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Let @ be a bounded closed domain of holomorphy in the w-dimen-
sional complex vector space €" and let & denote the boundary of @. By
A(P) we denote the Banach space of all continuous complex-valued
functions on @ which are holomorphic on ®N\g®d. In the present paper
we prove that under some general conditions on @ with @ < €" and n > 2,
A (D) 28 o Banach space is not isomorphic to the dise algebra .4 (D), where
D = {2¢C: |¢] < 1}; for instance it is enough to assume that the boundary
0P is a (O2-smooth surface (in the 2n-dimensional real vector space). In
particular, if !

n
B, = {3 = (R, By veey ) €€ 2 FALES .'l.}

Jeal
then, for m 32, the Banach space A(B,) is not isomorphic to 4 (D).
This solves a problem of Elenkin, Let us mention that Henkin ([5], [6])
hag proved that if # = 1,2,... and m == 2,3, ..., then the spaces .4 (B,)
and A(D™) are not isomorphic. (Here D™ denotes the polydisc of
dimension. m.) In pavticulayr, the spaces A(B,) and 4(D") are not
isomorphic for » > 2. It is still wnknown whether, for n > m > 2, the
spaces A (B,) and 4 (B,) (and similarly, 4(D") and A(D™) are or are

not isomorphic (ef. [8], Problems 55 and 56).
The present paper consists of three sections. In the first, an isomorphic
invariant of a subspace of a ((8)-space with a small annihilator (for
ingtance, with the norm geparable annihilator) is discussed. The invariant
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involves the concept of absolutely summing operator. Note that, by the
classical F. and M. Riesz Theorem, the disc algebra A (D) regarded as
a subspace of C(8.D) has a small annihilator. The second section containg
a proof of the fact that if a domain @ in E" contains, roughly speaking,
uncountably many analytic dises in transversal positions and the inter-
sections of the diges with 8@ are mutually disjoint, then A (P) is not iso-
morphic to any subspace of a C(8)-space with a small annihilator. In the
third section we prove that A (D) is not isomorphic to A (®P) for various
& by showing that certain either geometric or differential conditions on @
imply the existence in @ of a family of analytic dises with the properties
discussed in Section 2.

1. Banach spaces with small amnibilators. Throughout this paper
8 stands for a compact Hausdorff space. We identify (via the Riesz
Representation Theorem (cf. [2], IV. 6.3)) the dual [((S)]" with the Banach
space of all complex Borel measures on § with the norm |ju| = the total
variation of u. We put [C(S)]} = {#<[0(8)]*: p non-negative}. Given
a pe[0(8)]} and a »e[0(8)]", we write » < p if » is absolutely continuous
with respeect to u, and » | x if » is singular with respect to u. We identify
{via the Radon-Nikodym Theorem (ecf. [2], II1.10.2)) the space L*(u)
= L*(u, 8) with the subspace {ve[0(8)]*:» < u}. For a ue[0(8)1} we
denote by 4,: C(S)->L*(u) the natural map which assigns to a continuous
function in O(8), its u-equivalence class regarded as an element of L*(u).
If X i3 a closed linear subspace of C(S), then the annihilator of X is the
subspace Xt = {»<[0(8)T*: fm )ydv =0 for all zeX}. For a ue[C(S)T}.

we denote by X, the elosme of i,(X) in L*(u).

We shaill need also the concepts of absolutely summing operators
and integral ones. A linear operator U: ¥ —F (Y, H Banach spaces) is
called absolutely summing if for some (equivalently for every) isometric
embedding j of ¥ into a C(8)-space there exists a we[0(8)]]. such that

(1.1) Tl f lj(y)s)|du  for every yeX.

We put oz, (U) =inf|jul, where the infimum iy extended, over all u satistying
(1.1) for a fixed isometric embedding of ¥ into a O(S)-space. In fact,
the quantity sz, (U) is independent of a particular choice of an isomefric
embedding of Y into a C(8)-space, and for every fixed isometric embedding
there exists a u satisfying (1.1) with |jul| = #,(U). An operator V: ¥l
is called integral if there exist a compact Hausdorff space §, a »<[0(8)T}.
and operators 4: ¥—0(8) and B: L!(») -E™ such that

(1.2) Bi, 4 ==V, |A|[IBI<1,

where x%: B->E* denotes the canonical embedding.
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We puti ¢(V) == int|j»]|, where the infimum is extended over all possible
A, B, v and 8 satisfying (1.2). The reader is referred to [4] and [10] for
details concerning absolutely summing and integral operators.

