

to a subspace of l_p and Y is isomorphic to a subspace of l_q . Moreover, we can assume that $X \cap l_q = \{0\}$ and $Y \cap l_p = \{0\}$. One can easily prove (cf. [6] and [13]) that $P_{l_p}|X$ and $P_{l_q}|Y$ are isomorphisms. Let P_X (resp. P_Y) denote the projection from $E^{(a)}$ onto X (resp. Y) annihilating Y (resp. X). Then $a_iu_i = P_{l_p}(z_i) = P_{l_p}P_X(z_i) + P_{l_p}P_X(z_i)$. Since $P_{l_p}P_Y$ is a compact operator, $\|P_{l_p}P_X(z_i)\| \to 0$ and so $\|P_{l_p}P_X(z_i)\| \to 0$, which implies $\|P_X(z_i)\| \to 0$. But this contradicts Remark 4.5.

The spaces $E^{(a)}$ for p=2 and 2 < q were studied by H. P. Rosenthal in [14]. In this case the results of this remark can be derived from the theory of \mathcal{L}_n -spaces.

References

- N. K. Bari, Biorthogonal systems and bases in Hilbert spaces, Uc. Zap. Moskov. Gos. Univ. 148, Mathematika 4 (1951), pp. 69-107 (in Russian).
- [2] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), pp. 151-164.
- [3] N. Dunford and J. T. Schwarz, Linear Operators, Part I: General theory, New York 1958.
- [4] I. S. E delstein, On complemented subspaces and unconditional bases in $l_p + \overline{l_2}$, Theor. Funkcii, Functional Anal. i Prilozen, 10 (1970), pp. 132-143 (in Russian).
- [5] S. Goldberg, Unbounded linear operators, McGraw-Hill, New York 1966.
- [6] V. I. Gurarij, On openings and inclinations of subspaces of Banach spaces, Theor. Funkcii, Functional Anal. i Prilozen. 4 (1965), pp. 194-204 (in Russian).
- [7] M. I. Kadec, On linear dimension of L_p and l_q spaces, Uspehi Mat. Nauk, 13:6 (1958), pp. 95-98 (in Russian).
- [8] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \$\mathcal{L}_{\nu}\text{-spaces and their applications}\$, Studia Math. 29 (1968), pp. 275-326.
- [9] and L. Tzafriri, Classical Banach spaces, Springer Lecture Notes in Math. 338 (1973).
- [10] W. Orlicz, Über unbedingte Konvergenz in Funktionenraümen, Studia Math. 4 (1938), pp. 33-38.
- [11] A. Pełczyński, Projections in certain Banach spaces, ibid. 19 (1960), pp. 209-228.
- [12] and P. Wojtaszczyk, Banach spaces with finite dimensional expansion of identity and universal bases of finite dimensional subspaces, ibid. 40 (1971), pp. 91-108.
- [13] H. P. Rosenthal, On totally incomparable Banach spaces, J. Func. Anal. 4 (1969), pp. 167-175.
- [14] On subspaces of L_p (p>2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), pp. 283–303.
- [15] I. Singer, Bases in Banach spaces I, Berlin 1970.
- [16] P. Wojtaszczyk, On complemented subspaces and unconditional bases in $l_p + l_q$, Studia Math. 47 (1973), pp. 197–206.
- [17] Existence of some special bases in Banach spaces, ibid. 47 (1973), pp. 83-93.

UKRFILIAL NIAT

and

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Received September 14, 1974

(895)

On the inductive limit of $|l_n|$, 0

b

S. A. SCHONEFELD and W. J. STILES (Tallahassee, Fla.)

Abstract. For each p, $0 , let <math>l_p$ be the linear space of all scalar sequences $x = (x_n)$ such that $||x||_p = \sum |x_n|^p < \infty$. We define the q-topology on $\bigcup l_p$ to be the strongest linear topology on $\bigcup l_p$ such that each injection i_p : $l_p \rightarrow \bigcup l_p$ is continuous. This paper contains results about $||l_p||$ with the q-topology.

0. Introduction. For each p, $0 , let <math>l_p$ be the linear space of all scalar sequences $x = (x_n)$ such that $||x||_p = \sum |x_n|^p < \infty$. We define the q-topology on $\bigcup l_p$ to be the strongest linear topology on $\bigcup l_p$, such that each injection $i_p \colon l_p \to \bigcup l_p$ is continuous.

To investigate the properties of this topology, we will find it useful to use the following notation. The set R is the set of all sequences of positive numbers increasing to one and R_p , $0 , is the set of all sequences <math>(a_n)$ in R such that $p \leqslant a_1$. The set Q is the set of all sequences of positive numbers less than one decreasing to zero, and Q_p is the set of all sequences of positive numbers (a_n) in Q such that $a_1 \leqslant p$. The space $l_{(r_n)}$ is the set of all scalar sequences $x = (x_n)$ such that $||x||_{(r_n)} = \sum |x_n|^{r_n} < \infty$. The vector e_n is the vector $(0, \ldots, 0, 1, 0, \ldots)$, where the non-zero entry is in nth position. The projection P_n is the mapping which maps (x_1, x_2, \ldots) onto $(x_1, x_2, \ldots, x_n, 0, \ldots)$. The set S_p is the set $\{x \in l_p : ||x||_p \leqslant 1\}$. The symbol card A represents the cardinality of the set A, and supp A is the support of the vector A is the linear space of all scalar sequences with at most finitely many non-zero entries, and a is the strongest linear topology on A. A block basic sequence $\{x_n\}$ is a sequence of non-zero

vectors of the form $z_n = \sum_{i=n_{k-1}+1}^{\infty} a_i e_i$, where $\{n_k\}$ is a strictly increasing sequence of non-negative integers. A space has a block basis if it has a Schauder basis consisting of a block basic sequence. The symbol $\bigcup l_p$ denotes the space $\bigcup_{0 \le p \le 1} l_p$, and $[x_n]_q$ indicates the q-closed linear subspace of $\bigcup l_p$ generated by the set $\{x_n\}$. Finally, $\operatorname{co}^q\{A\}$ is the q-convex ba-

lanced hull of the set A, i.e., the set of all vectors of the form $\sum \alpha_i a_i$.

