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W*-algebras and invariant functionals
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ANTHONY TOMING LAT* (Edmonton, Alberta, Canada)

Abstract. Lot M he a W'.algebra and let § be a semigroup of ultraweakly
continunous *-homomorphisms from M into M. We say that M is S-finile in case M
containg sufliciently many S-invariant ultraweakly continuous functionals to sepa-
rate the positive elements in M from zero. Using an idea of K. Deleeuw and I.
Glicksberg on almost periodic semigroup of operators, we have obtained various
characterizations of S-finiteness of M, including some mild generalizations of results
of Kovacs and Szues.

1. Introduction. Lot M be a W*-algebra and let S be a semigroup
of ultraweakly continuous *homomorphisms from M into M. A linear
functional ¢ on M is S-invarient if ¢-s = ¢ for all se 8. We say that M
is S-findte if for each non-zero positive element z in M, there exists an
S-invariant ultraweakly continuous linear functional ¢ on M such that
(@) 0. 4

In [8], Kovacs and Szucs, generalizing the notion of finite W*-algebra,
initiated the notion of S-finiteness when § is a group of *-automorphisms.
They proved ([8], Theorems 1 and 2) among other things that if M is
S-finite, then for each w in M, K,, the weak*-closed convex hull of {s-=,
se 8} containg a unique fixed element % invariant under 8. Furthermore,
the map #—>% of M onto F(M, 8), the space of all elements in M fixed
under the action of 8, has properties resembling that of the Dixmier
tracial map g on a finite W*-algebra. Recently . Stermer [9] proved
that if § is & group, then M is S-finite if and only if § iy velatively compact
in the relative weal* operator topology on % (M), the space of ultra~
weakly continuous bounded linear operators on M.

Let § denote the closure of § in # (M), the space of bounded linear
operators on I, with respect to the weak* operator topology. We show
in this paper that for any semigroup &, it M is §-finite, then § with the
weak * operator topology is a compact topological semigroup. Furthermore
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if 0(8), the space of bounded complex-valued functions on .8, has an
invariant mean (which is the case when § is a group, or when S iy amen-
able [2]), then Kovacs and Szucs’ resuls stated above remain valid.
Other characterizations of finiteness are also obtained. In pavticular,
we show that a W*-algebra I is finite if and only if the group of inner

automorphisms is equicontinuous on the unit ball of M with respect

to sonie relative topology of the dual pair (I, M)

The essential tool of our work is contained in Section 3, where we
considered semigroups of weak*-continuous bounded linear operators on
a dual Banach space. Also, the idea in considering the compact topologicat
semigroup § is taken from the work of K. Deleenw and I. Glicksberg
on almost periodic semigroups of operators ([3], Section 4).

2. Preliminaries and some notations. Let F be a topologieal vector
space and B* be the continuous dual of B. If F' is a linear subspace of B,
then a topology 7 on F is called a topology of the dual pair (B, F) it 7
is compatible with respect to the structure of B and the continuouns dual
of I with respect to 7 is F.

Tf K iy a subset of ¥, then co(K) will denote the convex hull of K
and ¢o(K) will denote the closed convex hull of K.

If (B, 7) is a separated locally convex linear topological space and K
is a subset of B, then a family of mappings § from K into K is quasi-
equicomtinuous (with respect to ) on K if the closure of § in the product
space (K, 7)% is a set of continuous functions from (K, 77) into (K, 7).
Furthermore, § is equicontinuous (with respect to J) on K if there exists
a family of continuous seminorms @ on H, determining the topology 7,
such that for any &> 0 and any pe@, there exist > 0, ge@ such that
gw—y) < 8, x, ye K, implies p(sw—sy) <& for all se§. Clearly, it §
is equicontinuous on I, then § iz quasi-equicontinuous on K. But the
converse is not true in general.

A topological semigroup is a set § with an associative operation
and a Hausdorff topology 7 such that for each aec S, the two mappings
s—»as and s—>sa from 8 into S are continuous. The multiplication in §
it said to be jointly comtinuous in case the map (s, t)—st from §x &
into 8 is continuous when §x § has the product topology.

If 8 is a semigroup, and I.(S) is the space of bounded complex-

valued functions on § with the supremum norm, we define the left and -

right tramslation operators by: (I,f) (s) = f(as) and (r,f) (s) = f(sa) for
all @, se 8. If A is a closed translation invariant subspace of I, (8) con-
taining the constant one function, 1, then an element ¢ in A* is a mean
if p(1) = lipli = L. Furthermore, ¢ is a left (respectively right) invariant
mean if p(l,f) = @(f) (vespectively ¢(r.f) = @(f)) for all ae 8. Also, ¢ is
a two-sided imvariant mean if ¢ is both left and right invariant. The semi-
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group 8 is left amenable if 1, (;S") has a left invariant mean. Right amenable
gemigroup is defined similarly. We say that 8 is emenable if 1,(8) has.
a two-sided invariant mean. (See [2] and [4].)

3. Ultraweakly almost periodic semigroup of operators. Let Z be.
a conjugate Banach space with & fived predual Hy (Le. B is a Banach
space and (B = B). Let #(F) denote the space of bounded linear
operators from I into K and let £ (H) denote the subspace of % (H)
consisting of all elements 7' in (1) that are continuous from (2, o(B, Ba))
into (E’, o(H, E*)). By the weak*-operator topology (abbreviated as
W*0T) on #(¥) we shall mean the separated locally convex topology
determined by the seminorms {py,; @¢ B and @e B}, where p,,(T)
= lo(Tx)| for all T in % (B). Then, as known ([6], p. 978) the unit ball
of #(F) is compact with respect to the W*OT.

Tet S be a fixed semigroup of contractive linear operators on B
(i.e. |lszll < |2 for all s¢ 8 and we H) contained in %.(E). We say that &
is uliraweally (respectively ultrastrongly) almost periodic if for each ge Hy,
O(f) = {fos; se 8} is relatively compact with respect to the o(By, BY
(respectively morm) topology.

Tor each ¢e lly, define

Po(@) = vup{lp(s-a)l, lp(@)l; se 8.

Then each p, is & seminorm on ¥ and the topology on E determined by
{pp; pe Bu}is stronger then the o (B, By) topology. Furthermore, p,(s2 — sy}
< py(w—y) for all @, ye I and se 1. :

T "Let § denote the closure of § in % (F) with respect to the W*OI
Then S is a semigroup and (S, W*OT) is a compaet Hansdorff space
such thatb

(1) for each he S, T—>kh

is a continuous map from (5, W*0T) into (8, W*OI),

(2) for each sefS, T—>sk

is u continuous map from (8, W*0I) into (8, W"O0T).

It § < o (B), then (8, W*OI') is even a compact topological semi-
group.

TuMMA 3.L. The following are equivalent:

(a) § 48 ultraweally almost periodic.

(b) The topology on I determined by the seminorms {Py; @e By} 18
a topology of the dual paiv (B, By).

() 8§ s equicomtinuous on the unit ball B with respect to some topology 7.
of the dual pair (M, Hy).
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. (d) 8 is quasi-equicontinuous on B with respect to the o (B, Hy) topology.

(e) 8 < B.(B).

Proof. That (a) implies (b) follows from the Mackey—Arens theorem
and (b) implies (e) is clear.

Assume (c) holds. Let {s,} be a net in § such that s,(x) converges
t0 s(x) for all ¥ in B in the weak*-topology. Let § be the extension of s
to H. Then § is in the weak closure of co(8) in the product topological
vector space (B, 77", By Mazur’s theorem, there exists a net {hs} in co(9)
such that hg(2) converges to 3 (#) in the I -topology for each x in ¥. Since
¢0(8) is an equicontinuous family of maps from (B, ) to (B, ), it fol-
lows that § is also a continuous map from (B, 7) into (B, 7). Since B
ig closed and convex, it follows from [7], Corollary 17.3, that s is also
2 continuous map from (B, weak*) into (B, weak*). Hence (d) holds.

That (d) implies (e) is trivial. Finally, if (e) holds, then for each pe H,,
the set {p-t; te S} equals to the o(Bs, B)-closure of {g-s; se 8}, Since
‘the map ¢—¢-t from %, (E) into F, is continuous when % (F) has the
induced W*OT and when B, has the o(B., ) topology, it follows that
{9'8; s< 8} is relatively compact in Hy with respect to the o (%, J) topol-
0gy.

The next result is an analogue of Lemma 3.1.

LemMa 3.2, The following are equivalent:

(@) 8 is ultrastrongly almost periodic.

(b) The topology on B determined by {p,; @< By} agr ees with the o(H, By)
ot the uwit ball B.

(c) 8 is equicontinuous on B with respect to the o( B, By )topology on B.

Proof. Assume that (a) holds; then B can be considered as an equi-
-continuous family of linear maps on H,. Hence by [7], Theorem 8.17,
the weak*-topology on B agrees with the topology of uniform convergence
-on the totally bounded subsets of H,.. Consequently (b) holds.

That (b). implies (¢) is clear.

Finally, if (¢) holds, then for each pe By, {pos; s¢ 8} is an equicon-
tinuous family of continuous functions on the compact Hausdorff space
'{B, (&, E,.,)). An easy application of the Ascoli’s theorem shows that
{pos; se 8} is relatively compact in the norm topology of Hy.

From now on, the semigroups S and § are equipped with the W*OT.
Then § is a topological semigroup.

COROLLARY 3.3. If 8 is ultrawealkly almost periodic, then § is a compact
topological semigroup. Furthermore, if 8 s strongly almost periodic, then
the multiplication in S is even jointly continuous.

Proof. The first statement follows immediately from Lenuna 8.1

{a) < (e). The second statement also follows from Lemma 3.2 (a) = (¢)
and [b], 14.1.
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Let C(8, Ey) denote the smallest uniformly closed subalgebra of
0(8) closed under complex conjugation and containing 1 and all functions f
of the form ‘

F(s) = (@), se 8.

Then O(8, By) is translation invariant.

The first part of the next lemma is an analogue of Lemma 4.8 in [3]
and the proof is almost identical. The second part also follows from Lemma
2.10 in [3]. We omit the details.

LuMma 3.4. If S i ultraweakly almost periodio amd i: S-S is the
injection map, then the adjoint map i*: (8)—0(8) defined by i*(F) = foi
o lincar isometry mapping O(S) onto C(8, By). Furthermore, 0(8) has
o left (respectively vight) invariant mean if and only if C(S) has a left (re-
spectively vight) invariant meon.

Tet WAP(S) denote the elosed subspace of weakly almost periodic
functions in 0(8), L.e., all f«C(8) such that {r,f; ae §} iy relatively compact
in the weak topology of C(8). Also let AP(S) denote the clozed subspace
of strongly almost periodic functions in 0(8), ie., all f in O(S) such that
{rof; e 8} is relatively compact in the norm topology of C(8) (see [3]).

COROLLARY 3.5. If § is ultrawcally olmost periodic, then C(S, Hy)
 WAP(S). Alsoif 8 is ultrastrongly almost periodic, then 0(8, By) < AP (8).

Proof. Tt N is ultraweakly almost periodic, then S is a compact
topological semigroup and 0(8) = WAP(S) ([3], Theorem 2.7) Hence
i*{0(8)) == O(8, Bx) € WAP(S) by [3], Lemma 5.2. The proof of the
second statement is similar.

Let (7, 8) denote all elements @ in B such that sv = o for all se 8,
and let # (B, S) denote all e By such that pos = ¢ f.or all se 8. Then
F (B, 8) is o o (B, By)-closed subspace of . Furthermore, if we 1.e13 F (B, 8)«
denote the restriction of all pe By to F (B, 8), then & (B, §) is the con-
tinuous dual of & (H, 8)s. We say that F(Hy, 8) separates F (H, §8) if for
each non-zero element @ in . (H, 8), there exists fe F (B, 8) such thab
Fle) 0.

PROJOPITTION 8.6, If & i8 ultraweakly almost periodic on 1 and (8, By)
has o right inoariant mean, then F (I, 8) separates F(H, 8).

Proof, T o i% a non-zero clement in & (H, 8), pick an element P
in By wueh that g(@) -4 0. Let K == Go{pos; se 8} By Lemma 3.1, K is
a o(My, Ky-compact convex subset of Jy. Then for each te S, q;—*«;{‘ot
defines a continuous affine map from (K, o(Bx, E)) into (]f, o (B, L)j
Since § i a compuel topologieal semigroup, by Lemma 3..44, and [3],
Theorem 2.3 and Tomma 2.8, § containg a compact topological group @
which is also a vight ideal. Let 4 be the uniune normalized Haar measure
on . Tor each pe y, dofine §: Ge Iy by $(1) = wot. Then the vector-

(I;'E.E, tpeE* and
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valued integral [pdA defines an element u, in K. Then yye F (B, S)
23

and y,(@) = (@) # 0.
For each xze B, let K, denote the o(F, Hy)-closure of the convex
hull of {s-%; se §}. The next result, which we shall need, is due to Yeadon
[10]. For the sake of completeness, we give a different and simple proof.
Lemma 3.7 (Yeadon). If K,nF(H, 8) @ for each we H, then there
emists Pe coS, where c08 is the closure of coS in B (H) with respect to the
W*OT, such that P(z)e K ,nF (B, S) for each ze B.

Proof. For each zeB, let F(w) = {fecoS; t(w)e F(H,§)}. Then
F(x) is a non-empty closed subset of compact space (coS, W*OT). Further-
more, the family {F'(x); we F} has finite intersection property. Indeed,
if @5, ..., %,e¥ and te N {F(w,); ¢ =1,...,m—1}, choose t'<c0S such
that ¢ (t(m,)) e F (B, 8), then t'-te (M {F(x); ¢ =1, ..., n}. It follows from
the compactness of co§ that () {F(z); e B} is non-empty, and any P
in the intersection satisfies the required property of the lemma.

ProrositroN 3.8. If 8 is ultraweakly almost periodic and (8, By)
has o left invariant mean, then there exists a projection P e B (B) mapping B
onto F (B, 8) such that
(1) P(x)e KE,nF (B, 8)

(2) Pecoli

for  weH,

Proof. By Lemma 3.1 and Lemma 3.7, it suffices to show that
K.nF (B, 8) #@ for each 4 in F. Indeed, using Lemma 3.1 (e), S is
a semigroup of continuous affine mappings from the compact convex
set (K,, (B, B,)) into itself. Then exactly as the proot of Proposition 3.8,
let & be compact topological group in S which is also a left ideal and let
define a vector-valued mapping G—F by #(f) = t(x). Then if A is the
normalized Haar measure on &, then the element defined by the vector-
valued integral [#dj is an element in K NF(H, 8).

&

In case F (Hy, 8) separates & (B, 8), then ¢(2) = p(z) for all elements 2
in the intersection of % (H, S) and K, and ¢ # (B, 8). Consequently,
P(x) is unigque. Hence P(s-z) = P(s) for all se §. Summarizing:

ProposITION 3.9. If 8 is uliraweakly almost periodic, # (By, 8) separ-
ates F (B, 8) and C(8, Ex) has o left invariant mean, then there ewists
o projection Pe By (B) such that

(1)  P(x) is the unique element in K,nF(E, S) for each ve B,

(2) P(sw) =P(a) for all sef, we B,

(8) Pecos,

(4) P(x) =Gf @da, where G is a compact topological left ideal group in S,

4 is the mormalized Haar measure of G and (f) = t(z) for all te@.
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Remark 3.10. (a) If 8 is amenable (which is the case when 8 is
commutbative, or when § is a solvable group), then 0(8, By) always has
an invariant mean.

(b) If §is a group, then WAP(8) has a unique invariant mean (see [4],
p. 37). Consequently, 0(8, By) also has an invariant mean by Corollary 3.5
‘when § is ultraweakly almost periodic in H.

(e). Tf 8 has finite intersection property for right ideals, then AP (S8)
has an invariant mean. Ience O(8, Hx) also has an imrariapt mean by
Jorollary 3.5 in case § iy ultrastrongly almost periodic on H.

4. Applications to W*-algebra. In this section M will denote W*-
algebra and My will denote its unique predual. If ¥ < M, let N+ denotf
the collection of all positive clements in ¥. Also if # < M., then F
will denotie the collection of all pogitive linear functionals in &.

Tet S be a fixed semigroup of wltraweakly continuous positive con-
tractions from M into M. M is called S-finite if for each non-zero element
in M*, there exisbs a functional ¢ in & (Msx, 8)* such that g(z) # 0.

ToeMMA 4.1, If M is S-finite, then § is ultraweakly almost periodic on M.

Proof. Let 7 be the topology on M defined by the semminorms
{4p) v F (M, 8)*}, where g,(2) = |p(x)| and let Bt = {o?s M ol < 1,
@3>0}, Then B* is a o (M, My)-compact subs_et of M . We first show t];uat
for each. ¢ in. T, the restriction of ¢ to (B*,77) is continuous ab 0 Otherwise,
we can find & > 0 such that for each Ue 4, where A is 2 T -neighbourhood
base of 0, theve exists e UnB* and (p(wu)>? (we can assume that
@ = 0). By o( M, My)-compactness of B, there e;asts a subset {#, } of the
net {#,; Ue 4} which converges t0 some &, in B* in the (M, M) topology.
It follows that ¢(w,,) converges t0 p(m,) and @(mo) > e Hence #, 7 0.
By assumption, there exists ype & (My, 8) such tpat zp(wo).> 0. But the
net {x, } converges to 0 in the I -topology, ar%d v is T -.contmuou&. Hence
P(®y ) Eomrerges to 0, i.e., p(®,) = 0 which is impossible.

To finish the proot, let pe My and let {p,} be an orthogonal sequence

; + g

of projections in M. Given &> 0, choose Py, -« oy Yy 0 F(My, 8) guch
’ (i3

that whenever we U, whoere U == (1) {w; @ B and p,(®) < 6} we have
(1231

(7)< & Since {p,} is orthogonal, i (py) converges ‘j;o %eTo for each
g ==, 2, vy 1 Hence theve existi N sueh thati () <.‘r)'f01' alld =1, o R
and all w3 N. T follows that w,(sp,) < é for all 4 =71, ..., m, 0z N
and e 8 (as cach gy v S-invariant). Tence ¢ (s Py) < 8 for a,ll.‘s'e ;S‘, n N
(note that $-p, e 3"). Consequently g (sp,) converges to 0 umz.ﬁomuly in s.
By a theorem of Akemann [1], p. 288, the set {pos; se 8} is relatively
oMy, M)-compact,

Lumma 4.2. If F(My, 8) separaies F(M,8) and LeF (M, 8), then
Sor each non-zero me F (M, S)*, there cwists pe F( My, 8" such that p(z) # 0.
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Proof. Let yeF (M, 8) such that p(x) =0, [jpf = 1.
Let ¢ = ¢* —9~ be the unique orthogonal decomposition of v such
that ™, = are positive and normal, and [lp*|[+lp~| = p|l. Now y =
yTos—y~os, lytos|=(y*os) (1)=y* (1) and [y~ os|=(yp~0s) (1) =p™(1).
Hence p*os =p* and p~os =1y~ for all seS. Consequently, y*, p=
eF (M, 8)*, and either v*(x) %0 or v~ (#) 5 0.

TugorEM 4.3. If 8 is a group of *-automorphisms, then the following
are equivalent:

(a) M s S-finite,

(b) 8 s ultmweajcly almost periodic,

(¢) 8 is equicontinuous on the unit ball B of M with respect to some
topology of the dual pair,

(Q) 8 s quasi-equicontinuous on B with respect to the o( M, M) topology,

(e) g =t g*(M ).

Proof. Use Proposition 1 in [8], Lemma 3.1, 41 and 4.2 and Prop-
osition 3.1. ' :

Using Proposition 3.9, we also have:

THEOREM 4.4. Assume that O(S, M) has an ihwariant mean. Then M
is S-finite if and only if there exists a map P: u—& from M onto F (M, 8)
satisfying the following properties:
(a) P is linear and strictly positive,
(b): P ds ultraweakly amd ultrastrongly continuous,
(¢) P(s:@) = & for all se8, we M,
(d) P(e) = for all meF (M, S).

In ‘this case, there exists a compact left ideal topological group G
in § such that P(x) = [ @dA, where A is the normalised Haar measure on G
é

and &(g) = g(=) for all geG- Furthermore, P(2) is the unique element in
K,.nF (M, 8).

Remark. Theorem 4.3 (a)< (b) < (e) is proved implicitly -in [971
by Stermer. In case § is the group of inner automorphisms, Theorem 4.3
(a) < (b) is proved in Yeadon [11]. Also, when S ig a group of *auto-
morphisms, Theorem 4.4 is proved by Kovacs and Szucs in [8] (except.
for the existence of @).

Finally, the following example shows that the converse of Lemma 4.1
is false. Let 7' be a finite semigroup containing more than one element:
and multiplication defined by ab = & for any a, be7. Let & = {ly; teT}
and M =1.(T). Then M is not &-finite, but & is ultraweakly almost
periodic on M.
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