The following concept plays an important role in the present paper:

DrmNrrioN 1. A Banach space is said to have a small annihilator
if it iy isometric to a cloged linear subspace, say X, of a space O(8) such
that X+ < IL'(A) for some non-negative finite Borel measure A on 8.

By the ¥. and M. Riesz Theorem. (cf. [3], IL.7.10) the disc algebra
A(D) hag a small annihilator: regarding 4 (D) as the subspace of O(0D)
(obtained. by the restriction operator), we have (4 (D))* = L*(m), where
m denotes the Haar measure on the circle 4.D. Next observe that an X
< 0(8) has a small annibilator whenever X' is norm-separable.

Now we are ready to state the main result of the present section
which provides an isomorphic invariant for a Banach space to be iso-
morphic to a gpace with a small annihilator.

ProrosrrIoN 1. Let X be a closed linear subspace of a C(8) with a small
ammililator in O(8), say X+ < IA(1), for some Ae[O(8)15. Then for every
Banach. space T and every absolutely summing operator U: X—I there
ewist @ oc[C(8)]5 and an integral operator V: X8 such that

ol i (V),
N (@) — V (2)]| < f lw(s)|doe  for every weX.
&

(1.3) ‘ m (U) = o <A,

(1.4)

Proof. Pick u<[C(8)]} satisfying (1.1) and such that ||ull = =y (T).
It follows from (L.1) that there exists a unique operator B: X,—F -with
1Bl < 1 such thab

B(h) = U®)

By the Lebesgue Decomposition Theovem (cf. [2], IIL, 4.14), there
exist measures ¢ and » in [O(8 )I%. such that w = o+v, o €4, »1A
Clearly, [lull = lloll+ vl We can also identify the space A () wmh the
direct sum L (o) DL (») equipped with the norm [|(a, b)| = f la(s)| do -

-+ gf [b(s)|dv for aelt(c) and beL'(r). Let us observe jthat Lo conplete
the proot of the proposition it suffices to show thab
{1.5) X, = X,DI().

Indeed, assuming that (1.5) has been established, we define V: X1
by V.= Bj,@,i,, where Q,: I*(0)@L*(»)~L(») iy the natural projection
and j,: L (») It (c) DL (») is the natural embedding defined by
3u(B) = (0, b). By (L1.5), 5,0,6,(X) = X,; thus V is well defined. Clearly,
we have Q,q,,, = 4, and. | |B_7,1 << 1B il @ 1..Thus V iy an integral operator

whenever, h =1,(®) (zeX).
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with (V) < |p|. Moreover, for every xe¢X,
(1.6) (T —=7) (@)l = B, (@) — Bj,Qut, (@)l < Iliu(®) —§,Q8 . (@)1l

For every heLll(u) = L*(o) @ L (v) we have h = j,Q,(h)+5,Q,(h), where
Q,: L' (o) DL (»)—~L* (o) and j,: L' (o)L (o) DL (v) denote the natural
projection and the natural embedding, respectively. Thus, for b = 1,(w),
the above identity combined with (1.6) yields

KT = V) (@) < 17oQ084(@)| = llia(a)l = [ |m(s)|do.
8

This proves (1.4). Clearly, m (U) = llull = lol-+ vl = llofl +i(V).

To prove (1.5) observe first that the inclusion X, < X,DL'(») is
trivial. To prove the reverse inclusion, fix functions aeX, and beL!(»)
so that

(1.7)
[ a+b) () a(a+» = [(la(s)+1b(s))do+v) = [la(s)ldo+ [ [b(s)]dv.
8 S S s

Now fix ¢ > 0 and pick an <X 5o that [ |a(s)—=z(s)|do < e. Next pick
8
a positive M < +-oo so that, if Z = {seS8: [b(s)| < M}, then

(1.8) and

[ b(s)dr <

S\Z

»(8NZ) < e(M + || +1)"".

