lemma 2 and definition of L, this is equivalent to:

\ o 1
4:Ij,ﬂ2(fw) Y .L,“(w) < - L,pz(w)

for avery positive w in 4.

The proof of the theorem is complete.

3. As In Aho sealar ease we can, define on a Harnack part of Q(S8 5 H)
the lyparbolio melrio, wotting fov ¢, p, in the same Harnack part

S | 1
Adpyy o) = lllff{h)ﬂ(;q O<C o<1, e, <<y < ?%}.

Bocause of Theorem 3 wo have

d(‘)’u (pé) = d(Ler Lqﬂg)

where thoe Iyperbolic metrie on Gleagon part is defined as in [5].

Many facts about hyperbolic metric on Harnack parts can be obtained
by a simple reformulation in this context of the known results relative
1o hyperbolic metric on Gleason parts.

Weo point out only the following

GororLARY. The lyperbolic metric is complete on Harnack part of
(85 1.

On the other hand, one of the most important results from Bear’s
theory of hyperbolic motvie on Gleason parts, which establish the equiv-
alence botwoen convergence on Gleason part and the convergence in
IP-norm of corresponding Radon-Nikodym derivatives, has not an im-
modiate reformulation in the context of Harnack parts. This is what
wo intend to do in the remainder of this section.

Lot (85 H) snd 2(B; H) be ay above. We can define the Harnack
parts on (B3 H) by using the Harnack inequalities for elements in Q(B;
1. According to Thoeorem 2-(ii), if ¢y, paeR(8; H) belong to the same
Tarnack part of Q(8; ) thon woe can extend gy, gp t0 g, uy e 2(B; H)
which lie in the same ITarnaek part of Q(B; H).

Bt it is known ([5]) that (even in the sealar case) it is not generally
true Ghati for any Tarnack pad A of Q(S; H) there is a Harnack part
Aot (B3 H) which contains extentions to B for every element of 4. We
fivst give n doseription of meteie convergence on the Harnack part of 2(B;
Iy and finally we shall vefurn with seme comments relative tio this question.

Lt oy, pye 2085 1) bo Tarnack equivalent. According to Theorem
2 (iif), there oxist the dilations [Ky, Vi, @] and [K,, Vo, @] of uq and
My vespectively, and a bounded invertible operator §: K,~K, such that
8Vy == Vy and Swy(b) = ny (0)8, beB.
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For any beB we have
pe(b) = V;”z(b) Ve = V;S_lm(b)SVz = .Vr(sﬂl)*smlnl(b)vr

Write D = (8~1)*8!;-then D is a positive operator on K, belonging
t0 7, (B)’, the commutant of my(B) in L(K,), and we have

pa(b) = ViDmy(b) Vs (beB).

Let us call D the Radon—Nikodym derivative of w, with respect to u,.

Tt is easy to show (see the proof of Theorem 2 in [14]) that if D is
a positive operator in = (B) then, selting p(b) = ViDu,(b)V,, beB,
we obtain an element ueQ(B; H) Harnack equivalent to g

Let now 4 be a Harnack part of Q(B; H) and let us fix an elemant
lo in A and denote by [K,, Vy,m,] its (minimal, necessarily unique)
dilation. For g in 4 let us denote by D, its Radon-Nikodym derivative
with respect to u,.

THEOREM 4. A sequence {u,} in A is convergent in the hyperbolic metric
on A if and only if the sequence {D, } of corresponding Radorn—Nikodym
derivatives is convergent in the norm metric on L(K,).

Proof. Consider @ = Q(B;H) and 4 < (VR(Q) constructed as
in Section 1 with B instead of S. According to "Theorem 3, if u,ved,
we have:

. 1 1
A, ) = intflog 1 ou< v <

= sup {[logw(u) —logw(v)|, we 4, w > 0}.

Thus if w,, ped then d(p,, )0 if and only if w(u,)—w () uniformly
for we A, w> 0, w(u,) <1.

