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Note added in proof. J. Hagler (Trans. Amer. Math. Soc. 214 (1975), pp. 415 —428)
Liag shown that if the weight of a dyadic space § is an uneountable regular cardinal =
then § containg a subspace homeomorphic to D" .
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On absolute retracts, P(S), and complemented subspaces of ¢ (D™1)

by
SEYMOUR DITOR (London, Ontario)
and .
RICHARD HAYDON (Oxtord, U.K)

Absteact. It is shown tha, if § i8 a compact Hausdortt space, then tho space
P (8) of probability measures on § is an absolute retiract (in the category of compact
gpacos and continuous mappings) it and only if § is a Dugundji space (in Pelezyiski’s
terminology) and the weight of § is at most w;. The crucial point of the proof consists
of showing that P ({0, 1}4) is an absolute vetract if and only if the cardinality of 4 is
at most w,. As a corollary, it follows that if 8 is a compact Hausdorff space of weight
oy, then § is a Dugundji xpacoe if and only if the Banach space % (8) is linearly isometric
$o tho range of a contractive projection on % ({0, 13°Y).

1. When S it a compact (Hausdorff) space, the Banach space of
all continuous real valued functions on § will be denoted by #(8). The
dual space of ¢(8) will as usual be identified wish M (8), the space of all-
Radon measures on §. We shall be particularly interested in

P(8) = {ue M(8): |ull = <p, 1> =1},
the set of all probability mepsures on §, which is itself a compact space
under the weak topology oM (8), #(8)). We write é or d, for the cano-
nical embedding 8 <P (8).

If p: §c.T' is o continuous injection, and g: T8 is & continuous
mapping satistying pop =4, where i is the identity mapping on 8,
we say that o is a retraction for ¢, and that 8 is a retract of 7. A compact
space 8 is an absolute retract (AR) if every continuous injection S&-T
allows @ retraction. The question dealt with in this paper, namely that
of characterizing those & for which P(8) is an AR, arose out of some
problems posed by Pelezyhski in [8], concerning extension operators
and averaging oporators on spuces of conbinuous funetions.

A linear operator w: @ (8)->@ (L) is called. regular if w is continuous
with fjuf =1 and w(L,) == Lp, where 1, denotes, of course, the function
that is identically L on the space S. Bquivalently, u is regular if and only
it the transpose u takes P (1) into P (8), M g: ST isa continuous mapping,
a vegular operwtor ¢°: €(T)-»%(8) is defined by ¢"(g) = gop (g% (T)).
Restricting the tianspose (¢°) to the set P(S) gives us a continuous map :
P(S)~>P(T). In the particular case where ¢ is a continuous injection,
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¢ is a surjection. A regular right inverse for ¢° (i.e. a regular operator u:
Z(8)—~>%(T) with w(f)op =f(f<#€(8))), if one exists, iy called a regular
ewtension operator (r.e.0.). If, on the other hand, ¢ is a surjection, ¢° ig
an injection and a regular left inverse for ¢° if one exists, is a regular
averaging operator (r.a.o.). Petezyiiski [8] defined a Dugundji space to be
a compact space § such that every continuous injection ¢: 8.7 allows
an r.e.0. It is enough that some continuous injection §c—F* should allow
an r.e.0., where I is the unit interval [0,1] and A is some index set. If,
for some 4, there is a continuous surjection D%~ 8 that allows an r.2.0.,
where D is the two-point space {0,1}, § is said to be & Milutin space.

In what follows, we shall always identify a cardinal with the corre-
sponding initial ordinal; » and w, will denote, respectively, the first in-
finite cardinal and the first uncountable cardinal. The weight w(S) of
a space 8 is the smallest cardinality of a base for the topology of §. When §
is compact, we can always embed § in I*®),

2. THEOREM 1. The compact space P(D™') is am absolute retract.

Proof. We can represent P(D) as an inverse limit

lim (P (D®), 7, 5)

a<f<wy )

where 7,,5: P (Df)—>P(D*) (a < f) is the mapping induced by the projection
T, 6t Df>pe.

(We are, of course, widentifying the ordinal o as a subset of the ordinal ﬁ.)

