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Let K, = Ryly—Qcyen for wel’. Then

N L O (0) . (Ray T () — 1)

for
(2E)!

Hy(f) =

k=0

feA (D).

Thus K, is compact (even nuclear). Hence the family (R, Ly)wer Satisties
condition (2.8) of Proposition 2(a). This is an easy consequence of the
following facts.
(i) For every wel’, if zeB,\(F,UFy), then there exists a ¢(z, w)
such that 0 < gz, w) < Land |By T, (2) (2)| < 2¢(2, )% fork =1,2,...;
(ii) If w, s w,, then (leulﬂ,’gl)n(lf’mzul’:,z)naBz = @ (w;el", myel).
The desired conclusion follows from Proposition 2a.
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The invariance principle for group-valued random variables
by
T BYCZKOWSKI (Wroctaw)

Abstract. Lot & bo a complete, separable metric group. We extend the invariance
principle to certain friangular arrays of G-valued random variables. As an .a.pplicati.on
we oxamine the invariance principle for triangular arrays of random variables with
values in a Fréchoet space or in a locally compact abelian group.

Let X,, X,, ... be & sequence of independent identically distributed.
random +variables defined on a probability space (£, 0¢,P). For each
integer n = 1, let &,(f), 0 = ¢ <1, denote the stochastic process obtained
by the linear interpolation of the normalized sums Sy /n'? = (X;+ X+ ...
cee FXN M To=1, ..., m; S, =0, The invariance principle ass.e}'ts
that if X, have mean 0 and variance 1, then the sequence of probability
measures on C[0, 1], induced by the stochastic processes £,(t), converges
weakly to the Wiener measure (see e.g. [1]). This result has been generalized
by J. Kuelbs to triangular arrays of Banach space valued random variables
[8]. In this note we prove that the invariance principle has a more general
seope. Let G be & Polish (complete separable metric) group. We discuss the
invariance principle for certain triangular arrays of G-valued random
variables. Instead of C[0,1] we use the space Dg < GV of all left-
continuous functions having the right-hand limits (at every point_ of
[0, 1]). Ax an application of our result we examine the invariance pri:}mple
for Fréchet space valued random variables and for random wvariables
taking values in any LOA. group.

Preliminaries. All statements which we quote here are proved in [1]
under the assumption that @ is the real line. However, the arguments

‘used there either apply to our general situation without any change or

need a slight modification. We shall not repeat those proofs.

Throughout this paper we shall assume that ¢ is a complete separ&ble
metric group having a left-invariant and complete metric o. It is we'll
known that every two-sided invariant metric is complete whenever & is
topologically complete.


GUEST


icm®

188 T. Byczkowski

Let |[-|| denote the distance from the identity ¢ of G: {[@| == o(w, ¢).
Let Dg = Dgl0, 1] be the space of functions f on [0, 1] into & that
are right-continuous and have left-hand limits:

@) for 0t <1, f(i+) = lin}f(s) exists and f({+) == f(),
AV

(ii) for 0 <¢< 1, f(t—) = lim§f(s) exists.
ant

Let /A denote the class of strictly increasing, continuous mappings
of [0, 1] onto itself taking 0 onto 0. For f and ¢ in Dy, define d(f, g) to
be the infimum of those positive ¢ for which there exists in 4 a A such that

sup |M—t| < &
t
and
sup|[(£(2) g (20)] < e

The space Dg is the separable, topologically complete metric gpace in
the topology generated by the metric d (the so-called Skorohod topology).

We say that a mapping £ from a probability space (£, o, P) into
Dy is a random element iff it is measurable with respect to the Borel o-field
of Dg. Let us define, for ¢, %, ..., %; %;¢[0,1], the natural projection
7.4, from Dy to G

ﬂtl...tk(f) = (f(tl):f(tz)f “'7f(tlc))'
By finite-dimensional sets we shall mean sets of the form m“l.l“,]a(ﬂ Y,
where H e%g: (the Borel o-field in G%).

For the random element &, by £(t) we shall denote the composition
of £ and =y:

E(1) = m(§).

From the usual arguments regarding this subject, it follows that & is
arandom element of Dy iff £(2) is & random variable of @ for each $¢[0, 1]
(i.e., £(¢) is the Borel measurable mapping from the probability space
into @&).