Suppose that D, converges to D, in the norm metriec on L(XK,).
Since D, is a positive operator in 7y (B)’, we have that u defined as u(b)
= V;D,(b) V,, beB, belongs to . We have

W () — W (p)] < 12 (Mu(’“ﬁ)h’j: hy) — Z(M(“ﬁ)hja 7"7)‘
% [X]

= ‘Z(V:D;‘nﬂo(’lbij) Vol hy) 2_, (VoD g (1) Vo, 71,;}1
T

iy

( Vi(D,, —D ( VW,MJW) Vohy, II,,)
’2( T 2”0 myj Vl)hu > 7y (9, :m [ /b)
<D, ~D, HZHZWO i) Vot
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=D, — D, D Zno ) Volys ) 70(0) Vo)
1

m

= 1Dy, = Dyl Y, (Vo (i) Vol T
%)

= |D,,,, — D,llw(uo) < 1Dy, — Dyll-

oy,

Hence [|D, —D,l->0, n—oco, implies @(u,, u)—0, n—>oo.
(‘yonvmsely, it wo suppose that d(p,,u)—0,n—+c, and D, does

not converge to D,,, then there exists g > 0 and a subsequence {ﬂn}

such that III‘)/%,W D[l > &, hence there is k,eK,, |k,ll<1, such that
(Do, — D) Tog Tog)| > &0

Since K is the closed linear span of all vectors my(b) Vh, beB, heH, we
can consider ly, = Y'uo(bF) Volf, b eB, hieH, i =1,2,..., n. Let w,e M
be defined as v

wy(v) = RGZ ({2 o7 B3, 1), (v Q(B; H)).

We have w, >0 and
e = B 081, ) =B BP0 )
= Re (b2) Voh (7)) Volef) == |kl <
c(jZm:o 7) 011712"”0 i) Vo ) v

On the other hand

[0 () — 0 (1 g_12 @2y o, 1) — 3 (u(02)00) 1, 72)

,J

12 1 — D) 70 (B2)*8F) Vo7, BE)

= | (D, —D Zno (89) Voht, Zﬂo(b{)Vo )
= H .D,uw '_'-D;L)]"p’ 71,)1 > 80.
T we take w;, = (L-+8)" (w,+ éwo) where wye 4,0 < w,<1, and
§ = 0 sufficiently small, then we have wy > 0, wy (1) < 1 and
pr(“np) ""wﬁ (lu)l > &
whicl contradicts d(u,, u)—+0, n-—o0.
The proof of the theorem is complete.

4. Ag we already remarked, if 4 is a Harnack part in 0(8; B), then,
in genéral, it is not possible to find a Harnack part of Q(B; H) contajning
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extensions of any element e 4. An example in this matter was given
by Bear in [5] (for the scalar case). Like in the scalar case, in this context,
interesting problems relative to the selection of mutually absolutely
continuous dilations and integral kernely arise.

From this point of view, the case of funetional calculi for contraction
is of particular interest.

Let T be the one-dimensional torus in complex plane, B = ¢(1")
and § = A, the dise algebra. If 1" is a conlraction on & Iilbert space I,
then the von Neumann funetional caleulus with function in A4 gives up
an element ppe Q(4; H). We say that two econtractions 1y, Ty on I arve
Harnaol equivalent it gq , ¢, lie in the same Warnack part of Q(A; H)
(ef. [157). In [9] C. Foiag proved that the set of all strict contractions on H
forms a Harnack part, the Harnack part of contraction 0. Let us remark
that in this case we have a usual formula for hyperbolic distance, namely :

1|1
arr, o) =10g‘—-—|——u——”~.

Since in this case we have the unique dilation, according to Theorem
2 there is a Harnack part in Q(C(T); H) which containg exteunsion to
O(T) of g, for any strict contraction 7.

If we take contraction 0 as a center of the Harnack part of strict
contractions, and the bilateral shift of multiplicity dimJL as a unitary
dilation of 0, then the Radon-Nikodym derivative of & striet contraction
will be a positive operator in the commutant of the bilateral shift of
dim H.

CoroLLARY. Let T, T be strict contractions on H and D, , D the cor-
responding Radon—-Nikodym derivatives. Then T, converge to 1" im the hyper-
bolic metric if and only if D,, converge to D in the norm metrio.

The problem of selection of mutually absolutely dilations effectively
appear in the case of functional caleulus for pairy of commuting contrac-
tions [12]. In this case we have unitary dilation (Ando Theorem), bub
it is mo more unigue.

In a subsequent paper we shall study in details the topie of selection.
of mutually absolutely continuous dilations and integral kernols.
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