where a_i is in A and the scalars a_i satisfy $\sum_{i=1} |a_i|^q \leq 1$, and a balanced set B is q-convex if and only if $\cos^q \{B\} = B$.

We show that $\{e_n\}$ is a "symmetric" Schauder basis for $\bigcup l_p$, and that $\bigcup l_p$ is a complete separable non-locally convex linear topological space with the q-topology. We also show the following: A sequence converges in $\bigcup l_p$ if and only if the sequence is contained in and converges in some l_p ; a set is compact in $\bigcup l_p$ if and only if the set is contained in and compact in some l_p ; no closed infinite-dimensional subspace of $\bigcup l_p$ is contained in any l_p ; each closed infinite-dimensional subspace of $\bigcup l_p$ contains an isomorphic copy of Φ ; and no infinite-dimensional subspace of $\bigcup l_p$ is metrizable.

1. Main results.

THEOREM 1. $\{e_j\}$ forms a Schauder basis for $\bigcup l_p$ with the q-topology. Proof. Suppose $x=(x_1,x_2,\ldots)$ is in $\bigcup l_p$; then x is in l_p for some $p \in (0,1)$. Since $\sum_{k=1}^n x_k e_k$ converges to x in l_p , and the l_p -topology is weaker than the q-topology on l_p , $\sum_{k=1}^n x_k e_k$ converges to x in the q-topology. Since the q-topology is stronger than the l_1 -topology, the representation is unique and the coefficient functionals are continuous.

LEMMA 2. Let A and B be balanced q-convex sets; then

$$\operatorname{co}^q(A \cup B) \ = \ \{ \lambda x + \mu y \colon \ |\lambda|^q + |\mu|^q \leqslant 1 \,, \ x \, \epsilon A \,, \ y \, \epsilon \, B \} \,.$$

Proof. Let $z=\lambda_1 x_1+\ldots+\lambda_m x_m+\mu_1 y_1+\ldots+\mu_n y_n$ be an element of $\cos^q(A\cup B)$, where x_i is in A, y_i is in B and $\sum |\lambda_i|^2+\sum |\mu_i|^2\leqslant 1$. Let $\lambda=\left(\sum |\lambda_i|^q\right)^{1/q}$ and $\mu=\left(\sum |\mu_i|^q\right)^{1/q}$. Then $z=\lambda x+\mu y$, where $\frac{\lambda_1}{\lambda}x_1+\ldots+\frac{\lambda_m}{\lambda}x_m$ is in A, $y=\frac{\mu_1}{\mu}y_1+\ldots+\frac{\mu_n}{\mu}y_n$ is in B, and $|\lambda|^q+|\mu|^q\leqslant 1$.

Remark. Lemma 2 generalizes easily to the case when there are finitely many sets. This fact will be useful.

THEOREM 3. In $\bigcup l_p$, the q-topology restricted to each l_p is strictly weaker than the l_p -topology.

Proof. Let N be a q-neighborhood of zero. Choose p' such that p < p' < 1. Then there exists a > 0 such that $aS_{p'} \subset N$. Since $(aS_{p'}) \cap l_p$ is not contained in any multiple of S_p , N restricted to l_p is not contained in any multiple of the S_p .

The following theorem will show that, in order to define the q-topology, it suffices to choose any sequence (p_k) in R and define the topology on $\bigcup l_p$ to be the strongest linear topology for which each injection $i_k \colon l_{p_k} \to \bigcup l_p$

 $=\bigcup_{k=1}^{\infty}l_{p_k}$ is continuous. This fact will prove useful in our later development, and we will use it frequently without any discussion.

THEOREM 4. Let (p_k) be any sequence of positive numbers increasing to one. Then the q-topology is the strongest vector topology on $\bigcup l_p$ which is weaker than the l_{p_k} -topology on each l_{p_k} .

Proof. Let \mathscr{T} denote the strongest linear topology on $\bigcup l_p$ such that each injection from l_{n_k} is continuous. Since each injection from l_{p_k} is continuous in the q-topology, the q-topology is weaker than \mathscr{T} . Also, if $0 , there exists <math>p_k$ such that $p < p_k < 1$. Since the l_{p_k} -topology on l_p is weaker than the l_p -topology on l_p , the injection from l_p must be \mathscr{T} -continuous. Hence \mathscr{T} is weaker than the q-topology.

THEOREM 5. The linear topology on Φ generated by the collection of paranorms, $\{\| \|_{(q_n)}: (q_n) \in Q\}$, is the strongest linear topology, τ .

Proof. Let $\mathscr T$ be the linear topology generated by the collection $\{\|\ \|_{(q_n)}\colon (q_n)\in Q\}$. Clearly, $\mathscr T\subset \tau$. The topology τ is known to be locally convex (cf. [2]). Let N be a convex balanced τ -neighborhood of 0. Choose t_n , $0< t_n<1$ such that $t_n\,e_n\,\epsilon\,N$. For some ε , $0<\varepsilon<1$, choose (q_n) in Q such that $\sum_{n=1}^\infty \frac{1/q}{t_n}<1$. Then $\|\lambda\|_{(q_n)}<\varepsilon$ implies λ is in N. Hence $\tau\subset \mathscr T$.

THEOREM 6. Let N be a q-neighborhood of 0 in $\bigcup l_p$, let (p_k) be a sequence of positive numbers increasing to one, and let

$$A_N = \{\lambda = (\lambda_1, \dots, \lambda_n, 0, \dots) \in \Phi \colon \lambda_1 x_1 + \dots + \lambda_n x_n \in N \text{ for every } x_k \in S_{p_k}\}.$$
Then A_N is a neighborhood of 0 in Φ .

Proof. Consider the collection $\mathscr{A}=\{A_N\colon N\text{ a balanced }q\text{-neighborhood of }0\}.$ If $A_N\in\mathscr{A}$, then A_N is balanced because N is balanced. Also $A_M+A_M\subset A_N$ if $M+M\subset N$. Let $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_n,0,\ldots)$ be any element in $\mathscr{\Phi}$. If t is a scalar, then $t\sum\limits_{j=1}^n\lambda_jS_{p_j}\subset t\sum\limits_{j=1}^n\lambda_jS_{p_j}$. Thus $t\sum\limits_{j=1}^n\lambda_jS_{p_j}$ is contained in N for all sufficiently small t. This implies that A_N is absorbing.

Hence $\mathscr A$ is a local base at zero for a linear topology (cf. e.g. [1]). Thus A_N is a τ -neighborhood of 0.

THEOREM 7. Let N and A_N be as above and let $\hat{N} = \{\lambda_1 x_1 + \ldots + \lambda_n x_n : \lambda \in A_N \text{ and } x_k \in S_{n_k}\}$. Then $\{\hat{N} : N \in \mathcal{B}\}$, where \mathcal{B} is a local base for the q-topology, is a local base for the q-topology in $\bigcup l_p$.

Proof. Clearly, $\hat{N} \subset N$. Also if \hat{M} is in $\{\hat{N}: N \in \mathcal{B}\}$, then \hat{M} is absorbing and also \hat{M} is balanced because S_{p_k} is balanced. Furthermore, if \hat{M} is in $\{\hat{N}: N \in \mathcal{B}\}$ we will construct a \hat{G} in $\{\hat{N}: N \in \mathcal{B}\}$ such that $\hat{G} + \hat{G} \subset M$. There exists k > 0 such that $(|\lambda|^2 + |\mu|^2)^{1/q} \leq K(|\lambda| + |\mu|)$ for all $q \geq p$,

and for all λ and μ . Choose G in $\mathscr B$ such that $KG+KG\subset M$. Let Z be in $\hat G+\hat G$. Then there exists $\lambda=(\lambda_1,\,\ldots,\,\lambda_n,\,0,\,\ldots)$ and $\mu=(\mu_1,\,\ldots,\,\mu_n,\,0,\,\ldots)$ in A_G such that $Z=(\lambda_1x_1+\ldots+\lambda_nx_n)+(\mu_1y_1+\ldots+\mu_ny_n)$, where x_i and y_i are in S_{x_i} . Then

$$\begin{split} Z &= (|\lambda_1|^{p_1} + |\mu_1|^{p_1})^{1/p_1} \left(\frac{\lambda_1}{\left(|\lambda_1|^{p_1} + |\mu_1|^{p_1}\right)^{1/p_1}} \, x_1 + \frac{\mu_1}{\left(|\lambda_1|^{p_1} + |\mu_1|^{p_1}\right)^{1/p_1}} \, y_1 \right) + \dots \\ \dots &+ (|\lambda_n|^{p_n} + |\mu_n|^{p_n})^{1/p_n} \left(\frac{\lambda_n}{\left(|\lambda_n|^{p_n} + |\mu_n|^{p_n}\right)^{1/p_n}} \, x_n + \frac{\mu_n}{\left(|\lambda_n|^{p_n} + |\mu_n|^{p_n}\right)^{1/p_n}} \, y_n \right). \end{split}$$
 Since
$$\left\| \frac{\lambda_j x_j + \mu_j y_j}{\left(|\lambda_j|^{p_j} + |\mu_j|^{p_j}\right)^{1/p_j}} \right\|_{\infty} \leqslant 1,$$

we need only show that

$$((|\lambda_1|^{p_1}+|\mu_1|^{p_1})^{1/p_1},\ldots,(|\lambda_n|^{p_n}+|\mu_n|^{p_n})^{1/p_n},0,\ldots)$$

is in A_M . To see this, let z_k be in S_{p_k} . Then

$$\begin{split} &(\left|\lambda_{1}\right|^{p_{1}}+\left|\mu_{1}\right|^{p_{1}})^{1/p_{1}}z_{1}+\ldots+\left(\left|\lambda_{n}\right|^{p_{n}}+\left|\mu_{n}\right|^{p_{n}}\right)^{1/p_{n}}z_{n}\\ &=\left(\left|\lambda_{1}\right|+\left|\mu_{1}\right|\right)\frac{\left(\left|\lambda_{1}\right|^{p_{1}}+\left|\mu_{1}\right|^{p_{1}}\right)^{1/p_{1}}}{\left|\lambda_{1}\right|+\left|\mu_{1}\right|}z_{1}+\ldots+\left(\left|\lambda_{n}\right|+\left|\mu_{n}\right|\right)\frac{\left(\left|\lambda_{n}\right|^{p_{n}}+\left|\mu_{n}\right|^{p_{n}}\right)^{1/p_{n}}}{\left|\lambda_{n}\right|+\left|\mu_{n}\right|}z_{n}\\ &\in KG+KG\subset M. \end{split}$$

From the above considerations we see that the collection $\{\hat{N}\colon N\in\mathscr{B}\}$ is a local base at zero for a linear topology which is stronger than the q-topology. Since the injections, i_n , are continuous in this topology, the topology must equal the q-topology.