Finally, we say that a random element & has independent increments
iff, for each 4y, &, ..., ¢; 4;e[0, 1] such that &, < t, < ... < #,, the random
variables ’

E(L)TME(e)y E(8) T E(t)y voey & (tpmy) ™M E(D)
are independent.

The invariance principle. First of all we state some lemmas needed
in the sequel. A proof of the first one may be found e.g. in [5].
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TmmmA 1. Let Xy Xoy ..oy X, be n independent, G-valucd random

P({ max S>> 26)) < a P{I8,] > o))

Tzl
whenever

PU{ISE Sal < 8}) za>0  for b =0,1,..,n-1.

The next lemma, which may be found in [4], gives some property
of random eclements with independent increments and continuous paths.

oA, 2. Let & be a random clement of Dy with independent increments.
If & has continuous paths with probability one, then

o
SUP({IE) T EW] > e) 0
Jewal
whenever n-»o0, for every 8> 0 and cvery sequence {fPYmn, of partitions

y ! ) _ 4(m)
of [0, 1] such that 0 = ) < § <. <H =1 and 4, = max (P —42,)
n

=0 if n-»o0. B

The arguments needed to prove the following lemma do not ditfer
essentially from those used in the proofs of Theorems 14.3, 15.2 and 15.5,
Chapt. 3 of [L], so we ghall not repeat them. -

LmwmA 3. Let {XP: j=1,...,m; n=1,2, ...} be_a triangular
array of G-valued, tndependent and identicolly distributed random vcwwbles(;
Tet 8 = X X ... X{. Suppose that for each &> 0 and every m >
there emist: 8, 0 < & << 1, a positive integer Mo, and o fam«»l'y.{l'f,},,s of compact
subsets of G, where S i3 a dense subset of [0, 1] containing 1, such that

(a) %5 P ({ max 8P > &}) < for n =y,
1l 2imd

(b) DS 416, for teS}) < 0.

Lok (1) = Sy £,(0) = 0. .

Then the sequence of random cloments &, 8 tig[m‘&, and if w 48 ‘the weals
Timit of @ vertain subsequence &, then w(0g) =1, where Cy denotes the space
of all continmous functions & G,

The following lemma will also be useful in the sc}fluo;l. . o

i b Lt LXMW G 1y, my no=1,2,..) be a lnanguia
aﬂ"m; To}vmg\wlluagf ‘/Z')vfi(z}}mndim om:l identically distributed random variables.
Let S = XWX ... XM, Suppose that ' -

(1) S{); converges weally for te8; where 8 is a dense subset of [0,1]

containing 1,

7 — Studla Mathematica LVL2
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(2) for each ¢ > 0 and a certain sequence &,, 0 < 6, <1, 6,—~0

k—>o00,

1
'S‘ImmuPP {“SE ball > &h)— if

(8) for each &> 0 there exists h > 0 such that

lim sup ma,x P8P > &}) < 1.
n 1<r<

Let &,(t) = 8. Then the sequence of random elements &, converges weakly
to a certain element of Dy with conlinuous paths.

Proof. First we shall show that conditions (a) and (b) of Lemma 3 are
satisfied.

Condition (b) follows directly from assumption (1) and from Prohorov
Theorem (see [1]).

Now, let &, 5 be given real, positive numbers. By (3), there exist
real positive numbers h,, a such that a <1 and a positive integer m,
such that

. max P({I8M] > e}) <o
1<r<nhy

for every n > n,. Lemma 1 implies that

o)

< Iy. By (2), there exists a positive integér N such that

(%) P({ max I8P > &}) <

I<igndy

. for n = n, and 6, <
if %> N then
1hnfuPP({|lS("%k]|l > }) <é&ndl—a) and S, <h.

Let n, = max(n,, N) and 6 = §,,. There exists an n,>n, such that

({HS{ Wl > })< on(l—a)

7. From (%) and (), we have

(%)
for n>
1
5 P ({max [S7)]> &}) <9
1<igind

for n > n, and thus condition (a) of Lemma 3 is satistied.