To prove P(D") is AR we shall show that, whenever ¢: Sc-T is

a continuous injection, and y: 8§—~P(D“Y) is a continuous mapping, there
“1

is & continuous 6: T'—P(D™) with fop = . Such a map 6 will be deter-
mined if we obtain a family (6e)acw, Of continuous mappings

b.: T-P(D%) with 6, = 7500,  (a< B < )
and ¢ '

0,00 = ;T,‘,Ol/),

where 7,: P(D")—>P(D% is defined in the same WAY 88 Ty
We construct the family (8,) by transfite induction. With o = 0,
the situation is trivial, P(D°) being a one-point set, so that 6, is deter-
mined. Suppose now that 6, has been defined for all « < . We congider
the set-valued mapping
0y T—pP (DY)
defined by

o,1) — |Fav@} it =g(sjeprs],
T Ealew) it s,

Absolute retracts and complemented subsp 245

Using the fact (Section 4 of (2)) that w4y, is an open lna,;)ping, we can
check that @, iy, in Michael’s terminology, a lower semlcon’mpuous carrier.
Moreover, P (D) is compact, convex and metrizable (f is countable),:
and each @(1) is a (:ompaop convex subset. So by Theorem 1.2 of [T]
there is a continuous mapping
Oy4q: TP (DY)
with
0p1 (D) e@y(t)  (teT).

I it 9 is a limit ordi sonsistent family (04)e<, has

Tinally, if ¢ is @ limit ordinal, and ay.(‘OIlbl"‘\‘bel.l Y (0a)acy ha
been definec,I already, we note that we can identify P (D”) with lgn(P(D )y
So the maps 0, do already defermine the required map

0,: T—~P(D").

na,ﬁ)u<ﬁ<al 4

Note. Alternatively, we could notice that, by .‘nhe inverse limit.
representation used above, I’(Dml) mtisj‘:ies' tpe conditions of-Theo?em”Z
of [41. Thus, as a convew Dugundfi space, it is AR (cf. the discussion in

ction. 2 of [4]).
> "I,’IL()POSI’J}I‘Iol‘i 1. Let 8 be a compact space and suppose P(8) is an AR.
Then 8 18 a Dugundji space. .

Proof. Let gp: §<-T be a continuous injection.. Then there e:nsts‘

a continuous map 0: T—P(8) with fop = dg. Define u: % (8)—~>%(T)

by (u() (8) = <O > (Fe¥(S), teT). Then w is a regular extension

rator for ¢.
e a;l(l)(la ne‘xtp proposition, which we shall neefl i'n order to prove th((;
gsecond theorem of this section, uses methods similar fno some empi(l)ye
by Amir and Avbel [1] and MeDonald [6]. For convenience, Yve sha (gnge
some category theory terminology from [9]. The Banaeh b]laacfls n(o rz‘
may be rogarded as objects in either the category Ban,, _wl}c?le t ? n o
phisms are linear contractions, ov Bufc‘l,v where the morphisms 211‘@ 1efguc1))
operators. Thus, to say that #(8) is & Bfmnlﬂ?etl"a,ct (re:%p. a ]?c‘kl-re mz;lrn
of ®(1) is just to nay that there ave linear contractions (resp. regu
operabors)

jt B(8)0(1),  pr €(T)¥(8),

with poj == tgq. It 8 is a Milutin space, then #(8) is a Befd-retract
of @ (DY for some A. .

ProvosITIoN 2. Let 8, T be compact spaces ond su;ppose’ that hfigﬂi
is ‘o Ban,-retract of @ (D). Then there is a closed Gy subset Ty of T .suc 0t

%(8) is a Befd-retract of (1)
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Proof. There exist, by hypothesis, linear contractions j: ¢ (8)-%(T),
-p: B(T)—>%(8) with poj = 1g5. We start by defining
T, = {eT: (j(Ly) (1) = +1},
T_ = {teT: (j(1,)) (1) = —1},
Ty =T,0T_.
8o T, is certainly a closed G, subset of 7.

Since j is evidently isometric, the transpose j' takes the unit ball
ball M(T) onto ball M(8). By the Krein-Mil’man theorem, for each
extreme point x of ball M (8), there is an extreme point » of ball M (T)

~ with j'(») = u. Recalling that the extreme points of ball M (T') are exactly
the measures - d(t), we see that for each se §, there iy teT with j' (1)
= 4 4(s). Such a point ¢ is necessarily in Ty, so we see that j' takes
ball M(T,) (identified as a subset of M(T)) onto ball M (S). Thus

Joi €(8)>¥(T,),
defined by jo(f) =j(f)|T, is isometric and
[Jo(Lg)l = dp,-
Let us define %: ¢(8)—~%(T,) by
(]o(f)) (1) (t€T+)5
=GN  (teT).