PROPOSITION 8. If (p_n) is a sequence of positive numbers increasing to one, then the collection of all sets $\{\sum \lambda_i x_i \colon \sum |\lambda_i|^{q_i} \leqslant 1, (\lambda_i) \in \Phi, \text{ and } x_i \in \alpha_i S_{p_i}\}$, where (α_i) and (q_i) are in Q_{p_1} form a local base at zero for a linear topology in $\bigcup l_p$. This topology also has a local base at zero given by the collection of all sets $\{\sum_{i=1}^n x_i \colon x_i \in \alpha_i S_{p_i}, \text{ n is a natural number}\}$, where (α_i) is an Q_{p_1} .

Proof. The set $N = \{\sum \lambda_i w_i \colon \sum |\lambda_i|^{q_i} \leqslant 1, \ (\lambda_i) \epsilon \ \emptyset, \ \text{and} \ w_i \epsilon \ S_{p_i} \}$ is clearly balanced and absorbing. Also if $G = \{\sum \lambda_i w_i \colon \sum |\lambda_i|^{q_i} \leqslant 1, \ (\lambda_i) \epsilon \ \emptyset, \ \text{and} \ w_i \epsilon \ \beta_i S_{p_i} \}$, where $q_i \leqslant p_1$, and $\beta_i \leqslant \alpha_i / 2^{1/q_i}$, then $G + G \subset N$. Hence the collection of sets $\{\sum \lambda_i w_i \colon \sum |\lambda_i|^{q_i} \leqslant 1, \ (\lambda_i) \epsilon \ \emptyset, \ \text{and} \ w_i \epsilon \ \alpha_i S_{p_i} \}$ forms a local base for a linear topology.

The collection of sets $\{\sum_{i=1}^{n} x_i \colon x_i \in a_i S_i\}$ obviously forms a local base for a linear topology which is weaker than the topology given above.

Given N as above, choose $(\gamma_i) \in Q_1$ such that $\sum_{i=1}^{\infty} (\gamma_i/a_i)^{1/qi} < 1$, and let $M = \{\sum_{i=1}^{n} x_i \colon x_i \in \gamma_i S_{p_i}\}$. Then $M \subset N$. Hence the two topologies agree.

THEOREM 9. The q-topology has each of the following as a local base at zero

- (i) $\{\sum \lambda_i x_i \colon \sum |\lambda_i|^{q_i} \leqslant 1$, $(\lambda_i) \in \Phi$, and $x_i \in \alpha_i S_{x_i}\}$, where $(\alpha_i) \in Q$ and $(q_n) \in Q$.
 - (ii) $\{\sum x_i: x_i \in \alpha_i S_{n_i}\}$, where (α_i) is in Q.
- (iii) $\{\sum \lambda_i x_i \colon \sum |\lambda_i|^{\widetilde{q}} \leqslant 1, (\lambda_i) \in \mathfrak{G}, \text{ and } x_i \in a_i S_{p_i}\}, \text{ where } (a_i) \text{ is in } Q \text{ and } q \text{ is any (fixed) number between 0 and } p_1.$

Proof. The collection of sets given in (iii) forms a local base at zero for a linear topology on $\bigcup l_p$ by a proof similar to the proof of the previous theorem. It is clear that the topologies generated by the sets in (i), (ii), and (iii) are the same. Since the injections i_n are continuous in these topologies, we need only show that they are stronger than the q-topology. By Theorem 7, $\{\hat{N}: N \in \mathscr{B}\}$ is a local base at zero for the q-topology. Let \hat{N} be in $\{N: N \in \mathscr{B}\}$. By Theorem 6, A_N is a τ -neighborhood of 0 in \mathscr{D} . By Theorem 5, there exist $(q_n) \in Q_{p_1}$ and ε , $0 < \varepsilon < 1$, such that $\{\lambda \in \mathscr{D}: \|\lambda\|_{(q_n)} \leqslant \varepsilon\} \subset A_N$. Hence

$$\begin{split} \hat{N} & = \left\{ \sum \lambda_{i} x_{i} \colon \sum \left| \lambda_{i} \right|^{q_{i}} \leqslant \varepsilon, \; (\lambda_{i}) \in \boldsymbol{\varPhi}, \; \text{and} \; \; x_{i} \in S_{p_{i}} \right\} \\ & = \left\{ \sum \lambda_{i} x_{i} \colon \; \sum \left| \lambda_{i} \right|^{q_{i}} \leqslant 1, \; (\lambda_{i}) \in \boldsymbol{\varPhi}, \; \text{and} \; \; x_{i} \in \varepsilon^{1/q_{i}} S_{p_{i}} \right\}. \end{split}$$

Remark. Sets of the form $\bigcup a_n S_{p_n}$, where $(a_n) \in Q$ cannot be q-neighborhoods of 0 since for any (a_n) and (β_n) in Q there exist an x and y in $\bigcup \beta_n S_{p_n}$ such that $x + y \notin \bigcup (a_n S_{p_n})$.

