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Abstract. Wo provoe that a complemented subspace in a direct sum of totally
incomparabloe Banach spaces is essentially a direct sum of complemented subspaces

N
in summandg. 'We deseribe unconditional bages in 3’ I, as direct sums of bases
in summands. i=1

1. Introduction. This paper is a continuation of our research of
[4] and [16]. Tt ix divided into two paxts. In Section 3 we prove Theorem
3.5 which says that any complemented subspace in a direct sum of totally
incomparable Banach spaces is isomorphic to a direct sum of comp-
lemented subspaces in summands by an isomorphism which can be extended
to an isomorphism of the whole direct sum. Particular cases of this result,
concerning sumsy of ,-spaces and not considering extensions, were proved
in [4] and [16]. Xowever, in the proofs presented in those papers we
used an analogue of the decomposition method; this part of the proof
contains & gap. In Section 4 we consider only sums of [,-spaces, L < p < oo,
where for notational reasons I, denotes the space of null-sequences, usually
denoted by ¢,. Using the results about complemented subspaces we prove
that an unconditional basisy in a finite direct sum of I,-spaces iy equiv-
alent to the direct sum of unconditional bases in summands. Some
particular cases of two summands were considered in [4] and [16]. The
method of the proot i & development of the methods of [4] and [16].

The above-mentioned result is not quite satisfactory since no good
description of unconditional bases inl,, 1 < p % 2 < oo, is known. However,
it is known that in Iy, Iy and I, all normalized unconditional basey are
equivalent (¢f. [1] and [8]); thus we infor that in Iy4-ly, la-+ley Ti+Te
and 1,41y -1, all normalized unconditional bases are quagi-equivalent

* A part of this roseareh was done whilo the second namned author was a fellow
of the Mathematical Institute of the Academy of Sciences of USSR in Moscow.
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" (for 1, +1, and I, +1,, this was proved in [4]). The spaces listed above are
the only known spaces possessing the above property.

2. Preliminaries. In this paper we employ the notation commonly
used in the Banach space theory. The only exception is that the symbol
1, denotes the space of sequemces tending to zero, equipped with the
supremum norm, usually denoted by ¢.

A “gpace” always means ‘Banach space”, a subspace is assumed
to be closed and operators are assumed to be linear and bounded. If we

N

have a sequence of spaces (X)), then _Z: X, (Xy+...+ Xy for a small
i=

number of summands) will denote the Cartesian product of X;’s with
coordinatewise algebraic operations and gsome norm giving the product

topology. If we have the space X = Z X, then by Py, we always denote

the projection from X onto X, ammlnla:tmg all X; for j 4. On the other
hand, if we have a projection P in the space X, then X = ImP +kerP.
N

If we have X = Y X;, we will always identify X; with a subspace of X
i=1

i=
in the natural way. Banach spaces X and Y are called totally incomparable
iff they do not have isomorphic infinite-dimensional subspaces.

We consider real and complex scalars as well. If the scalar field
is not specified, it means that the reasoning is valid for both cases.

The detailed proofs of all the required results about hases can be
found in [15]. General information about Banach spaces can be found
in [9] and [3]. For an elegant presentation of perturbation theory for
linear operators in Banach spaces the reader iy referred to [5].

3. Complemented subspaces. In the present section we consider
complemented subgpaces in direct sums of totally incomparable Banach
spaces. We start with some definitions. Let 7: X—Y be an operator
with & closed range. We write ’

a(T) = dimker T

and f(T) = dimY/ImT.

We say that an operator 7' has an index if at most one of the above
numbers is infinity and we define the index of T' by

w(T) = o(T)—B(T).

“An operator with finite index is called a Fredholm operator.

An operator 8: X—Y iy called strictly singular if for any infinite-
dimensional subspace X, « X, §|X, is not an isomorphic embedding.
It is well known (cf. [3]) that if @ is a Fredholm operator with index %
and S is a strictly singular operator, then @+ 8 iy a Fredholm operator
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of index k. For a detailed exposition of the above facts the reader is re-
ferred to [5], Chap. V.2. For facts concerning the spectral theory of oper-
ators in Banach spaces the reader can consult [3], Chap. VIL If we have
2 Fredholm operator @: XX and X, is a complemented subspace of X,
then @(X,) is also a complemented subspace. This can easily be proved
and is left to the reader.

Tirst we consider the case of complex scalars and next we show
how the real case can be deduced from the complex one.