‘Then % is a regular isometric embedding.
We now assert that

(&(H) (¥) =

p: €(T)=>%(8)

factors through the restriction mapping ¢ (7)—~%(T,). It will be enough
to prove that each measure p’d(s)e M(T) is supported by T,. If
# =p’ 6(s), then

$uy §(1s)> = (i (1) (8) =1.
‘That is to say,

JiGs)dn =1, while juj<1
and [j(1g)l < 1. Thus _
WI(To) = lulfteT: [(i(1g) 0] =1} =1,

as required. So po: €(T)—%(8) is well defined by p,(f) = p (g) it ge#(T)
and gLy = f. Let us finally define g: #(T,)—~%(8) by

a(f) = po(F-(i (15)-

‘Then ¢ is regular and qok = iy
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CoroLLARY 1. Let 8 be @ compact space and suppose that €(8) is a
Ban,-reiract of €(D*). Then €(8) és a Befd-retract of % (D4).

Proof. If 4 is countable, § is necessarily metrizable, hence a Milutin
space ([8], Theovem 5.6), xo that #(8) is a Befd-vetract of @ (D4). If 4
is uncountable, the rvesult follows immediately from Proposition 2 when
we recall that every closed @, subset of D* iy homeomorphic to D4 ([3],
Theorem 6).

TrsorEM 2. Let S be a compact space and suppose that #(8) is a Ban,~
retract of @(D™). Then P(S) is an absolute retract and 8 is a Dugundji
space.

Proof. By Corollary 1, there exist regular operators
k: €(8)—>%(D™), '
¢: (D) ~>%4(8),
with gok = uyy. Passing o the adjoints, we have
¢+ P(8)~>P (D),
k': P(D*)—>P(8),
with k'o g’ == tpg. Thus P(8) is a retract of P (DY), and so, by Theorem 1,

.an absolute retract. Proposition 2 tells us that § is a Dugundji space.

ComorLARY 2. Let 8 be o compact space with w(S) < wy. Then the
Sfollowing are equivalent:

(a) 8 48 a Dugundji space;

(b) 8 48 a Milutin spaoce;

(c) P(8) 48 an absolute retract.

Proof. (a) = (b) follows from the results of [4],

(b} = (¢) = (a) from Theorem 2.

Corornary 3, Let § be a non-melrizable compact space, and suppose
that €(8) is a Bany-retract of €(D™), Then € (8) is linearly homeomorphic
to #(D"Y).

Proof. This follows from Covollary 8.7 of [5], when we note that,
by Theorem 2, § ix a8 Dugundji space of weight w,.

3. Troeorwm 8. If card A eweceds wy, P(D?) is not an absolule retract.

Proof. Lot us suppose, if possible, that card A > o, and that P(D4)
is an absolute retract, The weight of P(D4) is card 4, so there is a con-
tinuous injection

@i P(DH—T4
Let ¢ be a retraction for .

4 — Studia Mathematica L VL3
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When B < 0 < 4, let us agree to write mpy (resp. 7p,q) for the
canonical mappings I°—>IB (resp. P(D%)—P(DF)). Let us write mp, 7p
for ng 4, nB 4, respectively.

We shall say that B < A is a factorization set for ¢ and ¢ if

(i) mgog: P(D%)—I® factors through 7, and

(ii) 7mpoo: I4—P(DP) factors through mp.

If B is a factorization set, there are continuous mappings ¢gp: P (D%
=I5, pp: IP—P (D) with 9zopp = tppe) and such that the diagram
below commutes.

P(D4) I o P(D4)
5 ap 7y
¥ ¥
P(D?). ) P(DF)

We need the following lemmas to guarantee the existence of such sets.

LEMMA 1. Let 6 be a continuous map from I* (resp. P(D4)) into X.
Then there is a subset B of A with card B < w(X) such that 0 factors through my
(vesp. 7g).

Proof. The assertion is evidently trivial if the image of 6 contains
only one point. Otherwise, since the image of 0 is.connected and non-
trivial, the weight of X is infinite. It is easy to see by the Stone—Weiestrass
theorem (cf. [9], 7.3.13) that every fe%(I4) (vesp. fe% (P(
through sy (resp. 7g) for some countable 0 < A. Let F = ¢(X) be a set
which separates the points of X and which has cardinality w(X). Then
there is a subset F of 4 with cardinality w- w(X ) = w(X) and such that,
for each fe F, fo8 factors through sy (resp. 7z).

LEMMA 2. With the notation of Theorem 3, let H be an infinite subset
of A. Then there is a factorization set B with H = B and card B == card H.

Proof. Let us write » for cardH and define subsets B(n) of 4 in-
ductively. We put B(0) = H. Suppose that we have defined B(0) < B(1)
S ... € B(n) and that card B(n) = » Then w(I®™) =% and w(P (D))
= %, 80 that, by Lemma 1, there are subsets B, F of A with card B = card F
= #, such that

mpmOp factors through mg
and
Tpmy0 @ Tactors through mp.

Let us put B(n+1) = B(r)VEUF.

(DY) factors

icm
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Finally, we take B to be (J B(n
n=0
set. To show that mz0¢ factors through 7z, we suppose that u, ve I(D4)
and that mye (@) 7é wpp(v). Tllen, for some n, swpuyp(u) # nﬂ(n)qo(v) So,
by construction, ”B(m 1)(;4) # an_,_l)( ), and yvﬂ( ) 5 wplv). gimilar
argument shows that 7zo e factors through my.

Proof of Theorem 3 (continued). By Lemma 2, there exists a fac-
torization set B < 4 with cardB = w,. Let us choose a point acA\B
and a countably infinite subset ¢ of B. Then there is a countable factori-
zation set I with OU{a} € D. We note that ' = BNE is countably
infinite, and it iy easy to see that J iy also a factorization set. If ¢y, op,
P 0y Px e defined as in the discussion at the start of the proof, then
the following identities hold:

) and assert that B is a factorization

Ty, O Qr = QpO%p,py  Tp,pOPp = PpOnp &,
Ty, g0 0y = QrO Ty, m;
Let @ denote the set

{(u, ») e P(D®) XP(DE)Z ;[lv‘,]?(/") == 7;1«",1«)(")}-

Zp,pC Py = QPrpO%y,g-

£ (4 ) e@,

w598 (0) = ‘191«';511',13(/4) = ‘77F;7;1f‘,E("") = Zp, pPr(v).
So there iy a (uniquely determined) element z of IV with
g pon(?) = @p(p) and  @gzom(e) = eg»).
We can define a continuous map y: @-I®YF by y(u,») = 2, as above.
On the other hand, if ze I®YZ, we have

Wzv,n 087%3,u(?) = Qp%p p%p pun(?)

= Qpfty pun(?) = Tp pOE%npon(?),

so that o(z), defined to be (Qlfﬂ:]},]gu]g(z), @Enﬂ,ﬂu‘w(z)), is in @. We can
now draw s commutative diagram of the following form:

P (D) P b P
» TR P

Here o and u are as defined above and p (1)

= (mp(A), 7p(A). We
have gog = tppdy and coyp

= 1, 80 that, by Lemma 1 of [4], p is an
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open mapping. To finish the proof with a contradiction we need just
one more lemma, which tells us that p is not open.

Lmvma 3. Let R, 8, T be compact spaces, with card R, cardT =2 and
card8 > w.

Let the mapping

p: P(RX8XT)~>@Q ‘
= {(u;%): ueP(Bx8),re P(8XT) and IIg(u) = ()}

be defined by p(A) = (fIR,(S(A), Mgy (3)), where IIg, gy and I have
the obwious imterpretations. Then p 48 not an open MappIng.

Proof. Choose an accumulation point s, of § and distinet points

7, 71 B and tg, tiel.
Define Ae P(BRx 8 xT) to be

3(8(ros 805 to) 4+ 0(r1, S0, 1))
Choose disjoint open neighbourhoods U,, U, of 7y, 7y in R and Wy, W,
of ty, t, in T, and let V be the neighbourhood of 4 inP(R xS xT) defined by

Vo= {: M{(Tyx 8 x Wo) V(U3 % 8 x W) > 0}.
Now p(i) = (u,v), Where
w = %(‘3("'05 89) 4 6(7r4, so))
and ‘
) 4 =‘%(5(807t0)+5(80yt1))‘
Since s, it an accumulation point of 8, any neighbourhood of (4, ») in @
contains points (u', ), where
= }(8(ro, 80)+8(r1, 52),
= %(5(31, 19) + (80, 11));
and s, is distinet from s, (bub lies in a sufficiently small neighbourhood
of it). The unique A'¢ P(R x 8 x T) for which p(i') = (u',»") i
A= Jz‘(é("'m gy t1) +0(71, 81, to));

which is not in V. Thus p[V] is not a neighbourhood of p (i) and p is
not an open mapping.

TaROREM 4. Let 8 be a compact space. The space P(8) is an absolute
retract if ond only if 8 is o Dugundjs space and w(S) < w,.

Proof. If § is a Dugundji space and w(8) < vy, then P(S) is AR
by Corollary 2. On the other hand, suppose that P (8) is an absolute retract.
Then: § is a Dugundji space by Proposition 1. If w(8) were to exceed w,,
then by Theorem 5.6 and Proposition 6.3 of [6], there would be a conti-

!
7
"J'

icm

Absolule retracts and complomented subspaces 251

nuous injection ¢: D*—8. Now D™ i5 a Dugundji space ([8], Theorem
6.6), so there would be a regular extension operator u for ¢. We should
have

p: P(D")—P(8)
and
w': P(8)—P (D"

with w'o@ = bap®2) Thus P(D“%) would be a retract of P(S), and hence
an absolute retract, contradicting Theorem 3.
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