COROLLARY 10. There exists a local base, B, at zero for the q-topology on $\bigcup l_p$ such that for every N in B if $\sum_{1}^{m} a_k e_k$ is in N, $\pi(n)$ is a permutation of the natural numbers, and $|\eta_k| \leq 1$, then $\sum_{1}^{m} \eta_k a_k e_{\pi(k)}$ is in N.

Proof. Let B be the local base at zero given in (ii) of Theorem 9. Let $x=\sum\limits_{1}^{m}a_{k}e_{k}$ be in N and N in B. Then $x=\sum\limits_{1}^{n}x_{j}$, where x_{j} is in $a_{j}S_{p_{j}}$. We can assume that $x_{j}=\sum\limits_{k=1}^{n}X_{j_{k}}e_{k}$. Since x_{j} is in $a_{j}S_{p_{j}},\,y_{j}=\sum\limits_{k=1}^{m}\eta_{k}X_{j_{k}}e_{n(k)}$ is in $a_{j}S_{p_{j}}$. Hence $\sum\limits_{k=1}^{m}\eta_{k}a_{k}e_{n(k)}=\sum\limits_{j=1}^{n}y_{j}$ is in N.

Remark. Let (c_n) be any bounded sequence of numbers which is bounded away from zero, and let $\pi(n)$ be any permutation of the natural numbers. If T is the linear mapping of $\bigcup l_p$ onto itself such that $T(e_n) = c_n e_{\pi(n)}$, then T is a q-isomorphism. Moreover, if T_n is the linear mapping of $\bigcup l_p$ onto itself such that $T_n(e_n) = e_{\pi(n)}$, then the family $\{T_n \colon \pi \text{ a permutation permutation of } I_n \in T_n \cap T_n$

mutation of the natural numbers} is equi-continuous. These facts follow from Corollary 10, and they show the "symmetry" of the basis $\{e_n\}$ with respect to the q-topology.

THEOREM 11. Let B be a subset of $\bigcup l_p$ such that $P_nB \subset B$ for $n=1,2,3,\ldots$; then if B is q-closed, B is l_1 -closed (in $\bigcup l_p$).

Proof. Let x be any point in $\bigcup l_p$ which is in the l_1 -closure of B, and let N be any open q-neighborhood of x. Choose a sequence $\{y_n\}$ such that y_n is in B and converges to x in the l_1 -topology. By Theorem 1, $P_m x$ converges to x in the q-topology. Hence there exists an n_0 such that $P_{n_0} x$ is in N. Clearly, $P_{n_0} y_n$ converges to $P_{n_0} x$ in the q-topology. Hence $P_{n_0} y_n$ is eventually in N. Since $P_{n_0} y_n$ is also in P, this implies that P is in the P-closure of P and hence in P.

COROLLARY 12. The q-topology has a local base at zero whose members are l_1 -closed.

Proof. The q-closure of any of the sets given in (i), (ii), or (iii) of Theorem 9 satisfy the conditions of the previous theorem.

Remark. It is not necessarily true that the sets given in (i), (ii), or (iii) of Theorem 9 are closed. For example, if $\sum_{i=1}^{\infty} |a_i|^{p_1} < \infty$, then $x = (a_1, a_2, ...)$ is in the closure of $B = \{\sum_{i=1}^{n} x_i : x_i \in a_i S_{p_i}\}$ but x is not in B.

DEFINITION. The *r*-topology is defined to be the linear topology on $\bigcup l_p$ generated by the sets $\{x: \|x\|_{(r_n)} < \varepsilon\}$, where $\varepsilon > 0$, $\|x\|_{(r_n)} = \sum |x_n|^{r_n}$, and (r_n) is any sequence of numbers increasing to one.

Theorem 13. The set $\bigcup l_p$ equals the set $\bigcap \{l_{(r_n)}: (r_n) \in R\}$.

Proof. It is clear that the set $\bigcup l_p$ is contained in the set $\bigcap \{l_{(r_n)}: (r_n) \in R\}$. Conversely, if x is not in $\bigcup l_p$, choose a sequence (n_k) of positive integers such that $n_1 < n_2 < \ldots$ and $\|P_{n_k}(x) - P_{n_{k-1}}(x)\|_{p_k} \ge 1$, where $P_{n_0}(x) = 0$. If $(r_n) = (p_1, \ldots, p_1, p_2, \ldots, p_2, p_3, \ldots)$, where p_k appears $n_k - n_{k-1}$ times, then x is not in $l_{(r_n)}$.

THEOREM 14. The space $\bigcup l_p$ is complete for the q-topology.

Proof. To see the space is complete for the q-topology, let $\{y_d: d \in D\}$ be a q-Cauchy net in $\bigcup l_p$. Since the net is q-Cauchy, it is r-Cauchy, and hence r-converges to some point y in $\bigcup l_p$ (cf. [1]). Since $\lim y_d = y$ in the r-topology, $\lim y_d = y$ in the l_1 -topology.

By Corollary 12, the q-topology has a local base consisting of l_1 -closed sets, and this implies that $\lim y_d = y$ in the q-topology.

THEOREM 15. The q-topology is not locally convex.

Proof. The topology is strictly stronger than the l_1 -topology. Furthermore, it is weaker than the l_p -topology on each l_p , 0 . Hence any locally convex topology weaker than the <math>q-topology must be weaker than the l_1 -topology. This implies that the topology is not locally convex.