Now, let a certain subsequence &, converge weakly to u. Liet &, be
another subsequence converging to a distribution ». Since u(Cy) = »(Cg)
=1, it follows (see [1], Chapt. 3, § 15) that, for every t<[0, 1], £, (t) and
&n (1) converge weakly to one-dimensional distributions of uand », respect-
ively. Since, for teS, &,() also converges wealkly, one-dimensional digtri-

icm
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butions of x and » based on points in 8§ are equal. Since the limits of
&y Ene are random elements with independent increments, the corre-
gponding finite-dimensional distributions of x4 and » based on points in
8 are also equal. Since S is dense in [0, 1] and containg 1, we have p = »
(see Th. 14.5, [1]). This completes the proof.

ProPOSITION. Suppose that there ewists o homogeneous random element
W on Dy with independent increments and with continuous paths (with
probability one) such that W (0) == ¢, Let {X{;k = 1,2, ...,m3n = 1,2, ...}
be a triangular arvay of independent, identically d@smbuted random variables
with values n 6. Let S = XWXM . X0 8 =¢. Suppose that

(1) SYM converges wealkly to W (1) for every t<[0,1],
(ii) for each &> 0 there ewists h > O such that

© limgup max P({|SMP| > e}) < 1.
n 1=<rsnd

Let &,(8) = Sy, Then &, converges weally to W.
Proof. From (i) it follows that

limsup P {181 = 1) < P{{IW ()]l > e})

which, together with Lemma 2, establishes condition (2) of Lemma 4 and
ends the proof.

We now present some applications of these staternents.

Let @ be a separable Fréchet space, i.e., a real vector space which
is a complete, separable metric group, and i& such that the mappings
a—ax of B onto G and x—>aw of @ onto @ are continuous.

We say that the random variable X with values in @ has a symmetric
Gaussian distribution iff for any pair Y,, Y, of independent random
variables having the distributions of X, and for every pair of real numbers
(8, 1) such that s*+1? = 1, the random variables s¥;tY, and t1¥; —s¥,
are independent and have the distribution of X. This definition was intro-
duced by Fernique in [4]. If the continuous linear functionals of G generate
the Borel o-field of ¢, then this definition is equivalent to the following
one: X has a symmelric Gaussian distribution it f(X) is a symmetric real

Gaussian random. variable, for every continuous linear functional f.

TrroreM L. Let X be o symmetric Gaussian random variable on G.
The following conditions are equivalent:
(i) for each &> 0, nP ({|X|n"*| > &})—~ 0 if n—>oo,
(ii) there ewists a homogeneous Gaussion random clement W on Dg,
with independent increments, having continuous paths with probability one
and such that W(0) = 0 and W (L) has the distribution of X,
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(iii) if {X,} is @ sequence of independent, identically distributed random
variables such that (X;+X,+ ... 42X,/ converges weakly to the distri-
bution of X, then the sequence &, &,(3) = (X, +X,+ ... 4 Xpy)/n't
converges weakly to a certain random element on Dy with continuous paths with
probability one.

Proof. First we shall prove that (iii) implies (ii). Let Xy, X,,..., X,,, ...
be a sequence of independent random variables such that X, has the distri-
bution of X. Then (X;+X,+ ... +X,)/»"* also has the distribution
of X, and if (iii) holds, then &, converges weakly to a certain random
element with the properties as in (ii). Thus (ii) holds.

That (ii) implies (i) follows directly from Lemma 2 and the definition
of Gaussian distribution.

Now, suppose that condition (i) holds. Let {X,} be a sequence of
independent, identically distributed random wvariables such that (X,
+X,+ ... +X,)/n'"? converges weakly to the distribution of ¥. In order
to conclude that £, converges weakly to a random element with properties
as described in (ii), it suffices to show that the assumptions of Lemma
4 are satisfied.

For this purpose let us observe that if

I ACCR A S + Xy
it = () St

and

X+ .. Xy

4 = ¢ 12
£u(t) o

’

then £,(t) — &,(¢) converges to 0 with probability 1, and £,(t) converges
weakly to the distribution of > X. Therefore, by [1], Theorem. 4.1, £, (%)
also converges weakly to the distribution of #2.X, and condition (1) of
Lemma 4 holds.