(If the required M did not exist one would have
Y(SNZ) > (M4 ol +1)7 [ [b(s)ldv =27 M [ jb(s)|dw
8z 8\Z
for all values of M big enough. Remembering that S\Z = {s: [b(s)| > M},
we would get a contradiction with the fact that gf [B(s8)]dr < o0.)

By (1.7) and by the relations » | 4 and o < 1 and by Lusin’s Theorem,
there exist a compact set ' = Z and an open set & > F such that

(1.9)  the restriction b|F 4s continuous, MF) = 0,

max (v(S\F), o(@)) < a(M + x| +1)~".

Since A(F) = 0 and X' < L'(1), we have »(H) = 0 for every H <« I
and zeX*. Thus, by Bishop’s General Rudin-Oarleson Theorem (ef. [1],
[3], I1.12.4), there exists a yeX such that

(1.20) y(s) = b(s) —2(s) for seF,[y(s)| <& for seS\G, |yl < M + [jol] +1.

icm

Non-emistonce of isomorphisms between Banach spaces 179

It follows from (1.7)—(1.10) that
[ (@) () — (@+3) (5) [d (o +)
8

= [la—a—y)®)ldo+ [ |(b—2—y)(s)|dv
8 S\F

< [Na—a) @ldo+ [ly(@)ldo+ [ ly@)ldo+ [ [p(s)lav+
8 [

BNG S\F
+ [le+y) ()l
S\F
<eto(@lyl+o®) e+ [ [b(s)|dy+M9(Z\F)+ (ol + yl) »(S\F)
8\Z

< eteto(S)ete+ (2wl -+M+1) e (o) +M+1) < (B+0(8)) e.

Letting &0, we infer that the pair (a, b) belongs to X,. This proves
the inclugion X,®L*(») = X, and completes the proof of Proposition 1.

CoroLLARY 1. Let B be o reflewive Banach space; alternatively, le
I be a separable dual. Then, under the assumption of Proposition 1, for every
absolutely summing operator U: X—>H, there ewist a o<[0(S)]] and a
wuclear operator V: X~~H satisfying (1.4) and (1.3) with 4(V) replaced
by n(V), where n(V) denotes the nuclear norm of V (cf. [4] and [10] for
the definitions).

Proof. Combine Proposition 1 with the fact that if B is reflexive
or if B iy a separable dual, then every integral operator V into H ig nuclear
and (V) <n(V) (cf. [4], [9], [10]).

We end this section by specifying Corollary 1 in the form in which we
ghall apply it in the next section.

CoroLLARY 2. If X 48 a closed linear subspace of a C(8S)-space with
XL < I (2) for some 2<[O(8)1%, then, for every absolutely summing operator
U: X, there ewist & compact operator V: X—1* and a positive function
aelr(}) such that

(1.11) U@ —V@I< [lo@)as)dr  for meX.
S

Proof. Put @ == do/di, the Radon-Nikodym derivative of ¢, and
observe that every nuclear operator is compact.

Remark. The compactness of the operator ¥V of Corollary 2 can be
proved. more directly. To this end, note that, by Proposition 1, there
exists an integral operator V': X-»I* satistying (1.11). Hence V = Bi, 4,
where 4, B and » are ag in (1.2). Now note that the natural map 4,: 0(8)
->L'(») is weakly compact while B: IL'(y)—1%, being weakly compact,
takes weak Cauchy sequences in I'(») into convergent sequences in I’
(cf. [2], VI.8.12). Hence Bi, is compact and so is V.
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2. Spaces of holomorphic functions in domains with sufficiently many
supports of the disc algebra.

DErNITION 2. A subset F of a closed domain of holomorphy @ < € ig
called a strict support of the disc algebra if there exist a map gp: D—®,

with ¢p(D) = T, a positive constant Cp and functions gy, 4 (P) for

n =1,2,... such that

(2.1)  gpnopr(®) =2" . for every #¢A(D) and for n =1,2,...,

(2.2)  lgpall<0p for #=1,2,..., and for every open G > FriP
and &> 0 there exists an n(@,s) such that |gp,(w) <e for
weP\G and for every n > n(@, s);

(2.3) Ip(f) =fopped(D) for every fed (®).