PROPOSITION 16. Suppose $\{x_n\}$ is a sequence which is l_p -bounded in l_p for some $p, 0 . If <math>1 \ge q > p$ and if $\lim_{n \to \infty} ||x_n||_{\infty} = 0$, then $\lim_{n \to \infty} ||x_n||_q = 0$.

Proof. Suppose that the result is not true. Then there are positive numbers A and B and a subsequence $\{y_n\}$ of $\{x_n\}$ such that A>B, $\|y_n\|_p < A$ and $B<\|y_n\|_q$. By applying the mean value theorem to $f(s)=t^s$ for $0< t \le 1$, we find that $\sum\limits_{k=1}^\infty |z_k|^p - \sum\limits_{k=1}^\infty |z_k|^q \geqslant \sum\limits_{k=1}^\infty (p-q) \ln{(\|z\|_\infty)} |z_k|^q$ for every sequence of scalars $z=(z_k)$ such that $\|z\|_\infty \le 1$. If we replace (z_k) by $\{y_n\}$ in this last inequality, we obtain $(p-q)\ln{(\|y_n\|_\infty)} \|y_n\|_q \le \|y_n\|_p - \|y_n\|_q$. Hence $A-B\geqslant (p-q)\ln{(\|y_n\|_\infty)}B$ holds for $n=1,2,\ldots$ Since im $\|y_n\|_\infty=0$, this is impossible.

COROLLARY 17. If $0 and <math>0 < \|x\|_{\infty} < 1$, then $(p-q)\|x\|_q \ln{(\|x\|_{\infty})} \le \|x\|_p - \|x\|_q$.

Proof. The proof follows immediately from the proof of the preceding proposition.

THEOREM 18. A sequence $\{x_n\}$ in $\bigcup l_p$ converges in the q-topology if and only if there exists a p, $0 , such that <math>\{x_n\} \subset l_p$ and $\{x_n\}$ converges in the l_v -topology.

Proof. We first prove that an r-convergent sequence l_p -converges in some l_p . In so doing, we can assume that the sequence $\{x_n\}$ r-converges to zero. First of all $\{x_n\}$ must be l_p -bounded in some l_p , $0 , for otherwise one can find a subsequence <math>\{x_{n_k}\}$ and a strictly increasing sequence $\{m_k\}$ of non-negative integers such that $\|(P_{m_k} - P_{m_{k-1}+1})x_{n_k}\|_{p_k} \geqslant k$, and this contradicts the fact that $\{x_n\}$ r-converges to zero. Since $\{x_n\}$ r-converges to zero, $\{x_n\}$ converges to zero in the l_∞ -topology. Thus, by Proposition 16, $\{x_n\}$ converges to zero in any l_q when q > p. This completes the proof for the r-topology.

If a sequence converges in the q-topology, then the sequence must converge in the r-topology. Hence it must converge in some l_p , 0 .

Corollary 19. A set B is q-bounded if and only if there exists a p, $0 , such that B is contained in <math>l_p$ and B is bounded in the l_p -topology.

Proof. This corollary follows from the preceding theorem and the fact that a set B is bounded in a linear topological space if and only if for every sequence $\{b_n\}$ contained in B and every sequence (a_n) of scalars, $\lim a_n b_n = 0$.

THEGOREM 20. Let B be a subset of $\bigcup l_p$. Then B is q-totally bounded if and only if B is l_p -totally bounded in some l_p , 0 .

Proof. Since B is totally bounded, B is bounded. Hence by Theorem 18 B is contained in l_{p_0} for some p_0 , $0 < p_0 < 1$. We will show that B is l_p -totally bounded for every p, $p_0 . If B is not totally bounded$

in l_p , then by [4] there exist a sequence $\{x_n\}$ in l_p , an $\varepsilon>0$, and a strictly increasing sequence (N_k) of positive integers such that $\sum_{k=N_n}^{\infty}|x_{n,k}|^p\geqslant \varepsilon$, where $x_n=(x_{n,1},x_{n,2},\ldots)$. Since B is totally bounded, B is totally bounded in l_1 . Hence $\lim_{n\to\infty}\sum_{k=N_n}^{\infty}|x_{n,k}|=0$. Proposition 16 then implies that $\lim_{n\to\infty}\sum_{k=N_n}^{\infty}|x_{n,k}|^p=0$, and this is a contradiction.

THEOREM 21. Let B be a subset of $\bigcup l_p$. Then B is q-compact if and only if B is l_p -compact in some l_p , 0 .

Proof. Since B is compact, B is totally bounded. Thus Theorem 20 implies that B is totally bounded in some l_p , 0 . Since <math>B is closed, B is closed in l_p . Hence B is l_p -compact.

THEOREM 22. Any subset of $\bigcup l_p$ is separable in the q-topology.

Proof. Let X be any subset of $\bigcup l_p$, and let $X_n = X \cap l_{p_n}$. Select an l_{p_n} -dense countable subset, Y_n , of X_n . Then $Y = \bigcup Y_n$ is a countable dense subset of X.

Remark. It is not necessarily true that a subset of a separable linear topological space is separable — even when the subset is a closed subspace. An example of such a space is given in [3].

THEOREM 23. Let X be an infinite-dimensional subspace of $\bigcup l_p$ which is closed in the q-topology. If (p_k) is in R, there exists a sequence $\{x_k\}$ such that x_k is in $(l_{p_k} \cap X) \setminus l_{p_{k-1}}$.

Proof. Suppose the theorem is not true. Then there exists a p, 0 , such that <math>X lies entirely in l_p . Since the l_p -topology is stronger than the q-topology, X is l_p -closed. Also X is l_q -closed in l_q for any q, $p < q \le 1$ for the same reason. The identity mapping of X onto itself is l_p -to- l_q continuous, and therefore the identity mapping of X onto itself is an l_p -to- l_q isomorphism by the open mapping theorem. But l_p and l_q contain no infinite-dimensional isomorphic subspaces (cf. [5]).

LEMMA 24. Let $\{x_1,\ldots,x_m\}$ be linearly independent elements of l_p and let $\{y_1,\ldots,y_n\}$ be linearly independent elements of $l_q \setminus l_p$, where $0 . Assume that <math>(\operatorname{span}\{y_1,\ldots,y_n\}) \cap l_p = \{0\}$. Then given any $\varepsilon > 0$ there exists a positive integer k such that $\|P_k(\lambda_1 x_1 + \ldots + \lambda_m x_m + \mu_1 y_1 + \ldots + \mu_n y_n)\|_p < 1$ implies that $|\mu_i| < \varepsilon$ for $i = 1,\ldots,n$.

Proof. Suppose the statement is not true. Then there exist an $\varepsilon > 0$ and sequences $\{\lambda_{i_k}\}_{k=1}^{\kappa}$, $i=1,\ldots,m$, and $\{\mu_{j_k}\}_{k=1}^{\kappa}$, $j=1,\ldots,n$, such that $\max(|\mu_{1_k}|,\ldots,|\mu_{n_k}|) \geqslant \varepsilon$ and $\|P_k(\lambda_{1_k}x+\ldots+\lambda_{m_k}x_m+\mu_{1_k}y_1+\ldots+\mu_{n_k}y_n)\|_p < 1$. By dividing by suitable constants if necessary, we may assume that $\varepsilon = \max(|\mu_{l_k}|,\ldots,|\mu_{n_k}|)$, and by selecting subsequences if necessary, we may assume that $\lim_{k\to\infty} \mu_{i_k} = \mu_i$ for $i=1,\ldots,n$ and $\varepsilon = \max(|\mu_{l_1}|,\ldots,|\mu_{n_l}|)$.

Case 1. The sequence $\{(\lambda_{1_k}, \ldots, \lambda_{n_k})\}_{k=1}^{\infty}$ is bounded (in l_n^{∞}).

Since the y_j 's are linearly independent, $\varepsilon = \max(|\mu_1|, \ldots, |\mu_n|)$, and (span $\{y_1, \ldots, y_n\}) \cap l_p = \{0\}$, it follows that $\lim_{k \to \infty} ||P_k(\mu_1 y_1 + \ldots + \mu_n y_n)||_p$

 $=\infty$. Hence there exists a positive integer k such that

$$||P_k(\lambda_{1_k}x_1+\ldots+\lambda_{m_k}x_m+\mu_{1_k}y_1+\ldots+\mu_{n_k}y_n)||_p>1.$$

Case 2. The sequence $\{(\lambda_{1_k},\ldots,\lambda_{n_k})\}_{k=1}^\infty$ is unbounded (in l_n^∞). Fix k_0 such that the vectors $P_{k_0}x_1,\ldots,P_{k_0}x_m$ are linearly independent. Then $\{\|P_{k_0}(\lambda_{1_k}x_1+\ldots+\lambda_{m_k}x_m)\|_b\}_{k=1}^\infty$ is unbounded. Since $\max(|\mu_{1_k}|,\ldots,|\mu_{1_n}|)=\varepsilon$ it follows that there exists an integer $k\geqslant k_0$ such that

$$\begin{split} \|P_k(\lambda_{1_k} x_1 + \ldots + \lambda_{m_k} x_m + \mu_{1_k} y_1 + \ldots + \mu_{n_k} y_n)\|_p \\ &> \|P_{k_0}(\lambda_{1_k} + \ldots + \lambda_{m_k} x_m + \mu_{1_k} y_1 + \ldots + \mu_{n_k} y_n)\|_p \\ &> 1. \end{split}$$

THEOREM 25. If X is an infinite-dimensional subspace of $\bigcup l_p$ and if $X \cap l_{p_k}$ is finite dimensional for every k (or equivalently, $X \cap l_p$ is finite dimensional for each p, $0), then X is r-isomorphic to <math>\Phi$.

Proof. Choose p_0 in the interval (0, 1) and let $\{x_1, x_2, \ldots, x_{k_1}\}$ be a basis for $X \cap l_{p_0}$. By induction choose (p_n) in R such that $\dim(X \cap l_{p_n}) > \dim(X \cap l_{p_{n-1}})$, choose a strictly increasing sequence (k_n) of positive integers and choose a sequence of vectors $\{x_j\}_{j=k_1+1}^{\infty}$ such that the set $\{x_1, \ldots, x_{k_n}\}$ forms a basis for $X \cap l_{p_n}$.

Define a linear map T from the span of $\{x_n\}$ onto Φ by letting $T(x_n) = e_n$ and then extending by linearity. Since T is one-to-one and onto Φ , and since T^{-1} is continuous, we need only show that T is continuous. To show this, let N be any balanced convex neighborhood of 0 in Φ . Choose a sequence (a_n) such that $a_n > 0$ and $a_n e_n \epsilon N$, and let $\beta_n = \frac{1}{2n} a_n$. We will construct a sequence (r_n) in R and find a $\delta > 0$ such that if $x = \sum_{j=1}^{\infty} \lambda_j x_j$ and $||x||_{(r_n)} < \delta_n$, then $|\lambda_j| < \beta_j$ for $j = 1, \ldots, n$. This will show that T is continuous.