Next, we shall show that for each &, 5> 0 there exists an > 0
such that

. 1 v
1 ! — ]
(%) unnsuplgrli,nxhl’ ({“ e % Xl = s}) <7.
Let
X+ ... +X
¥, = _*1——%'175——2, U = {; o] <e}.

Since Y, converges weakly, there exists a compact subset K of @ (by
the Prohorov Theorem) such that P{Y,¢K}) <9. Since U is

icm®
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an open neighbourhood of 0, there exists an & > 0 such that for < A2
we have tK = U (see [3], Chapt. II). Therefore, for » < nh we have

fl 2 A

(NP Kt X ”
" I A

which proves (). Thus, condition (3) of Lemma 4 holds.

Pinally, since (XX, ... -|'Xr,ﬂ/,,b])/7r,”2 converges o the distri-
bution of X/#** as k->o0, by condition (i) of this theorem it follows that
condition (2) of Lemma 4 iy also satisfied. Thiz ends the proof of the
theorem.

Remark. It is interesting to know which separable Fréchet spaces
G have the property that every symmetric Gaussian random element
taking values in @ natisfies condition (i) of Theorem 1. By Theorem 2 in
[7] it follows that every separable locally pseuldoconvex Fréchet space
hag this property. The corresponding result for Banach spaces can be
derived from an earlier paper of Fernique [4] and also from Landau and
Shepp [10]; for locally convex spaces — from Kuelbs [9]. The forthcoming

~example shows that every symmetric Gaussian random element with

values in the space §(7', &7, m) (all o/-meagurable real functiony on
T with the convergence in measure m) also satisfies condition (i). The
idea of this example is due to Professor C. Ryll-Nardzewski.

However, the author does not know either any characterization of
Fréchet spaces having the above property or any example of a yymmetric
Gausgian random element which does not satisfy (i). ‘

Examrre. Let (7, &, m) be a finite measure space. Let S denote
the space of all real-valued .7-measurable functions defined on 7. It is
well known that § with. the norm

I = | e dm(s),
&
which induces the topology of convergence in measure m, is a real Fréchet
space. If m is nonatomic, then § admits no nonzero continuous linear
funetionals, Suppose that § is sepavable,

Let {£(1); teT} De a stochastic process defined on a probability space
(R, o, P); it is said to be measurable if the map &, &: T x 2-+K defined
by (¢, w)—£(t, o) is measurable relative to the o-algebras %4, and « X o.
From the measurability of the process and the separability of § it follows
that the mapping w—£(-, w) is measurable relative to #y and. o. The pro-
bability measure on (8§, #g) induced by this mapping will be denoted
by .
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A stochastic process {&(f); teT} i said to be Gaussian if, for every
byy by ooy bredy CE(8), E(fy), ..vy E(f)> 18 a Gaussian random vector with
values in R".

The proof that every symmetric Gaussian random element with
values in (8, %) satisfies condition (i) of Theorem 1 is divided into two
parts; each of these parts may be of independent interest.

In the first part wé shall prove that every syminetric Gaussian measure
on (S, %) is induced by a Gaussian measurable stochastic process. In
the second part we shall show that every meagurable symmetric Gaussian
process is induced by a continuous linear mapping @, @: L,—8, from a
measurable Gaussian process with samples in L,; so the induced random
element with values in § is symmetric Gaussian and satisfies condition (i).

I. Let x be a probability measure on (8, Bg). We construct & meagur-
able stochastic process {&(); t<T} such that the induced measure u,
equals u.

For any set A < § we denote its diameter by 6(4). Since S is separ-

able, we can Wmte, for every positive integer n, 8 = U 8%, where

8¢ are non-empty, (8 <1/n, SPeB, (k=1,2, ...) a,nd S sw
=0 if k 5 m. Without loss of generality we may assume that {Sf+)}
is a refinement of {S{}. Let us choose, for each m, an element of ng;,
namely A%, and let & be a repleqentauve of the equivalence class h{®
Now, let us define, for n =1, 2,

En(f5i)=71:;:(t) it feSP.