Let us observe that In: 4 ()4 (D) is an algebraic homomorphism
with [Ip]| < 1. Next observe that the following properties imply that
a closed subset F of @ is a strict support of the dise algebra:

There exist a map ¢p: DT satisfying (2.3) and a function gy e (P)
such that }

(2.1a) grogp(2) =2  for every zeD,
(2.2a) lgr(w)| <1 for every wed\ (Fnad).
(We put Op =1 and gp, = (97)" for n =1,2,...)

Our next result provides a useful erltemon for the non-isomorphism
of the Banach spaces .4 (D) and A (®) for some domaing &.

ProPOSITION 2. Let @ be ] alosed bounded domain of holomorphy in
C" such that :

(%)  there emists in D an uncouniable family (F,)yer of strict supports of
the disc algebra such that ¥, Fyn 0P = & whenever o B (e, pel).

Then A (D) is not isomorphic to any complemenied subspace of @ Banach
space with a small anwikilator.

Proof. Let us set I, = Ir,: Gpu = Iryn 800 0, = 01« for y « I', where
the homomorphism I 7, the constants 0’1, and the functions g I, are the

Iy, Cpand gp,, of Detinition 2 for 7 — P Next define the Paley operator
P: A(D)=1* by

P(h =(f h 'Lth —2'”‘lmdt) n< oo for
0

hsA(D).

By a result of Pa.ley (cf. [13], Chap. XIT, 'I‘he01 em 7.8), Lhere exists a
0> 0 such that - : :

—12""tndt‘ )1/2 < Cf lh Idt for

P = Zifh

n=1 0

he‘.A,'(D).
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Tence P is an absolutely summing operator. Thus, for every yel', the
operator P, = PI, is absolutely summing with =, (P,) < m(P)IL <0

Now assume to the confrary that there exists a subspace X of a
0(8)-space such that X+ < L*(4) for some 0 s Ae[C(8)]% and there exist
pounded linear operators R: 4(P)—>X and @: X—A(P) such that QR
is the identity on .A(®). Then, by Corollary 2, for every yel’, there exist
a positive function @, in I'(A) and a compact linear operator V,: X-»I*
such thatb
(2.4) weX.

I1P,Q ()~ V(@) < f]w Nay(s)di for

Next fix ¢ with 0 < e < (V§~~1)/(2 [RY+1) and, for every yel', pick a
positive function b,<L® (1) so that

(2.5)

flb (8)—,(8)|dA < 0”_

Let ‘
i e = {yels Bllet+ O+l m}  (m=1,2,...).

Since U I, = I"and since I'is uncountable, at least one of the sets Loy

say Im , iy infinite. Let M > 2@l AlmE and let yy, ¥ay ..., yar be fixed
indices in I, . For simplicity we shall write in the sequel instead of the
index 9, the mdex §; for ingtance, P; instead of Py, b; instead of b,,
ete. Liet us set

Ypp = Blgyger—1) for j=1,2,..., M;r=1,2,.

Clearly, @ (yy,,) = gyo—1 and, by (2.1), Iyl < 1BIIgser—2ll < IBICy. Thuss
using the fact that the operators V; are compact, we extract an infinite
increasing subsequence (4‘(/()) of the indices such that

je=1, 2, veey

V(<& for M; k=1,2,.

whexe B =Ygt~ Yy
Thus, for § = 1,2, ...
we have

2:6) 1B a3,
< [ layu(s)l ay(8)d2+e <

S

< [ lay(9)1by(8) @A+ (2[RI +)e,
8

, M and for b =1,2,..., by (2.4) and (2.5),

f 103,601 ,(8) a2+ Woyall +1 Fs
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because

e, ell << 195, mia—n)ll -+ 15,00l < 2 [ BINGy.