There exist a positive integer n_1 and a positive number ε such that $\|P_{n_1}(\lambda_1 x_1 + \ldots + \lambda_{k_1} x_{k_1})\|_{p_0} < \varepsilon$ implies $|\lambda_i| \le \beta_i$, $i = 1, \ldots, k$. There exists a sequence $(\gamma_{1i})_{i=k_1+1}^{\infty}$ of positive numbers such that $|\lambda_i| < \gamma_{1j}$ implies

$$\|P_{n_1}(\lambda_{k_1+1}x_{k_1+1}+\lambda_{k_1+2}x_{k_1+2}+\ldots)\|_{p_0}<\frac{\varepsilon}{2}$$

By Lemma 14 we can select a positive integer $n_2>n_1$ such that $\|(P_{n_2}-P_{n_1})(\lambda_1x_1+\ldots+\lambda_{k_2}x_{k_2})\|_{p_1}<1$ implies $|\lambda_j|<\beta_j,\ \gamma_{1j}$ for $j=k_1+1,\ldots$ \ldots,k_2 . There exists a sequence $(\gamma_{2i})_{i=k_2+1}^\infty$ of positive numbers such that $|\lambda_i|<\gamma_{2i}$ implies $\|(P_{n_2}-P_{n_1})(\lambda_{k_2+1}x_{k_2+1}+\lambda_{k_2+2}x_{k_2+2}+\ldots)\|_{p_1}<\frac12$. By Lem-

ma 24 we can select a positive integer $n_3 > n_2$ such that

$$\|(P_{n_3}-P_{n_2})\,(\lambda_1x_1+\ldots+\lambda_{k_3}x_{k_3})\|_{p_2}<1\ \text{implies}\ |\lambda_j|<\beta_j,\ \gamma_{1j},\ \gamma_{2j}$$

for $j=k_2+1,\ldots,k_3$. There exists a sequence $(\gamma_{3i})_{i=k_3+1}^{\infty}$ of positive numbers such that $|\lambda_i|<\gamma_{3i}$ implies $\|(P_{n_3}-P_{n_2})(\lambda_{k_3+1}x_{k_3+1}+\lambda_{k_3+2}\lambda_{k_3+2}+\ldots)\|_{p_2}<\frac{1}{2}$. Continue this process inductively and obtain sequences $(n_k)_{k=1}^{\infty}$ and $(\gamma_{ij})_{j=k_i+1}^{\infty},\ i=1,2,\ldots$ Choose a sequence (r_n) in R such that $r_n=p_{k-1}$ for $n_{k-1}< n< n_k$ $(n_0=0),\ k=1,2,\ldots$, and let $\delta=\min(\frac{1}{2},\frac{1}{2}\varepsilon)$.

To complete the proof, suppose that $x = \sum_{j=1}^{k_m} \lambda_j x_j$ and $||x||_{(r_n)} < \delta$. By the choice of (r_n) , we have

$$\|P_{n_1}x\|_{p_0} + \|(P_{n_2}-P_{n_1})x\|_{p_1} + \ldots + \|(P_{n_m}-P_{n_{m-1}})x\|_{p_{m-1}} < \delta;$$

hence $\|(P_{n_j}-P_{n_{j-1}})x\|_{p_{j-1}}<\frac{1}{2}$ for $j=2,\ldots,m$, and $\|P_{n_1}x\|_{p_0}<\frac{1}{2}\varepsilon$. It follows from the above that $|\lambda_j|\leqslant \beta_j$ for $j=1,2,\ldots,k_m$.

THEOREM 26. Let X be an infinite-dimensional subspace of $\bigcup l_p$ which is closed in the q-topology. Then X contains a subspace which is isomorphic to Φ .

Proof. By Theorem 23 there exists a sequence $\{x_k\}$ in X such that $x_k \in l_{p_k} \setminus l_{p_{k-1}}$. Let Y be the subspace spanned by $\{x_k\}$. Since $\dim(Y \cap l_{p_k}) = k$, Theorem 25 implies that Y is r-isomorphic to Φ . Since the q-topology, stronger than the r-topology, Y, is q-isomorphic to Φ also.

THEOREM 27. $\bigcup l_p$ contains no infinite-dimensional metrizable subspaces in the q-topology.

Proof. Suppose X is a metrizable subspace of $\bigcup l_x$. Then, Y, the closure of X, is also metrizable. By Theorem 26, Y contains a copy of Φ . Since Φ is not metrizable, this is contradiction.

References

- J. Horvath, Topological vectors spaces and distributions, Addison Wesley Pub. Co., Reading, Mass., 1966.
- [2] J. Kelley and I. Namioka and co-authors, Linear topological spaces, D. Van Nostrand Co. Inc., Princeton, N. J., 1963.
- [3] R. Lohman and W. Stiles, On separability in linear topological spaces, Proc. Amer. Math. Soc. 42(1974), pp. 236-237.
- [4] D. Rolewicz and S. Rolewicz, Equations in linear spaces, Monografic Mutematyczne 47, Warszawa 1968.
- [5] W. Stiles, On properties of subspaces of l_p , 0 , Trans. Amer. Math. Soc. 149 (1970), pp. 405-415.