Lumva 3.1, Let X be a compler Banach space and let P: X->X be
a projection. Let us consider @ = P -+ 8, where S is a strictly singular operator.
Then o(Q) is a countable set and has at most two limit poinis, 0 and 1. More-
over, for numbers Aec(Q), A # 0,1 the corresponding spectral projections
are of finite rank.

Proof. Let us define the set of complex numbers U = {Ae0: P+ 8 — AL
has an index}. Since for A = 0,1, P —2I is an isomorphism, we infer that
U > C\{0,1}. By [B], Theorem V.1.8, dimker(P-8—AI) is constant
in U except on a set of isolated points in U. Since for || big enough
P+8~2I is an isomorphism and U iy a connected set, this constant
is equal to 0. To describe o(Q) let us recall that the point A =4 0, 1 is in
o(Q) ift P+ 8 ~Al is not an isomorphism. But for such values of A the
operator P —AI is an isomorphism, and so P - § —A1I is a Fredholm oper-
ator with index 0. So it is not an isomorphism iff dimker(P+ 8 —AI) > 0
but by the previous remarks this proves that o(Q)NU is a set of isolated
points. So o(Q) is countable and has at most two limit points, 0 and 1.
Let £(2) be the spectral projection corresponding to the point 1, 4 # 0, 1.
Then P+8|E(A)(X) and (P—I)+8|E (1) (X) are isomorphisms of
B(A) (X) (cf. [3], VIIL. 3.20). So [(P—I)+S]1(P+8) = 8 +8P+(P—I)8
is an isomorphism of H(1) (X). But it is also a strietly singular operator,
and so F (i) (X) is finite dimensional.

The next Lemma can be found in [6]e Theorem V.2.1.

LzvmA 8.2. Let T': XY be an operator with closed range and a(T) < oo
and let 8: X—X be a strictly singular operator. Then a(T +8) < co and
T+8 has a closed range.

Now woe are ready to prove our key proposition.

Provosirion 8.3. Let X and X be tolally incomparable complex Banach
spaces. Let I' be am imfinile-dimensional projection in X -4 X. Then there
ewists a Tredholm operator ®: X 4 ¥ X -+ ¥ with indew 0 and complemented
subspaces Xy« X and Yy < ¥ such that $(InP) is o subspace of finite
codémension in X, Y.

Proof. et us define an operator @: X+ Y—-X 4 ¥ by the for-
mula @ = PyPPy-+PpPPy. We have @ = P—PyxPPpr—PyPPx
=P8, where § is a strietly singular operator, and so we can apply
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Lemma 3.1. Now let us consider a curve I' which is the boundary of a
rectangle symmetric with respect to the real axis such that I'mo(Q) =@
with 1 in the interior and 0 in the exterior of I'. Define an operator

Py = —(2mi)" [ R(1,Q)da, |

where R (2, Q) is the resolvent of Q. By [8], Theorem VIL3.10, P, is a pro-
jection and P,Q = QP,. Since R(, Q) commutes with Py and Py, we
have Py Py = PxP, and P, Py = Py P,. This shows that ImP, = X,+ ¥,
where X, = ImPyP, and ¥, = ImPyP;. Moreover, ¢(P,—@) consists
of a sequence of points tending to zero and for any point in o(P;—@)
different from 0 the corresponding spectral projection is finite dimen-
sional. To see this observe that P,—@ = (Py—@QP,)—@(I—P,) has
ImP, and kerP, as invariant subspaces and in both P; —@ acts as an
operator with the spectrum satisfying the desired properties. Thus I ++P, —
—@ is a Fredholm operator of index 0 (cf. [8], Theorem VIIL.4.6). Since
P —@ is strictly singular, we infer that the operator

6 =I+(P,—Q)—(P—Q) =I—P+P

is a Fredholm operator with index 0. So @(ImP) is a closed complemented
subspace. To finish the proof it is enough to show that @ (ImP) is a sub-
space of finite codimension in ImP,. Observe that PP = P, P, and so
O(ImP) = ImP, and @ ImP = P,|TmP. Suppose that ImP,/P(ImP) is
infinite dimensional. Then there exists an infinite-dimensional subspace
Z < kerP such that @|Z is an isomorphism and &#(Z) =« ImP,. But for
zeZ we have @(z) = 2+ P, (2)e ImP,, and 50 ze ImP;. Hence Z < ImP,
but this implies that @ |Z is-an isomorphism (by [3], Theorem VII.3.20)
and since @ =P+ 8 we infer that §|Z is an isomorphism. This contra-
diction completes the proof.

Now we explain how the above proof can be used to obtain the result
for real Banach spaces. * . )

If we have a real Banach space X, then we can construct a complex
space X such that X is a “real part” of Xy. It is the space of all pairs
x4y, where 2, yX, the norm is defined by

le iyl = sup {V law — by|P+ [bo+ay[? : a2-+b? =1}
and the scalar multiplication is defined by
(@+1b) (+iy) = (aw—Dby) + (b +ay).

If we have a real operator T': XX, then it induces the complex
operator To: Xp—+Xy defined by To(w +iy) = To+iTy.

Proposition 3.3 for real Banach spaces follows from the fact that
if we start from the real projection P in X + ¥ and pass to Py in (X + ¥)g
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and apply the construetion of the proof to obtain the complex. projection
P,, it appears that P, = (151)0 for some real projection P,: X + ¥ X + Y.
Thus the constructed Fredholm operator is induced by some real Fredholm
operator in X+ ¥ which has all the desired properties. Observe that
if Z is a real Banach space, then operators in Z, induced by operators
in Z form a set closed under sums, taking inverses, composition and multi-
plication by a real scalar. This set is closed in the norm topology.

The only not obvious fact in the above considerations is contained
in the following ’

TmMMA 3.4, Let Z be a real Banach space and @: Z—Z be a linear oper-
ator. Let I be the boundary of a rectangle on a complex plane symmetrio
with respect to the real axis and disjoint with ¢(Qq). Then

—(@mi)™ [ R(2,Q0) 02
I

is induced by. some real projection in Z.

Proof. To see the conclusion let ws consider the approximating
Riemann sums corresponding to the division of I' symmetric with respect
to the real axis and containing the vertices of I'. Those sums have the
form

—(@mi)™ Y 0B 3y Qo) — BB (Th Qo)

where a; are either real or purely imaginary.
In the first case
R (M Qo) — 0 R (T, Qo) = “Ic((QC_Z‘kI)Al - (Qa“ikz)‘l)
= (e —4) (Qo— M) (Qo =AD"
‘ =y, (A — ) (Q(ZJ'F Mk'zI—(lk“}'“zk)Qc)—l'
In the second case
R My Qo) — B B (e, Qo) == (R (A, Qc) + R (%, Qo))
= (et A) (@ + Al2 T — (4 +A) Qo)

Tn both cases we obtain the purely imaginary scalar multiplied by
an operator induced by a real one. So the whole sum is induced by a ?eall
operator and the same iy frne for the integral Sinee this integral is a
projection, it iy induced by a real projedtion.

Thus we have obtained an analogue of Proposition 3.3 for real Banach
gpaces. From this fact we derive our main result.

Tumorty 3.5. Let X and Y be two totally incomparable Banach spaces
(complex or real) and let Z be complemented subspace in X Y. Then
there exists an isomorphism @: X -+ Y2, X + ¥ such that

9(Z) = (Z)nX +¢(Z)NY.
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Proof. Let P be a projection from X + ¥ onto Z. Apply Proposition
3.3 to P so as to obtain a Fredholm operator @ and subspaces X, and Y.
Consider the decomposition

X+Y=X,+Y,+W, where W=X,+Y,, X,>X and Y, Y.

Put, &~} (W) = V+ker @. Observe that @|V: V22, &(V) is an iso-
morphism. Moreover, ¥ and Z form a decomposition of span{V, Z} since
D(Vyc W and @(Z) < X;+¥,. We can decompose W = &(V)-+ By,
‘where #, is finite-dimensional and B, = B,nX +H,NY.

Thus we have two decompositions:

X+Y =®(V)+Ey+ X, + Yy,
X+ Y = V+span{ker®, Z} 4 H,,
where H, is finite-dimensional and @ (H,) c X, -+ ¥,.
Since @|V is an isomorphism, we infer that
& |span{ker @, Z} + B,: span{ker @, 2} +-E,—»X,+ ¥, + B,
is a Fredholm operator with index 0. So B, + X, + ¥, and span {ker &, Z} +
+ &, are isomorphic. Since Z is a subspace of finite codimension in
span {ker @, Z}, we can find an isomorphism
¢ spaniker®, 7} + B, 225 B, + X, + ¥,
such that ¢(Z) = p(Z)NX +p(Z)nY. Now we define ¢ by the formulas
@|span{ker®, Z}+ E, = ¢,
|V =@,

This isomorphism has the desired properties.

Remark 3.6. It is an old problem posed by Banach whether a sub-
space of finite codimension in an infinite-dimensional Banach space is
isomorphic to the whole space. If this problem has a positive solution,
Theorem 3.5 will immediately follow from Proposition 3.3.

By an easy induction (cf. [13]) one can generalize the above Theorem.
3.5 to the case of a finite number of pairwise totally incomparable sum-
mands. Let us state a special case of this result.

COROLLARY 3.7. 4 complemented subspace of a divest sum of & fimite
number of totally incomparable Banach spaces is isomorphic to a direct
sum of complemenied subspaces® in summands.

Since 1, and l,, 1<p < ¢ < oo are totally incomparable Banach
spaces (ef. eg. [9]) and by the theorem of Pelezynski [11] an infinite-
dimensional complemented subspace in I, is isomorphic to l,, we have

COROLLARY 3.8. Am infinite-dimensional complemented subspace in

N .
¢§1 1, is isomorphic to ‘LSJ Ipy,, for some subsequence (i) of the sequence 1, ..., N.
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This corollary will be used many times in Section 4. It was stated
without proof in [16].

4. Unconditional bases. In this section we use Corollary 3.8 to in-

N
vestigate the form of unconditional bases in 2 by 1< pi< o0 (Recall
=1 .
once more that I, means the space of null sequences.) We start with
gome definitions and well-known facts.

Let (x,) be a basis in the space X. We call the sequence (.zk) .almost
disjoint with respect to the basis (w,) if there is a sequence of indices 7y
such thab

”7c+_11
2 = Z @i Vi
d=mnp+1
where || <275 liell for B =1,2,... o _ .

Tt i well known (cf. [2]) that a sequence almost disjoint with respect
40 some basis is equivalent to a block basic sequence with respect to
that basis. )

Tf we have two isomorphic Banach spaces X and Y, d(X, Y) will
denote the Banach-Mazur distance, i.e.,

a(X, Y) =inf{|T|| |77, where T' is an isomorphism from X onto Y}.

T we have an unconditional basis (z,) in a space X we can always
introduce an equivalent norm such that this basis will be unconfditi_ona,lly
monotone, i.e., for any subset o of natural numbers the projection P,
defined by P,,(f: ;). ={}: a;@; will have norm one.

Recall tha;'. éhe basis (#,) in a space X is shrinking if the biorthogonal
functionals (#%) form a basis in X* and it is boundedly complete if X
is the dual space to spanf{wy} in the natural duality. By a theorem qf
R. 0. James (¢f. [137]) if (,) is-an unconditional basis in a space X, it
is shrinking iff X does not contain a subspace isomorphic to I, s_md (@)
is boundedly complete iff X does not contain a subspace isomorplue‘ﬁo [

Detailed information about 1, spaces can be found in [9]. In pm‘tlculm-,
[97 contains & good exposition of the “oliding 1}11.}np” 1}6(‘;}\1}1(1110..1‘]1@
following lemma can he easily proved ushi\g the “gliding hump” technigque.

TavyA 4.0. Let X be o subspace of _\_:‘ll,,i and let X be a subspace of
N hjwl , )
22 by, where py < g; for ¢ = 1,...,Nandj =1,..., M. Then any operator
qwal

from Y imto X is compact. ’
Our aim now is to prove Theorem 4.11. The main point in the _pljoof
is Proposition 4.1. This proposition and. a duality argument are sufficient


GUEST


270 I. 8. Edelstein and P. Wojtaszezyk

to prove the theorem for 1< p,< co. To deal with the non-reflexive
case we use Lemma 4.7. )

M N
ProposrrioN 4.1, Let X = ;1 by, and Y+ = élg), where 1< p; < g;
<oofori =1,2,..., Mandj =1,2,..., N. Let 2, = (2,,y,) be an uncondi-
tionally monotone normalized basis for X+ Y. Suppose that (ng) 98 @ se-
quence of indices sq{g_h_ that span{z, Js2, contains o subspace isomorphic fo b
Sfor some 4. Then lim lltn il > 0.

Proof. Suppose that the assertion of the proposition is false, i.e.,
that Ilmn8|1->0. Then we can construct a sequence of pairs of natural numbers
(Das ks) and elements g,¢X -- ¥ such that the following arve satisfied:

L pe<Ty<Pgyy for s =1,2,..; .

g
2. 0 <infllg,l < sup llgsll < oo and g, = 3 a;2,,;
i=Dg
3. (g,) is equivalent to the unit vector basis in Iy, for some ;

4. there is a positive i such that |Px(g,)|> u for s = 1,2
Iy

5. IPx(g)ll< 27 {igll for all g of the form ¢ = Y' 8
=g

yoeoi

1)
6. Py(gs) is almost disjoint with respect to (%)
In the construction we will use the following lemmas.

g .
Levwa 4.2. If g, = 3 0;2,,, s =1,2,... and 1-5 are satisfied, then
- ps
there emgcis @ py > 0 such that for amy sequence of numbers (80); leg) =1,
gsle) = > 8;0;2,, also satisfies 1-5, where u is replaced by u,.
Ps
Proof. Conditions 1-3 are satistied since for any & = (&;) the operator
T, defined by T.(2,) = &,, is an isomorphism and there is a constant ¢
such that [T, |7, < € for all &, Xf condition 4 is not satisfied for any
41> 0, then there is ¢ = (g;) and a subsequence (s,) such that [Px(g, (o)
<2“’f and then by stability theorems (cf. [15]) gsk(a) is equivaleﬂh to
a basic sequence (Py(gsk(s))) in ¥, which in view of condition 8 contradicts
the fact that Y does not contain ly,. Condition 5 ix obviously satisfied.
Leyvia 4.3. For any natural number N there emists o consiont y{N)

such that for any N-dimensional Banach space B and any finite sei of vectors
() = B

min{|| ¥e;a,| = [ = l}’\\"y‘(N) max [

Proof. Since the Banach-Mazur distance between ¥ and any N-dimen-
sional space is bounded by some constant depending only on N, it is
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enough to consider the Hilbert space only. Moreover, it is enough to
prove the lemma in the case where

llow; -yl 2= max (gl flas;f)
and

ey — 41l Z max (llwll, lwyll) for all 4,j; ¢ %7,

since in the opposite case we can replace o; ind @; by @+ a; for a suitable
choice of the sign. If the above conditions are satisfied, we easily conclude.
that ¢ ™", @y lloyll "] 32 27" and this implies that the cardinality
of our seb iy bounded by some constant depending only on N. This proves.
the lennna,

M N

LinvMMA 4.4, Let X =izz by, and ¥ = Elgj, where L<p; < ¢ < oo

oy i=1

for all i and j. Let |l = u> 0, let (2,) weakly converge to zero amd let

[Px(2,)ll 2= pa > 0. Then there is a subsequence (z,) equivalent to the wunit
vector basis in b, for some i.

The proof uses a standard “gliding hump” argument (cf. [2] and [9]).

Now we can proceed to the construction.

Using the condition uwnﬂn-;»o we can easily construct by induction
a sequence (p,, k,) and §, satisfying 1, 2,4 and 5 with g, instead of g,.
Observe that # can be chosen as close to 1/2 as we wish. Passing to a sub-
gequence (g,), we can insure also 3. (If §,~»0, this can be done by Lemma 4.4.
The opposite case iy possible only if some p; are equal to 1 and then j,
is an 111].(>q11.ditio11a.l basic sequence which does not converge weakly to
zero, so theve iy a functional fe (X ¥)* such that |f(g,,)l = 6> 0 for
some subsequence (s;,) and the unconditionality implies that (95, is equi-
valent to the unit veetor basis in I;.)

Now we inductively choose a subsequence (s,) and & = (g;), &l = 1,
sueh that g, (e) satisfies condition 6. Suppose we have chosen 8, ..., Sy
and (s,;)fﬁlf}’ , l&;) == 1. Let K be such that Py(span{gsr(s)},’.‘,’_l) is almost
contained in span{e;};-, and let @r be the partial sum projection onto
span{z,+X,,. Since 2,%>0, we have |Qx(2,)]—0. So we can find sy, such
that fov > py,  we have

HQKPY(%)” Y 2“({\”‘1) Y (K:)”lﬁy

where §:- 0 satistios the relation [[Py(gs(e)) = 8 for all s and all s It
follows from condition b that such o f exists. By Lemma 3.4 we can find
By b o Byt dy ey 7r,sN_H, leg] == 1 such that

Tty g

N1 N1
”Q‘Jcpr E ey, | <27 L 2=+ ”Py( 2 Eiaizm) ’
Py pr ey Pan41

In view of Liemma 4.2 this finigshes the constructiomn.
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Using (p,, k) and (és) satisfying 1-6, we will obtain the contradiction..

‘We haive i
Px(g) = ay+by, where ag = D' 2 (Pr(do)n,
=g
Moreover,
1 = Px(e) +Px®)l _ P+ Px(B)l - IPx()l 1P (By)ll
llag +bsll h llag + bl T el 1P (g6)ll
P (Bl
= IPx(gll’
which implies
IPx(bo)ll = 27 |1Px(g6) =27 s

But Py (g,) is almost disjoint with respect to the basis (2,) s0 it is an uncon-
ditional basic sequence in ¥. Therefore the operator Px@ |span{Py(g,)}se,
where Q is the mnatural projection in the basis (#,) onto the space
span {z,: n # n; for py, <1< kg, s =1,2,...}, s a non-compact operator
from a subspace of ¥ into X, which contradicts Lemma 4.0.

Remark 4.5. The construction of this proposition can bhe done in ‘

much greater generality. We present the result in the form we need in
the proof of our main theorem. Let us only remark that the proposition
remains true if we consider an unconditional basis in X + ¥, where X
is a subspace of 1, and Y is a subspace of I, p < ¢.

LevmMA 4.6. Let 2z, = (£,, Y,) be an unconditional basis in 1,4 ¥,
where ¥ has an unconditional shrinking basis. If |z, |l => > 0 for some
subsequence (ng), then llmlw (@) > 0 (where (25) =( L yn) 1s the dual
basis to (z,)).

Proof. If the lemma is not true; then for some subsequence w,‘;s(wns)
-0 and 2, is equivalent to the unit vector basis in I,. So the biorthogonal
gystem (mna, yn ) is equivalent to the unit vector basis in 7., which implies
that Zasyﬂ is a convergent series for any null-sequence (e). Since 1
= a:,,s(wns)-i-yn (1/,18), we conclude that Hyn |>=a>0fors=12,... but
this implies that ¥ contains a subspace 1somolphlc to I, which con ta'a,dlcw
the fact that ¥* is separable (cf. [2]).

LA 4.7, Let 2, = (@,, ¥,) be an unconditional normalized basis in

L+ Y. Suppose tﬂat for some subsequence (ng) we have lm,“;s(m,,‘s)l Zu>0
Jor s =1,2,... Then (z,) is equivalent o the unit vector basis in ly.
[=+] o0

Proof. Let us consider a convergent series 3 a,z, . Then 3 a,@,
§=1 s=1

is an unconditionally convergent series in I, and by the Orlicz theorem [10]
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80 i‘}aslz < oo.

§=1

SZJ%IZ o |t < co. But |, |l uy >0 for ¢ =1,2,...

Let us now define the operutor 8: 1,1, by the formula
Zz,b @, 0)e, = ans

where (¢;) denotes the umt vector basiy in Z2. 8 is a continuous operator
by the above considerations and by the Grothendieck inequality (cf. [87)
it is absolutely summing. But this implies that 2%5'(%,) is an absolutely

eonvergent series. Since [S(a,,)] = ]/2 |m,”r Png)|* 2 4, we conclude that

24 lag] < oo, But this means that (z,,) is equivalent to the unit vector

baJsm in 1.

Remark 4.8. The last part of this proof shows that any one-dimen-
sional unconditional expansion of identity in 7, is absolute. It is interesting
to compare this remark with the remark after Lemma 1.3. in [12].

N

u
LuMva 4.9. Let X = Yl and Y = 3'l,, where 1 < p; < ¢; < oo
de=] Je=1

=z (@, Yu) e an unconditionally monotone basis for X + ¥.
Let (ny) be such that span{ez,} contains a subspace isomorphic to some 1, .
Then li_r_nnnm,,wll = (),

Proof. The biorthogonal functionals 2% = (@, y%) form a basis in
(X +X¥). By Proposition 4.1 Tim [y wll > 0. S0 by Lemma 4.4 we can
find a subsequence of (n,) (denote it albo by n,) such that (zn ) is equiv-
alent to the unit wvector basis in some I, so (%) I8 eqluvalent to the
unit vector basis in I,.. If |lp, [l = u > 0, then by Lemma 4.4 we can find
a subsequence eqmvalem to the unit vector bagis in some L,,. This contra-
-diction proves the lemma.

COROLLARY 4.10. Let X, Y and (z,) be as in Proposition 4.1. If (n,)
18 a subsequence of indices such that |\, -0, then span(z, ) is isomorphic
to a complemented subspace of ¥.

Proof. Proposition 4.1 implies that span(e,) does not contain a
subspace isomorphic to suy .. So by Corollary
to a complenientied subspace of Y.

411 Let X - 2/,,, L py <P << ..

() be an unconditional basis fm' X. Then one can divide the set of natural
‘numbers into N parts N, in such o way that bp(m{znm,m ~ .

3.8 span(z,, ) is isomorphic

TIBORIEM L Py = oo and let

Proof. We will use induction on the number of summands. If ¥ =1,
there iy nothing to prove. Suppose we have ])roved the theorem for all

sumg of (N —1) summands and consider 1, - Z’lpf Introducing an


GUEST


274 I 8. Bdelstein and P. Wojtaszezyk
equivalent norm, we can assume that (2,) is an unconditionally monotone
basis. We begin with the following lemma.

LEMMA 4.12. Let p; 7 2 and let Theorem 4.11 hold for (N —1) sum-
momds Thm, for amy wunconditionally monotone basis z, = (2,,Yy,) for

+ , 0 is an isolated limit point of the set {ljz, I}

Proof. Tf 0 is not an isolated limit point of the set {||lz,l}, then there
is a sequence of numbers a,, a,% 0 and a sequence of infinite sebs N,
of natural numbers such that a, ., < &, < a, for ke N,. We can assume
that (2x)5e v, 15 equivalent to the unit vector basis in ,, with the constant d,.
Ifp, =1, "this follows from Lemmas 4.6 and 4. 7, and if p, > 1, it follows
from Lemma 4.4.) Let N, be a subset of ¥, of caldlnmh’uv r(n ) - N, where
r(n) is such that d; lz(z;;*),z )—>oo for ¢ = 2,38, ..., N, where

A, 1) = mf {7 |TY 1P|, where Y is an isomorphic embedding

of 7% into I, and P is a projection from I, onto T (1)}

It is possible to choose such an r(n) since p = 2 (cf. [7] and [8]).

* Let us now consider the space V = span{z,: ke [ N,}. By Corollary 4.10,

=1
V is isomorphie to Zlm , for some subsequence (4;) of the sequence2, 8, ..., N

and by the mductlve hypothesis {z;: ke U N,} can be divided into less
=1

than N parts, each of them spanning some I,. But then one of those
parts contains r(n,) elements of the set N, for some subsequence (i)
of indices. But this contradicts the choice of #(n). This contmdietion
proves the lemma.

Using this lemma, we can make the inductive step in the proof of
the theorem. We will consider the following cases:

10 py =1

By Proposition 4.1 lim |P,(2,)[| > 0 (once more P; means Pu,) and
by Lemma 4.12 there is no limit point of the set {||P;(z,)[|} in the interval

N
(0, z) for some s. Since I+ I, is not isomorphic o Iy, Lemmas 4.6
P2

and 4.7 imply that lim||Py(z,)]| = 0. So we can. divide the set of natural
numbers into two pgﬁs, N, and Ny, in such a way that |[Py(s,)|| > ¢ for
ne N, and [P;(2,)[l>0 for ne N,. By Lemma 4.6 spanis,: 47,elvl_\fl} ~ 1y
ne Ny} ~¢2’:Z”1
obtain the conclusion we have to apply the inductive hypothesi:q to the
basis {z,: neN,}.

20 1< p, and py =

and by Corollary 4.10 and Corollary 3.8 spamn{z,:

icm
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In this cagse the basis is shrinking, the biorthogonal functionals span
+ Y’ Iy, and I =1,. If we apply case 1° to biorthogonal functionals,

we obtzun Lhe desired decomposition of the set of natural numbers.

Fl<p<... <Py < oo and p, #2.

We proceed like in case 1° using Proposition 4.1, Lemma 4.9 and
Lemma 4.12 to obtain the decomposition of the set of natural numbers.
To reach the conclusion we apply Lemma 4.9 and Corollary 4.10.

£ 1<p <. <py< oo and py = 2. ‘

We apply case 3° or 1° for the dual space and biorthogonal functional,
using l instead of 1, . Thus the theorem is proved.

DFI‘INI’]‘ION 4.13. ',I‘wo unconditional bases (x,) and (y,) are called
quasi-equivalent it there exists an isomorphism 7': span(,) 2= (Ya)
such that T'(®,) = You for some permutation o. If the permutation o
can be chosen to be the identity, we call such bases equivalent.

It was proved by Bari [1] that all normalized unconditional bases
in 1, are equivalent and by Lindenstrauss and Pelezyhski [8] that the
same holds in I, and {,. From those facts and our Theorem 4.11 we have

COROLLARY 4.14. All normalized unconditional bases in 1y +1y, Iy + 1o,
lo+1y and 1, +1,+1, are quasi-equivalent.

Remark 4.15. It seems to be an interesting problem. to describe all
spaces with unconditional bases in which all normalized unconditional
bases are guasi-equivalent. In particular, we do not know an example
of two non-quasi-equivalent normalized unconditional bases in the space
(Z1,);,*the space of all absolutely convergent series in I,.

Remark 4.16. If we consider conditional bases, a theorem like
Theorem 4.11 is not true. It follows from the results of [17] that I; 1,
has a normalized basis weakly convergent to zero. Since weal: convergence
and norm convergence for sequences coincide in I,, this basis is not a
dire¢t sum of bases in summands.

Remark 4.17. In this remark we show that Theorem. 3.5 is not true
for arbitrary subspaces. Let us take a sequence (a) = (a;)il; such thab
limao; == 0 and |a; << 1. Let us consider the space l,-1;, L<p < ¢ < oo,
and denote by (u,) the unit vector basis in 7, and by (v;) the unit vector
basis in 1,. Conxider the space H® = 1,1, defined by

B = gpan{auy+v: 4 =1,2,...}.

T e ]"”/"1 P) 2 oo, then using the Hélder 1nequa.111.y we obtain
B~ I8 e |J””(q‘1’) = oo, one checks that I contains subspaces
isomor phm to 1, and I,. Moxeovel the sequence #; = a,u,+¥; i$ an un-
conditional bamlb in 7, Suppose that B = X + Y, where X is isomorphic

/
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to a subspace of I, and Y is isomorphic to a subspace of 1,. Moreover,
we can assume that X nl, = {0} and ¥ nl, = {0}. One can easily prove
(cf. [6] and [13]) that Plp[X and qu] Y are isomorphisms. Let Py (resp. Py)
denote the projection from E® onto X (resp. ¥) annihilating ¥ (resp. X).
Then o;u; = Plp(zi) =P,p Px(zi)—l—PlpP]}(zi). Since P, Py is a compact
operator, HPZJ,PY(%')”*O and so |]sz,Px(zi)“’">0; which implies [P (2;)-0.
But this contradicts Remark 4.5. .

The spaces @ for p = 2 and 2 < ¢ were studied by H. P. Rosenthal
in [14]. In thig case the results of this remark can be derived from the
theory of .Z,-spaces.
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On the inductive limit of (JI,, 0 <p<1
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Abstract. For cach p, 0 < p < 1, let I bo the linear space of all scalar sequences:

%= () guch that [[@llp = 3|a? < co. Wo define the g-topology on (_Ji, to bethe

girongest linear topology on (_JI, sueh that each injection ip: ly—|_JI, is continuous..
This paper contains results about (_JIy with the g-topology.

0. Imtroduction. For each p, 0 <p <1, let I, be the linear space:
of all sealar sequences @ = (#,) such that |z], = ) |#,|” < co. We define:
the g-topology on (I, to be the strongest linear topology on (JI,, such
that each injection ¢,: l,—\J1, is confinuous.

. To investigate the properties of this topology, we will find it usefnl
10 use the following notation. The set R is the set of all sequences of positive:
numbers increasing to one and R,, 0 <p < 1, is the set of all sequences
(a,) in R such that p < a,. The set @ is the set of all sequences of positive:
numbers less than one decreasing to zero, and @, is the set of all sequences
of positive numbers (a,) in @ such that e, < p. The space [, ) is the set
of all scalar sequences & = (z,) such that |@l,, = Z[mn\”’< oo, The-
vector ¢, is the vector (0,...,0,1,0,...), where the non-zero entry is
in nth position. The projection P, is the mapping which maps (@, @,, ...).
onto (@y, By, ---, By, 0,...). The set S, is the set {wel,: lwl, <1}. The
symbol card (4) represents the cardinality of the set .4, and supp(x) is
the support of the vector @ = (o, #4, ...), i.e., the set of all integers n
guch that a, 0. The space @ is the linear space of all scalar sequences
with at most finitely many non-zero entries, and v is the strongest linear
topology on &. A Dblock bﬁm‘ie sequence {z,} is & sequence of non-zero.

i
vectors of the forme, == 3 a,6;, where {n,} is a strictly increasing se-
fman g q 1 :
quence of non-negative int(-/acgclnlﬁ. A space hag a block basis if it has a
Schaudey basis consisting of a block basic sequence. The symbol (1,
denotes the space | 1,, and [#,], indicates the g-closed linear subspace.
H<p<l
of (U1, generated by the set {z,}. Finally, co?{4} is the g-convex ba-
lanced hull of the set 4, i.e., the set of all vectors of the form X oaay,

ieml
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