It is easy to check that £,: §xT—R is %gxo/-measurable. Next, by
the construction of &, it follows immediately that for ¢ > 0

m{t; lfﬂ(f7 Em f’

it n, m—co uniformly with respect to f. Fubini’s Theorem implies that
&, Is fundamental in the x4 x m measure. So, there is a function &: § x TR,
HBgx o-measurable and such that £, converges to & in the u x m-measure.
Let £ denote the mapping of § into § induced by & ag follows:

E () = E(f, ).

Let us observe that & = I p-ae., where I denotes the identity map.

For, let £, be a subsequence of &, converging to & u xm-a.e. Then, by

Fubini’s Theorem, & (T - eonverges m-2.8. 10 &( (f, +), for w-almost; 'ull 5

and hence in the m-measure. So, E —>£ p-a.e. On the other hand, Ew (H

—I(f), for every fe8S, which gives the desired conclusion. Next, for every
" pair (s, u) of real numbers we have

(1) §(sftug,t) =s&(f,1

m -

> e}—=0

)+ué(g, 1)

icm
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for px uxm-almost all (f, g,t). This follows from the constiruction of
&, and from the fact that § is topologized by the norm of convergence
in measure m.

Now, let x be a symmetric Gaussian digtribution. Let (s, u) be a
fixed paiv of real nuwmbers such that 0 <s,u <1, s2--u® = 1. Let uy -
define the mapping IF': §x §->8 % §:

B (fyq) == (sf--ug, uf—sg).
Since p i symmelric Gaussian, we have
(2) (% 1) (A) = (% ) (17 (A))
for every A e#g. Liet N De a subset of 7' such that NesZ, m(N) == 0 and
(3)  (wxp) ({(fy9); E(sf-+ug, to) # 8E(f, to) (g, bo),
E(uf—sg, ty) # wE(f, ) —s&(g,1)}) =0 for feT\N.

Let by, tyy vy tpe NN and lob

X o= (E(f5 1)y £(F, ta)y oves E(F5 %)),

Y = (g5 ), é(g, 52) ey £(0, 1)
Lot A, Bedye (the Borel o-field in R*). Let us define

A" = {f; Xed}, "B' = {g; YeB}.
Cleaxly, by the measurability of & it follows that A, B'e#y. By (2), we
have

(pxp) (A'xB) = (uxp) (F (A" x B)).

In view of (3) we have
(M x p) (F71(A" % B))
= (uxp) ({(f, 0); F(f)9)ed’ ><B})
= (X p) ({(/1 (5(‘3/‘“1‘“.(/1 1)y <ovy E(8f -ug, tla)) e4; (E('L’f"“‘?ﬂy 4, ... ‘
vy E(uf 89, t) € BY)
(X, V) el (A x B)Y) = (

= (ux p) ({(f, 9); px X py) (B (A % B)),

whore uy, uy denote the distributions of X, ¥, vespectively, and F'y(w,, @,)
== (8 -+ ity Wiy — s,) for each. @y, @, elf/‘ Thun we have

= (g % py) (F7" (4 x B)).

By Theorem 2, § 8. XV, in [5], we infer that X is a symmetric Gaussian
random variable with values in R*. Thus, if we define

(nx % py) (A x B)
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- E(fyt) it 1NN,
Efhn =4 "
0 if  teN,
then ug = p; = u and £ is a symmetric measurable Gaussian process.

II. Next, let {é(f); T} be a symmetric measurable Gaussian process.
Let us define K (s, 1) = H(£(t)£(s)). Now, let

(o, 8) = &(w, 1) (L+E (1, 1)
Then B(q(t)’) = K(t,1) (L+K(1,2)™" and so n(w, )eL,(T, &, m) with
probability one (see Proposition 3.4 in [12]). Thus, the probability

measure u, induced on L, by % is symmetric Gaussian (one uses the fact
that L, has sufficiently many continuous functionals and Theorem 3.2

in [12]). Now, let us define a linear mapping from L, into § ag follows:

Of = f(1+EK)"*.

