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to a subspace of I, and Y is isomorphic to a subspace of 1,. Moreover,
we can assume that X nl, = {0} and ¥ nl, = {0}. One can easily prove
(cf. [6] and [13]) that Plp[X and qu] Y are isomorphisms. Let Py (resp. Py)
denote the projection from E® onto X (resp. ¥) annihilating ¥ (resp. X).
Then o;u; = Plp(zi) =P,p Px(zi)—l—PlpP]}(zi). Since P, Py is a compact
operator, HPZJ,PY(%')”*O and so |]sz,Px(zi)“’">0; which implies [P (2;)-0.
But this contradicts Remark 4.5. .

The spaces @ for p = 2 and 2 < ¢ were studied by H. P. Rosenthal
in [14]. In thig case the results of this remark can be derived from the
theory of .Z,-spaces.
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On the inductive limit of (JI,, 0 <p<1
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§, A SCHONEFELD and W.J. STILE S (Tallahassee, Fla.)

Abstract. For cach p, 0 < p < 1, let I bo the linear space of all scalar sequences:

%= () guch that [[@llp = 3|a? < co. Wo define the g-topology on (_Ji, to bethe

girongest linear topology on (_JI, sueh that each injection ip: ly—|_JI, is continuous..
This paper contains results about (_JIy with the g-topology.

0. Imtroduction. For each p, 0 <p <1, let I, be the linear space:
of all sealar sequences @ = (#,) such that |z], = ) |#,|” < co. We define:
the g-topology on (I, to be the strongest linear topology on (JI,, such
that each injection ¢,: l,—\J1, is confinuous.

. To investigate the properties of this topology, we will find it usefnl
10 use the following notation. The set R is the set of all sequences of positive:
numbers increasing to one and R,, 0 <p < 1, is the set of all sequences
(a,) in R such that p < a,. The set @ is the set of all sequences of positive:
numbers less than one decreasing to zero, and @, is the set of all sequences
of positive numbers (a,) in @ such that e, < p. The space [, ) is the set
of all scalar sequences & = (z,) such that |@l,, = Z[mn\”’< oo, The-
vector ¢, is the vector (0,...,0,1,0,...), where the non-zero entry is
in nth position. The projection P, is the mapping which maps (@, @,, ...).
onto (@y, By, ---, By, 0,...). The set S, is the set {wel,: lwl, <1}. The
symbol card (4) represents the cardinality of the set .4, and supp(x) is
the support of the vector @ = (o, #4, ...), i.e., the set of all integers n
guch that a, 0. The space @ is the linear space of all scalar sequences
with at most finitely many non-zero entries, and v is the strongest linear
topology on &. A Dblock bﬁm‘ie sequence {z,} is & sequence of non-zero.

i
vectors of the forme, == 3 a,6;, where {n,} is a strictly increasing se-
fman g q 1 :
quence of non-negative int(-/acgclnlﬁ. A space hag a block basis if it has a
Schaudey basis consisting of a block basic sequence. The symbol (1,
denotes the space | 1,, and [#,], indicates the g-closed linear subspace.
H<p<l
of (U1, generated by the set {z,}. Finally, co?{4} is the g-convex ba-
lanced hull of the set 4, i.e., the set of all vectors of the form X oaay,

ieml
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where a; is in A and the scalars a; satisfy 3 |e;/?< 1, and a balanced
d=1

set B is g-convex if and only if co?{B} =B

We show that {e,} is a “symmetric” Schauder basis for (JI,, and
that |1, is a complete separable non-locally convex linear topological
space with the g-topology. We also show the following: A sequence con-
verges in (1, if and only if the sequence is contained in and converges
in some 1,; a set is compact in {1, if and only if the set is contained in
-and compact in some I,; no closed infinite-dimensional subspace of (7,
is contained in any 1,; ea,eh closed infinite-dimensional subspace of ()1,
containg an isomorphic copy of @; and no infinite-dimensional subspace
of (J1, is metrizable.

* 1. Main results.

THEOREM 1. {¢;} forms o Schauder basis for | J1, with the g-topology.
Proof. Supposew = (@, Doy -..) I In (J1p; t_hen o is in I, for some

pe(0,1). Since 2 7,65, convelges to # in 1,, and the l,-topology is weaker

‘than the q—topology on 1, 2 %6, converges to @ in the g-topology. Since

‘the g-topology is stronger than the I,-topology, the representation is
unique and the coefficient functionals are continuous.
LeMMA 2. Let A and B be balanced g-convew sels; then
c0?(AUB) = {Aw+py: A2+ u’<<1, zcd, ye B}.
Proof. Let 2 = 412y +... + 4@ + oy Yy +- .. + 1, Y, be an element of
00%(AUB), where o, is in 4, y; is in B and Y |4+ |w,l?< 1. Let

=(Y14/9" and p

A
= (X lm9)"e. Then z = Aw+puy, where —)—1—001—!—.7.
o+, is in 4, y
e

= ﬂiyl-}—...—i——%’ijn is in B, and |7+ <1
M.

Remark. Lemma 2 generalizes easily to the case when there are
finitely many sefs. This fact will be useful.

THEOREM 3. In |1, the g-topology restricted to each 1, 48 strictly weaker
than the 1,-topology.

Proof. Let N be a g¢-neighborhood of zero. Choose p’ such that
» <p' < 1. Then there exists a > 0 such that oS, = N. Since (aS,)Nl,
is not contained in any multiple of 8, N restricted to I, is not contained
in any multiple of the S,.

The following theorem will show that, in order to define the g-topology,
it suffices to choose any sequence (p,) in B and define the topology on
{1, to be the strongest linear tiopology for which each injection 4y, by U by
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oo

=Jl, 1\ continuous. This fact will prove useful in our later development,
=1

and we will use it frequently without any discussion.
THREOREM 4. Let (p) be any sequence of positive numbers inereasing

to one. Then the q-lopology 4s the sirongest vector topology on U1, which is

wealker than the l,, -topology on ecach lﬂr

Proof. Let 7 denote the strongest linear topology on U1, such tha.t
each injection from Iy, is continuous. Since each injection lrom 1,
contintows in the g-topology, the g¢-topology is weaker than . