

W*-algebras and invariant functionals

bv

ANTHONY TO-MING LAU* (Edmonton, Alberta, Canada)

Abstract. Let M be a W^* -algebra and let S be a semigroup of ultraweakly continuous *-homomorphisms from M into M. We say that M is S-finite in case M contains sufficiently many S-invariant ultraweakly continuous functionals to separate the positive elements in M from zero. Using an idea of K. Deleeuw and I. Glicksberg on almost periodic semigroup of operators, we have obtained various characterizations of S-finiteness of M, including some mild generalizations of results of K-ovaes and K-ovaes an

1. Introduction. Let M be a W^* -algebra and let S be a semigroup of ultraweakly continuous *-homomorphisms from M into M. A linear functional φ on M is S-invariant if $\varphi \cdot s = \varphi$ for all $s \in S$. We say that M is S-finite if for each non-zero positive element x in M, there exists an S-invariant ultraweakly continuous linear functional φ on M such that $\varphi(x) \neq 0$.

In [8], Kovacs and Szucs, generalizing the notion of finite W^* -algebra, initiated the notion of S-finiteness when S is a group of *-automorphisms. They proved ([8], Theorems 1 and 2) among other things that if M is S-finite, then for each x in M, K_x , the weak*-closed convex hull of $\{s: x, s \in S\}$ contains a unique fixed element \bar{x} invariant under S. Furthermore, the map $x \to \bar{x}$ of M onto $\mathcal{F}(M, S)$, the space of all elements in M fixed under the action of S, has properties resembling that of the Dixmier tracial map $x \to \bar{x}$ on a finite W*-algebra. Recently E. Størmer [9] proved that if S is a group, then M is S-finite if and only if S is relatively compact in the relative weak* operator topology on $\mathcal{B}_*(M)$, the space of ultraweakly continuous bounded linear operators on M.

Let \overline{S} denote the closure of S in $\mathscr{Q}(M)$, the space of bounded linear operators on M, with respect to the weak* operator topology. We show in this paper that for any semigroup S, if M is S-finite, then \overline{S} with the weak* operator topology is a compact topological semigroup. Furthermore

^{*} This work is supported by NRC Grant No. A-7679.

if $C(\overline{S})$, the space of bounded complex-valued functions on \overline{S} , has an invariant mean (which is the case when S is a group, or when S is amenable [2]), then Kovacs and Szucs' results stated above remain valid. Other characterizations of finiteness are also obtained. In particular, we show that a W^* -algebra M is finite if and only if the group of inner automorphisms is equicontinuous on the unit ball of M with respect to some relative topology of the dual pair (M, M_*) .

A. To-Ming Lau

The essential tool of our work is contained in Section 3, where we considered semigroups of weak*-continuous bounded linear operators on a dual Banach space. Also, the idea in considering the compact topological semigroup \bar{S} is taken from the work of K. Deleeuw and I. Glicksberg on almost periodic semigroups of operators ([3], Section 4).

2. Preliminaries and some notations. Let E be a topological vector space and E^* be the continuous dual of E. If F is a linear subspace of E^* , then a topology $\mathcal F$ on E is called a topology of the dual pair $(E,\,F)$ if $\mathcal F$ is compatible with respect to the structure of E and the continuous dual of E with respect to \mathcal{T} is F.

If K is a subset of E, then co(K) will denote the convex hull of K and $\overline{\operatorname{co}}(K)$ will denote the closed convex hull of K.

If (E, \mathcal{F}) is a separated locally convex linear topological space and Kis a subset of E, then a family of mappings S from K into K is quasiequicontinuous (with respect to \mathcal{F}) on K if the closure of S in the product space $(K, \mathcal{I})^K$ is a set of continuous functions from (K, \mathcal{I}) into (K, \mathcal{I}) . Furthermore, S is equicontinuous (with respect to \mathcal{F}) on K if there exists a family of continuous seminorms Q on E, determining the topology \mathcal{T} , such that for any $\varepsilon > 0$ and any $p \in Q$, there exist $\delta > 0$, $q \in Q$ such that $q(x-y) < \delta$, $x, y \in K$, implies $p(sx-sy) < \varepsilon$ for all $s \in S$. Clearly, if S is equicontinuous on K, then S is quasi-equicontinuous on K. But the converse is not true in general.

A topological semigroup is a set S with an associative operation and a Hausdorff topology \mathcal{T} such that for each $a \in S$, the two mappings $s \rightarrow as$ and $s \rightarrow sa$ from S into S are continuous. The multiplication in S is said to be jointly continuous in case the map $(s, t) \rightarrow st$ from $S \times S$ into S is continuous when $S \times S$ has the product topology.

If S is a semigroup, and $l_{\infty}(S)$ is the space of bounded complexvalued functions on S with the supremum norm, we define the left and right translation operators by: $(l_a f)(s) = f(as)$ and $(r_a f)(s) = f(sa)$ for all $a, s \in S$. If A is a closed translation invariant subspace of $l_{\infty}(S)$ containing the constant one function, 1, then an element φ in A^* is a mean if $\varphi(1) = ||\varphi|| = 1$. Furthermore, φ is a left (respectively right) invariant mean if $\varphi(l_a f) = \varphi(f)$ (respectively $\varphi(r_a f) = \varphi(f)$) for all $a \in S$. Also, φ is a two-sided invariant mean if φ is both left and right invariant. The semigroup S is left amenable if $l_{\infty}(S)$ has a left invariant mean. Right amenable semigroup is defined similarly. We say that S is amenable if $l_{\infty}(S)$ has a two-sided invariant mean. (See [2] and [4].)

3. Ultraweakly almost periodic semigroup of operators. Let E be a conjugate Banach space with a fixed predual E_* (i.e. E_* is a Banach space and $(E_*)^* = E$). Let $\mathscr{B}(E)$ denote the space of bounded linear operators from E into E and let $\mathscr{B}_*(E)$ denote the subspace of $\mathscr{B}(E)$ consisting of all elements T in $\mathscr{B}(E)$ that are continuous from $(E, \sigma(E, E_*))$ into $(E, \sigma(E, E_*))$. By the weak*-operator topology (abbreviated as W^*OT) on $\mathscr{A}(E)$ we shall mean the separated locally convex topology determined by the seminorms $\{p_{x,v}; x \in E \text{ and } \varphi \in E_*\}$, where $p_{x,v}(T)$ $= |\varphi(Tx)|$ for all T in $\mathscr{B}(E)$. Then, as known ([6], p. 973) the unit ball of $\mathscr{B}(E)$ is compact with respect to the W^*OT .

Let S be a fixed semigroup of contractive linear operators on E (i.e. $||sx|| \leq ||x||$ for all $s \in S$ and $x \in E$) contained in $\mathscr{B}_*(E)$. We say that Sis ultraweakly (respectively ultrastrongly) almost periodic if for each $\varphi \in E_*$, $O(f) = \{f \circ s; s \in S\}$ is relatively compact with respect to the $\sigma(E_*, E)$ (respectively norm) topology.

For each $\varphi \in E_*$, define

$$p_{\varphi}(x) = \sup\{|\varphi(s\cdot x)|, |\varphi(x)|; s \in S\}.$$

Then each p_{ω} is a seminorm on E and the topology on E determined by $\{p_{\omega};\ \varphi\in E_*\}$ is stronger then the $\sigma(E,E_*)$ topology. Furthermore, $p_{\omega}(sx-sy)$ $\leq p_{x}(x-y)$ for all $x, y \in E$ and $s \in E$.

Let \overline{S} denote the closure of S in $\mathscr{B}(E)$ with respect to the W^*OT Then \overline{S} is a semigroup and (\overline{S}, W^*OT) is a compact Hausdorff space such that

(1) for each
$$h \in \overline{S}$$
, $k \to kh$

is a continuous map from (\overline{S}, W^*OT) into (\overline{S}, W^*OT) ,

(2) for each
$$s \in S$$
, $k \rightarrow sk$

is a continuous map from (\overline{S}, W^*OT) into (\overline{S}, W^*OT) .

If $\overline{S} \subseteq \mathscr{U}_*(E)$, then (\overline{S}, W^*OT) is even a compact topological semigroup.

LEMMA 3.1. The following are equivalent:

- (a) S is ultraweakly almost periodic.
- (b) The topology on E determined by the seminorms $\{p_x; \varphi \in E_*\}$ is a topology of the dual pair (E, E_*) .
- (c) S is equicontinuous on the unit ball B with respect to some topology ${\mathcal F}$ of the dual pair (E, E_*) .

(d) S is quasi-equicontinuous on B with respect to the $\sigma(E, E_*)$ topology.

(e) $\overline{S} \subseteq \mathscr{B}_*(E)$.

Proof. That (a) implies (b) follows from the Mackey-Arens theorem and (b) implies (c) is clear.

Assume (c) holds. Let $\{s_a\}$ be a net in S such that $s_a(x)$ converges to s(x) for all x in B in the weak*-topology. Let \tilde{s} be the extension of s to E. Then \tilde{s} is in the weak closure of $\operatorname{co}(S)$ in the product topological vector space $(E, \mathcal{F})^E$. By Mazur's theorem, there exists a net $\{h_\beta\}$ in $\operatorname{co}(S)$ such that $h_\beta(x)$ converges to $\tilde{s}(x)$ in the \mathcal{F} -topology for each x in E. Since $\operatorname{co}(S)$ is an equicontinuous family of maps from (B, \mathcal{F}) to (B, \mathcal{F}) , it follows that \tilde{s} is also a continuous map from (B, \mathcal{F}) into (B, \mathcal{F}) . Since B is closed and convex, it follows from [7], Corollary 1.7.3, that s is also a continuous map from (B, weak*). Hence (d) holds.

That (d) implies (e) is trivial. Finally, if (e) holds, then for each $\varphi \in E_*$, the set $\{\varphi \cdot t; \ t \in \overline{S}\}$ equals to the $\sigma(E_*, E)$ -closure of $\{\varphi \cdot s; \ s \in S\}$. Since the map $t \to \varphi \cdot t$ from $\mathscr{B}_*(E)$ into E_* is continuous when $\mathscr{B}_*(E)$ has the induced W^*OT and when E_* has the $\sigma(E_*, E)$ topology, it follows that $\{\varphi \cdot s; \ s \in S\}$ is relatively compact in E_* with respect to the $\sigma(E_*, E)$ topology.

The next result is an analogue of Lemma 3.1.

LEMMA 3.2. The following are equivalent:

- (a) S is ultrastrongly almost periodic.
- (b) The topology on E determined by $\{p_{\varphi}; \varphi \in E_*\}$ agrees with the $\sigma(E, E_*)$ on the unit ball B.
 - (c) S is equicontinuous on B with respect to the $\sigma(E, E_*)$ topology on B.

Proof. Assume that (a) holds; then B can be considered as an equicontinuous family of linear maps on E_* . Hence by [7], Theorem 8.17, the weak*-topology on B agrees with the topology of uniform convergence on the totally bounded subsets of E_* . Consequently (b) holds.

That (b) implies (c) is clear.

Finally, if (c) holds, then for each $\varphi \in E_*$, $\{\varphi \circ s; s \in S\}$ is an equicontinuous family of continuous functions on the compact Hausdorff space $\{B, \sigma(E, E_*)\}$. An easy application of the Ascoli's theorem shows that $\{\varphi \circ s; s \in S\}$ is relatively compact in the norm topology of E_* .

From now on, the semigroups S and \overline{S} are equipped with the W^*OT . Then S is a topological semigroup.

COROLLARY 3.3. If S is ultraweakly almost periodic, then \overline{S} is a compact topological semigroup. Furthermore, if S is strongly almost periodic, then the multiplication in \overline{S} is even jointly continuous.

Proof. The first statement follows immediately from Lemma 3.1 (a) \Leftrightarrow (e). The second statement also follows from Lemma 3.2 (a) \Leftrightarrow (c) and [5], 14.1.

Let $C(S,E_*)$ denote the smallest uniformly closed subalgebra of C(S) closed under complex conjugation and containing 1 and all functions f of the form

$$f(s) = \varphi(sx), \quad x \in E, \quad \varphi \in E_* \quad \text{and} \quad s \in S.$$

Then $C(S, E_*)$ is translation invariant.

The first part of the next lemma is an analogue of Lemma 4.8 in [3] and the proof is almost identical. The second part also follows from Lemma 2.10 in [3]. We omit the details.

LEMMA 3.4. If S is ultraweakly almost periodic and i: $S \rightarrow \overline{S}$ is the injection map, then the adjoint map i^* : $C(\overline{S}) \rightarrow C(S)$ defined by $i^*(F) = f \circ i$ a linear isometry mapping $C(\overline{S})$ onto $C(S, E_*)$. Furthermore, C(S) has a left (respectively right) invariant mean if and only if $C(\overline{S})$ has a left (respectively right) invariant mean.

Let WAP(S) denote the closed subspace of weakly almost periodic functions in C(S), i.e., all $f \in C(S)$ such that $\{r_a f; a \in S\}$ is relatively compact in the weak topology of C(S). Also let AP(S) denote the closed subspace of strongly almost periodic functions in C(S), i.e., all f in C(S) such that $\{r_a f; a \in S\}$ is relatively compact in the norm topology of C(S) (see [3]).

COROLLARY 3.5. If S is ultraweakly almost periodic, then $C(S, E_*) \subseteq WAP(S)$. Also if S is ultrastrongly almost periodic, then $C(S, E_*) \subseteq AP(S)$.

Proof. If S is ultraweakly almost periodic, then \overline{S} is a compact topological semigroup and $C(\overline{S}) = WAP(\overline{S})$ ([3], Theorem 2.7) Hence $i^*(C(\overline{S})) = C(S, E_*) \subseteq WAP(S)$ by [3], Lemma 5.2. The proof of the second statement is similar.

Let (B,S) denote all elements x in B such that sx=x for all $s \in S$, and let $\mathscr{F}(B_*,S)$ denote all $\varphi \in E_*$ such that $\varphi \circ s=\varphi$ for all $s \in S$. Then $\mathscr{F}(E,S)$ is a $\sigma(E,E_*)$ -closed subspace of E. Furthermore, if we let $\mathscr{F}(E,S)_*$ denote the restriction of all $\varphi \in E_*$ to $\mathscr{F}(E,S)$, then $\mathscr{F}(E,S)$ is the continuous dual of $\mathscr{F}(E,S)_*$. We say that $\mathscr{F}(E_*,S)$ separates $\mathscr{F}(E,S)$ if for each non-zero element x in $\mathscr{F}(E,S)$, there exists $f \in \mathscr{F}(E_*,S)$ such that $f(x) \neq 0$.

PROSOPITION 3.6. If S is ultraweakly almost periodic on E and $C(S, E_*)$ has a right invariant mean, then $\mathcal{F}(E_*, S)$ separates $\mathcal{F}(E, S)$.

Proof. If w is a non-zero element in $\mathscr{F}(E,S)$, pick an element φ in E_* such that $\varphi(w) \neq 0$. Let $K = \overline{\operatorname{co}} \{\varphi \circ s; s \in S\}$. By Lemma 3.1, K is a $\sigma(E_*, E)$ -compact convex subset of E_* . Then for each $t \in S$, $\psi \to \psi \circ t$ defines a continuous affine map from $(K, \sigma(E_*, E))$ into $(K, \sigma(E_*, E))$. Since \overline{S} is a compact topological semigroup, by Lemma 3.4, and [3], Theorem 2.3 and Lemma 2.8, \overline{S} contains a compact topological group G which is also a right ideal. Let λ be the unique normalized Haar measure on G. For each $\psi \in E_*$, define $\widehat{\psi} \colon G \in E_*$ by $\widehat{\psi}(t) = \psi \circ t$. Then the vector-

valued integral $\int_G \hat{\psi} d\lambda$ defines an element ψ_0 in K. Then $\psi_0 \in \mathscr{F}(E_*, S)$ and $\psi_0(x) = \varphi(x) \neq 0$.

For each $x \in E$, let K_x denote the $\sigma(E, E_*)$ -closure of the convex hull of $\{s \cdot x; s \in S\}$. The next result, which we shall need, is due to Yeadon [10]. For the sake of completeness, we give a different and simple proof.

LEMMA 3.7 (Yeadon). If $K_x \cap \mathcal{F}(E, S) \neq \emptyset$ for each $x \in E$, then there exists $P \in \overline{\operatorname{co}} S$, where $\overline{\operatorname{co}} S$ is the closure of $\operatorname{co} S$ in $\mathscr{B}(E)$ with respect to the W^*OT , such that $P(x) \in K_x \cap \mathcal{F}(E, S)$ for each $x \in E$.

Proof. For each $x \in E$, let $F(x) = \{t \in \overline{\operatorname{co}} S; \ t(x) \in \mathscr{F}(E, S)\}$. Then F(x) is a non-empty closed subset of compact space $(\overline{\operatorname{co}} S, W^*OT)$. Furthermore, the family $\{F(x); x \in E\}$ has finite intersection property. Indeed, if $x_1, \ldots, x_n \in E$ and $t \in \bigcap \{F(x_i); \ i = 1, \ldots, n-1\}$, choose $t' \in \overline{\operatorname{co}} S$ such that $t'(t(x_n)) \in \mathscr{F}(E, S)$, then $t' \cdot t \in \bigcap \{F(x_i); \ i = 1, \ldots, n\}$. It follows from the compactness of $\overline{\operatorname{co}} S$ that $\bigcap \{F(x); x \in E\}$ is non-empty, and any P in the intersection satisfies the required property of the lemma.

PROPOSITION 3.8. If S is ultraweakly almost periodic and $C(S, E_*)$ has a left invariant mean, then there exists a projection $P \in \mathscr{B}_*(E)$ mapping E onto $\mathscr{F}(E, S)$ such that

(1)
$$P(x) \in K_x \cap \mathcal{F}(E, S)$$
 for $x \in E$,

(2)
$$P \in \overline{\operatorname{co}} S$$
.

Proof. By Lemma 3.1 and Lemma 3.7, it suffices to show that $K_x \cap \mathscr{F}(E,S) \neq \varnothing$ for each x in E. Indeed, using Lemma 3.1 (e), \overline{S} is a semigroup of continuous affine mappings from the compact convex set $(K_x, \sigma(E, E_*))$ into itself. Then exactly as the proof of Proposition 3.6, let G be compact topological group in \overline{S} which is also a left ideal and let \hat{x} define a vector-valued mapping $G \to E$ by $\hat{x}(t) = t(x)$. Then if λ is the normalized Haar measure on G, then the element defined by the vector-valued integral \hat{x} \hat

In case $\mathscr{F}(E_*,S)$ separates $\mathscr{F}(E,S)$, then $\varphi(z)=\varphi(x)$ for all elements z in the intersection of $\mathscr{F}(E,S)$ and K_x , and $\varphi \in \mathscr{F}(E_*,S)$. Consequently, P(x) is unique. Hence $P(s \cdot x) = P(x)$ for all $s \in S$. Summarizing:

PROPOSITION 3.9. If S is ultraweakly almost periodic, $\mathscr{F}(E_*, S)$ separates $\mathscr{F}(E, S)$ and $C(S, E_*)$ has a left invariant mean, then there exists a projection $P \in \mathscr{B}_*(E)$ such that

- (1) P(x) is the unique element in $K_x \cap \mathcal{F}(E, S)$ for each $x \in E$,
- (2) $P(s \cdot x) = P(x)$ for all $s \in S$, $x \in E$,
- (3) $P \in \overline{\text{co}} S$,
- (4) $P(x) = \int_G \hat{x} d\lambda$, where G is a compact topological left ideal group in \bar{S} , λ is the normalized Haar measure of G and $\hat{x}(t) = t(x)$ for all $t \in G$.

Remark 3.10. (a) If S is amenable (which is the case when S is commutative, or when S is a solvable group), then $C(S, E_*)$ always has an invariant mean.

- (b) If S is a group, then WAP(S) has a unique invariant mean (see [4], p. 37). Consequently, $O(S, E_*)$ also has an invariant mean by Corollary 3.5 when S is ultraweakly almost periodic in E.
- (c). If S has finite intersection property for right ideals, then AP(S) has an invariant mean. Hence $C(S, E_*)$ also has an invariant mean by Corollary 3.5 in case S is ultrastrongly almost periodic on E.
- **4.** Applications to W^* -algebra. In this section M will denote a W^* -algebra and M_* will denote its unique predual. If $N \subseteq M$, let N^+ denote the collection of all positive elements in N. Also if $\mathscr{F} \subseteq M_*$, then \mathscr{F}^+ will denote the collection of all positive linear functionals in \mathscr{F} .

Let S be a fixed semigroup of ultraweakly continuous positive contractions from M into M. M is called S-finite if for each non-zero element in M^+ , there exists a functional φ in $\mathscr{F}(M_*,S)^+$ such that $\varphi(x)\neq 0$.

Lemma 4.1. If M is S-finite, then S is ultraweakly almost periodic on M. Proof. Let \mathcal{T} be the topology on M defined by the seminorms $\{q_{\varphi}, \varphi \in \mathcal{F}(M_*, S)^+\}$, where $q_{\varphi}(x) = |\varphi(x)|$ and let $B^+ = \{x \in M; ||x|| \leq 1, x \geq 0\}$. Then B^+ is a $\sigma(M, M_*)$ -compact subset of M. We first show that for each φ in E_* , the restriction of φ to (B^*, \mathcal{T}) is continuous at 0. Otherwise, we can find s > 0 such that for each $U \in \mathcal{N}$, where \mathcal{N} is a \mathcal{T} -neighbourhood base of 0, there exists $x_u \in U \cap B^+$ and $\varphi(x_u) \geq \varepsilon$ (we can assume that $\varphi \geq 0$). By $\sigma(M, M_*)$ -compactness of B^+ , there exists a subset $\{x_{u_a}\}$ of the net $\{x_u, U \in \mathcal{N}\}$ which converges to some x_0 in B^+ in the $\sigma(M, M_*)$ topology. It follows that $\varphi(x_{u_a})$ converges to $\varphi(x_u)$ and $\varphi(x_0) \geq \varepsilon$. Hence $x_0 \neq 0$. By assumption, there exists $\varphi \in \mathcal{F}(M_*, S)$ such that $\varphi(x_0) > 0$. But the net $\{x_{u_a}\}$ converges to 0 in the \mathcal{F} -topology, and φ is \mathcal{F} -continuous. Hence $\varphi(x_{u_a})$ converges to 0, i.e., $\varphi(x_0) = 0$ which is impossible.

To finish the proof, let $\varphi \in M_*$ and let $\{p_n\}$ be an orthogonal sequence of projections in M. Given $\varepsilon > 0$, choose ψ_1, \ldots, ψ_m in $\mathscr{F}(M_*, S)^+$ such that whenever $x \in U$, where $U = \bigcap_{i=1}^m \{x; \ x \in B^+ \ \text{and} \ \psi_i(x) < \delta \}$ we have $\varphi(x) < \varepsilon$. Since $\{p_n\}$ is orthogonal, $\psi_i(p_n)$ converges to zero for each $i = 1, 2, \ldots, m$. Hence there exists N such that $\psi_i(p_n) < \delta$ for all $i = 1, \ldots, m$ and all $n \ge N$. It follows that $\psi_i(sp_n) < \delta$ for all $i = 1, \ldots, m, n \ge N$ and $s \in S$ (as each ψ_i is S-invariant). Hence $\varphi(s \cdot p_n) < \varepsilon$ for all $s \in S$, $n \ge N$ (note that $s \cdot p_n \in B^+$). Consequently, $\varphi(sp_n)$ converges to 0 uniformly in s. By a theorem of Akemann [1], p. 288, the set $\{\varphi \circ s; s \in S\}$ is relatively $\varphi(M_*, M)$ -compact.

ILEMMA 4.2. If $\mathscr{F}(M_*,S)$ separates $\mathscr{F}(M,S)$ and $1 \in \mathscr{F}(M,S)$, then for each non-zero $x \in \mathscr{F}(M,S)^+$, there exists $\varphi \in \mathscr{F}(M_*,S)^+$ such that $\varphi(x) \neq 0$.

Proof. Let $\psi \in \mathcal{F}(M_*, S)$ such that $\psi(x) \neq 0$, $\|\psi\| = 1$.

Let $\psi=\psi^+-\psi^-$ be the unique orthogonal decomposition of ψ such that $\psi^+, \ \psi^-$ are positive and normal, and $\|\psi^+\|+\|\psi^-\|=\|\psi\|$. Now $\psi=\psi^+\circ s-\psi^-\circ s, \|\psi^+\circ s\|=(\psi^+\circ s)\ (1)=\psi^+(1)$ and $\|\psi^-\circ s\|=(\psi^-\circ s)\ (1)=\psi^+(1)$. Hence $\psi^+\circ s=\psi^+$ and $\psi^-\circ s=\psi^-$ for all $s\in S$. Consequently, $\psi^+,\psi^-\in \mathscr{F}(M_*,S)^+$, and either $\psi^+(x)\neq 0$ or $\psi^-(x)\neq 0$.

THEOREM 4.3. If S is a group of *-automorphisms, then the following are equivalent:

- (a) M is S-finite,
- (b) S is ultraweakly almost periodic,
- (c) S is equicontinuous on the unit ball B of M with respect to some topology of the dual pair,
 - (d) S is quasi-equicontinuous on B with respect to the $\sigma(M, M_*)$ topology,
 - (e) $\overline{S} \subseteq \mathcal{B}_*(M)$.

Proof. Use Proposition 1 in [8], Lemma 3.1, 4.1 and 4.2 and Proposition 3.1.

Using Proposition 3.9, we also have:

THEOREM 4.4. Assume that $C(S, M_*)$ has an invariant mean. Then M is S-finite if and only if there exists a map $P \colon x \to \overline{x}$ from M onto $\mathscr{F}(M, S)$ satisfying the following properties:

- (a) P is linear and strictly positive,
- (b) P is ultraweakly and ultrastrongly continuous,
- (c) $P(s \cdot x) = x$ for all $s \in S$, $x \in M$,
- (d) P(x) = x for all $x \in \mathcal{F}(M, S)$.

In this case, there exists a compact left ideal topological group G in \overline{S} such that $P(x) = \int \hat{x} d\lambda$, where λ is the normalised Haar measure on G and $\hat{x}(g) = g(x)$ for all $g \in G$. Furthermore, P(x) is the unique element in $K_x \cap \mathscr{F}(M, S)$.

Remark. Theorem 4.3 (a) \Leftrightarrow (b) \Leftrightarrow (e) is proved implicitly in [9] by Størmer. In case S is the group of inner automorphisms, Theorem 4.3 (a) \Leftrightarrow (b) is proved in Yeadon [11]. Also, when S is a group of *-automorphisms, Theorem 4.4 is proved by Kovacs and Szucs in [8] (except for the existence of G).

Finally, the following example shows that the converse of Lemma 4.1 is false. Let T be a finite semigroup containing more than one element and multiplication defined by ab=a for any $a,\ b\,\epsilon T$. Let $\mathscr{S}=\{l_i;\ t\,\epsilon T\}$ and $M=l_\infty(T)$. Then M is not \mathscr{S} -finite, but \mathscr{S} is ultraweakly almost periodic on M.

References

 C. A. Akomann, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), pp. 286-302.

M. M. Day, Semigroups and amenability, Semigroups, edited by K. F. Folley, Academic Press, 1969, pp. 1053.

[3] K. Deleeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), pp. 63-97.

[4] F. P. Greenleaf, Invariant means on topological groups, Van Nostrand Mathematical Studies #16.

 K. H. Hofmann and P. S. Mostert, Elements of compact semigroups, Charles. E. Merrill Books Inc., 1966.

[6] R. V. Kadison, The trace in finite operator algebras, Proc. Amer. Math. Soc. 12 (1961), pp. 973-977.

[7] J. L. Kelley, I. Namioka and co-authors, Linear topological spaces, Van Nostrand, 1963.

[8] I. Kovacs and J. Szucs, Ergodic type theorems in von Neuman algebras, Acta Sci. Math. 27 (1966), pp. 233-246.

[9] E. Størmer, Invariant states on von Neuman algebras, Math. Scand. 30 (1972), pp. 253-256.

[10] F. Y. Yoadon, Fixed points and amenability: a counterexample, J. Math. Anal. Appl. 45 (1974), pp. 718-720.

[11] — A new proof of the existence of a trace in a finite von Neuman algebra, Bull. Amer. Math. Soc. 77 (1971), pp. 257-260.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ALBERTA EDMONTON, ALBERTA, CANADA

Received September 11, 1974

(880)

Revised version January 22, 1975