It is easy to see that @ iz continuous, é(w, ) = Py(w, *), and that u, is
symmetric Gaussian. Let us denote by X, ¥ the random elements induced
by the stochastic processes #, & on L,, S, respectively. Liet U be any open
neighbourhood of 0 in 8. Then

nP{¥n'?¢U} = nP{®X |0 ¢ U} = nP{X /0" ¢ D~ U}->0

if m—oo, since by the continuity of @, $~'U is an open neighbourhood
of 0 in L, and X satisfies condition (i) of Theorem 1 (as a symnetric Gauss-
ian random element with values in a Banach space). So, ¥ satisfies eon-
dition (i) of Theorem 1. ,

Now, let G he a locally compact, second countable abelian group
and I' its character group. The random variable X with values in G has
a symmetric Gaussian distribution if its characteristic function has the
form

i (v) = exp(—o(p)),
where yel' and ¢ is a continuous, nonnegative function on I’ satisfying
the equality
P(71t7a) +o(vi—va) = 2[@(r1) + (1)

for all y,, y, in I" (see § 6, IV in [11]).

Let X be a G-valued symmetric Gaussian random variable having
the characteristic function i (y) = exp(——go(y)), where ¢ is 2 certain fixed
function on I' with the properties as described above.

TrmoREM 2. The following statements are valid:

1) nP{I X, = a})-—;—OA if m—o0, where X, is a random variable with
the characteristic function »,(y) = exp(—qo(y)/fn).
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(ii) There emists o homogeneous Gaussian random element W with inde-
pendent increments, having, with probability one, continuous paths and such
that W (1) has the distribution of X and W (0) = 0.

(i) Let {X{; j=1,2,...,n; n=1,2,...} be an infinitesimal
triamgular array of symmetric, independent and identically distributed random
variables such that XM - ... + X converges weakly to the distribution
of X. Let £,(8) = X ... LX), Then &, converges weakly to W.

Proof. It follows immediately from [2] that condition (i) of the the-
orem is satisfied. .

In order to prove that conditions (i), (ii) and (iii) are equivalent we

" need only show that condition (3) of Lemma 4 holds for the array as

ig described in (iii). The remaining arguments are almost the same as in the
proof of Theorem 1.

Let 8 = XM 4 ... X" and let j, be the characteristic function
of X{. We shall show that for each compact subset K < I'

limlim max sup |z, ()" —1| = 0.
=0 n  hnh pedS

Let us observe that (4,)"" converges to exp(—he(y)) uniformly on each
compact set K = I' for a fixed h, 0 < h < 1. Let », be the distribution
defined by the characteristic function exp (—hg). Notice that if A— 0, then
v, converges to the measure concentrated at the identity of & So, given
&> 0 and a compact subset K of I', there exists an k, 0 < h < 1, such that
if 0 <t<<h then
sup fexp (—ip(p)) —1] < &/2.
yeK
Now, by the infinitesimality of array, it follows that there exists a positive
integer m, such that if » > ny then &, (y)> 0 for yeK and ‘
sup i (y) — exp (— b ()| < &/2.
e,
Hence
sup lia, (y)™—1| <& for n>m,
yeIt
and, since p,(y) is positive if y eI and n > n,y, we have

sup I/'.\l%(jl)m ~~1] == gup (i"n(?)nh i ”‘1| < &
ek yel.

for t <k and n > n,.

‘We now complete the proof by citing the following lemma, resulting
from the remark after Definition 5.1, IV in [11].

Lmmva 5. Let {8: & =1,2,...,m; n =1,2,...} be a triangular
array of G-valued random wvariables. The. following conditions are equiv-
alent;
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(i) LimlimmaxP ({|8] = &}) = 0 for each &> 0.
0w k<nh )

(i) For each compact subset K of I'

198

limlimmaxsup g () 1] = 0,
0 0 k<nh yeK

where WP is the charadteristic fumction of S{.

Remark. It is easy to see that we can formulate and prove, in a
similar way, an analogue of Theorem 1 for Cg-valued random elemonts.
Obviously, instead of random elements nsed in the formulation of Theorem
1, we have to deal with the stochastic process obtained by linear infer-
polation of the sums (X, -+ ... +Xp)n'? & =0,1,..., n.

Added in proof. I have noticed that the fact that the condition (i) of Theorom 2
holds in every LCA group follows also from the paper of V. V. Sazonow and
V. N. Tutubalin Probability distributions on topological growps, Thoor. Probh. Appl.
(1966) (see Theorem 4.11).
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