On the other hand, the definitions of the Paley operator and of the
functions y,, yield

PiQ(Y5,r) = Pi(gj,r-1) =

where gr-1¢.4.(D) is defined by yyr—1(2) = ¥
vector of 12 (r =1,2,...).
Hence P;Q(x;, ;) 1s the difference of two orthogonal vectors, each of

norm one. Thus {|P;Q ()|l = > V2. Hence, by (2.6) and by the choice
of g for j =1,2,..., M and for & = 1,2, ..., we have

P(gar-1) = ¢, (j=1127"“7-ﬂf)7

' and ¢, iy the rth unit

(2.7) fljk )1B(8) @A >V2 — (2Bl +1)e > 1

Now, using the fact that the closed sets #,N 0D, Fon 09D, ..., Fyrn 0D are

mutually disjoint and conditions (2.1) and (2.2), we may pick an index
7o such that, for r> r,

M
D) 1g5r-1(m)| <
j=1

Thus there exists an index % such that for arbitrary complex numbers
01, C2y ..., 63y We have

M
” 2 C1 %5
i=1

for all

1+ max C; wed.
1<i<M

U M
H < Hg; 6 Yj,0(2k—1) H + ” Z T ”
M = M
<191 gl &y | QU] ) 59, s |
’ M = M
< HQHIISI;ZIJK”!OH (‘i}ﬁ)g |9,-:2r(2h-1)_1 (w)] 4+ 213) é’ Ig,47(2%) 1 (10) |)
< 21Q1l max ¢ - m,,
1<fem

because, for j =1,2,..., M, yjely, and therefore 1-+ max ¢ <

For the same reason ma,x 10,110 < mo Hence Isi<M
1<

supZI

8)10;(s) < 2 |Qlmg.
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Thus, by (2 7),

M< 2 f g, (6)1 by (s) dh = | }j 131 (8)1; (5)

8 Jm=l

< 2(1Qllmg 1A,

which contradicts our choice of M. This completes the proof.
We shall also need the following variation of Proposition 2.
ProrosIeioN 2a. Let Y be a Banach space such that there ewist
uncountable families of bounded linear operators (R,: YA (D)} ond
(L2 A(D)>X)yer and a constant 0 > 0 such that

(2.8) Ronl = Qevan '|"Ky
(here Quyen: A (D)->A (D) is the projection defined by Quven(f) (2) = 3(f(2) +
= for FeA (D)

(2.9)  for every uncountable subset I of I and every positive 'mteger M there
ewist indices py, Yay --vy Yy W I and a positive integer v such that

”2 I,: f/ SIS 2D

where A, = {feA(D): f®(0) =0 for b =0,1,...,7}.
Then X 48 not womorphw to a complemented subspace of any Banach
space with a small annihilator.
We omit the proof of Proposition 2a; it is essentially the same as the
proof of Proposition 2.

with K, compact (yel),

% O+ max sup |f; (2)

for every fu,fas s For i Ay,

3. Spaces A (®) non-isomorphic to A (D). Since A(D) has a smadl
annihilator (cf. the paragraph following Definition 1), to show that, for
gome bounded closed domain of holomorphy @, the space A(®P) is
not isomorphie to any complemented subspace of A (D) it suffices to check
that @ satisfies condition (x) of Proposition 2. This is very simple in the
case of the unit ball B, of €” and in the case of the n-polydise D™ (n = 2).

Proprogirron 3. If n =2, then the spaces:

(8) A(B,),

(b) 4D
are mot isomorphic to any complemented subspace of A (D).

Proof, () Lot " = {w = (Wy, Ws, ..., W,)«0B,: wy = Rew, > 0}. For

n
w el define gy : DB, bY pp(2) = ¢-wior zeD, gued (By), by 4u(3) = Ezhwk

0T 3 = (24, 22, ++, %) €By, and put Fy, = gy (D). Clearly, each I, satnsfles
the conditions (2.1a), (2.2a), (2.3), and B, together with the family (Fo)wer
satisfies condition. (%) of Proposition _2

() Liet I == {0 = (W, Wy +-ey Wy1) O™ s f0y] =
= 1}. For wel" define ¢y: D—D" by ¢y (2) = (w:u Wy, -

|w,y| = = |Wp—1]
,w,,,_l, )for zeD,
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n—-1
Gwed (D") bY 9u(3) = znlnl ¥ (2 +wy) for 3 = (21, #ay ..., 2,) e D", and put

Fy = ¢(D). Clearly, each (Fy), satisfies conditions (2.1a), (2.2a),
(2.3), and D" together with the family (F,)w.r satisfies condition (x) of
Proposition 2.

Remark. Part (b) of Proposition 3 was first proved by Henkin [5],
who used a different argument.

Using a more refined analytic argument, we generalize part (a) of
Proposition 3 as follows:

TrmoREM 1. Let > 2. Let & <= € be a bounded closed domain of
holomorphy such that 0P as a real surface is O*-smooth. Then A (D) is not
isomorphic to any complemented subspace of A (D).

Proof. By the compactness and C%-smoothness of dB, we can choose
(cf. [12], Theorem 3.1) a point 3,¢0P and its neighbourhood U so that
UndP is a strictly eonvex surface. Without loss of generality we inay
assume that 3, = 0 and that the inner normal direction to 9% at 3, is
the positive direction of the imaginary part of the z,-axis of ¢* Then
there exists an ¢, > 0 (depending on the behaviour of the curvature radius
of 09nT) such that, for every ¢ with 0 < £< z,, the complex line G,
= {3 = (o1, %, .o+, %) €1 2y = 0,2, = 0,...,2,, = 0,2, = s intersects
0PNU tfransversally in U and the curve €,N(APNT) is a O*-smooth
boundary (relatively to €,) of the topological dise F, = €,NUN®. Since the
curve €,N(IPNT) is (*-smooth, a strengthening of the Riemann Mapping
Theorem (cf. [11], 14. 19) yields the existence of a homeomorphism
@;: D—F, which is holomorphic in' the interior of D. Consequently,
gog.cA (D) for every geA(®P) and for every ¢ with 0 < ¢ < 5,. Since F, is
a transversal analytic disc of a bounded closed domain of holomorphy
with a strictly pseudo-convex boundary, a result of Fenkin (ef. [7], (1.1)
and Theorem) implies the existence of a linear operator L,: A4 (D)—»d4 (9)
such that if g,, = L,(y,), where x,(2) = 2" for ze.D and for o = 1,2, ...,
then g,,09,(2) = 2" for 2D and forn = 1,2, ..., and the sequence (g,,)
tends uniformly to 0 on every compact subset of @ which is disjoint with
the curve 0PNF, = EN(OPNT) (a8 n—»-co, ¢ being fixed). Hence each
F,is a strict support of the disc algebra (we put Op, = L), Thus &
together with the family (If’,,)k,m0 satisfy condition (x) of Proposition 2.

We are indebted to T. Figiel for the following generalization of part
(a) of Proposition 3.

PRrOPOSITION 4. If 0 2> 2 and if W is a strictly convex circled bounded
dlosed domain in € whose boundary does not: contain intervals, then A (W)
is not isomorphic to any. complemented subspace of A (D).

Proof. Applying the Bohnenblust—Sobezyk Theorem (cf. [2], I1. 3. 11)
to the one-dimensional linear. subspaces of the n-dimensional complex
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Banach space whose unit ball is W we construct an uncountable family
(g,)par Of linoar functionals on € such that sup |g,(w)| =1 for every
welW

yeI" and such that every two different members of the family are linearly
indopendent. Since the boundary of W does not contain intervals, there
exists, for every y in I, a unique point w,¢ W such that g,(w,) = 1.
Let us define @,: D—W by ¢,(2) = 2w, for zeD and put I, = ¢, (D) for
every yel' Then W together with the family (F,),. of striet supports
of the dise algebra satisfios condition (x) of Proposition 2.

We close this section by discussing the case of the m-octohedron

n

- \7
,w-g{ w2 (B By oeey By) eC: _)_J [yl < 1}.

f=1

Let us observe that every point of 22™ with all coordinates different from
zero is a point of strict pseado-convexity and therefore a pick point of
the algebra A (™). Therefore the technigue of the proot of our Theorem 1
can be carried out to obtain Proposition 5 given below., However we
present hoere a simple elementary argument.

PRorOSINION 5. If m 3> 2, then the space A.(Z") is mot isomorphic to
any complemented subspace of A(D).

Proof, Note that it iy enough to cousider the case of n = 2, because
A(ZY is isometrically isomorphie to a complemented subspace of A(Z™)
for n=2 (the desired projection is defined by Q(f) (e, 2y -++s %)
= {21y %y 0, -.., 0) for feAd (Z™). Next observe that A (%) is isometrically
isomorphie with a subspace ¥ of 4 (B,) consisting of the functions ged (Bs)
such that g(z,, ) = ¢(6,2y, Gyay) for ¢; = &1 (¢ =1,2) and for every
(21, %,)eB;. The desived isometric isomorphism ‘assigns to a function
FeA (2% the function geY defined by g(2;, 2,) = f(#i, &) for (21, 2)eB;.
Lot ' = {w = (w,, w,) eBy: wy > 0, w, > 0, wi+wj = 1}. For every wel’
we define linear operators Ly: 4(D)—~>Y and B,: Y—4 (D) by

Lo (Gapar) == 0y I (tun) (215 22) = (2130, 2y w)" A (— 2w+ 2 0,)
for (z,,2,)eB, and for b == 0,1,... (y,e4 (D) is defined by yn(2) =2"),
‘ Byo(N)e) = f(zw) fov zeD and for fe¥.
It is easily soun that [Tyl << 2 and || Ryl < L for every wel'. Let|
By = {36 3 = 2w for zeD}, Iy = {3e0*: 3 = (—2wy, awy) for seD}.

Then, for w =s (1, wy)el" and for gelly, we have

2k

| 3ty o0, | < [0} — k| = g < L.
Hence

1By Lo (2a0s) — ewll = q%uk for k=1,2,..
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Let K, = Ryly—Qcyen for wel’. Then

N L O (0) . (Ray T () — 1)

for
(2E)!

Hy(f) =

k=0

feA (D).

Thus K, is compact (even nuclear). Hence the family (R, Ly)wer Satisties
condition (2.8) of Proposition 2(a). This is an easy consequence of the
following facts.
(i) For every wel’, if zeB,\(F,UFy), then there exists a ¢(z, w)
such that 0 < gz, w) < Land |By T, (2) (2)| < 2¢(2, )% fork =1,2,...;
(ii) If w, s w,, then (leulﬂ,’gl)n(lf’mzul’:,z)naBz = @ (w;el", myel).
The desired conclusion follows from Proposition 2a.
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The invariance principle for group-valued random variables
by
T BYCZKOWSKI (Wroctaw)

Abstract. Lot & bo a complete, separable metric group. We extend the invariance
principle to certain friangular arrays of G-valued random variables. As an .a.pplicati.on
we oxamine the invariance principle for triangular arrays of random variables with
values in a Fréchoet space or in a locally compact abelian group.

Let X,, X,, ... be & sequence of independent identically distributed.
random +variables defined on a probability space (£, 0¢,P). For each
integer n = 1, let &,(f), 0 = ¢ <1, denote the stochastic process obtained
by the linear interpolation of the normalized sums Sy /n'? = (X;+ X+ ...
cee FXN M To=1, ..., m; S, =0, The invariance principle ass.e}'ts
that if X, have mean 0 and variance 1, then the sequence of probability
measures on C[0, 1], induced by the stochastic processes £,(t), converges
weakly to the Wiener measure (see e.g. [1]). This result has been generalized
by J. Kuelbs to triangular arrays of Banach space valued random variables
[8]. In this note we prove that the invariance principle has a more general
seope. Let G be & Polish (complete separable metric) group. We discuss the
invariance principle for certain triangular arrays of G-valued random
variables. Instead of C[0,1] we use the space Dg < GV of all left-
continuous functions having the right-hand limits (at every point_ of
[0, 1]). Ax an application of our result we examine the invariance pri:}mple
for Fréchet space valued random variables and for random wvariables
taking values in any LOA. group.

Preliminaries. All statements which we quote here are proved in [1]
under the assumption that @ is the real line. However, the arguments

‘used there either apply to our general situation without any change or

need a slight modification. We shall not repeat those proofs.

Throughout this paper we shall assume that ¢ is a complete separ&ble
metric group having a left-invariant and complete metric o. It is we'll
known that every two-sided invariant metric is complete whenever & is
topologically complete.
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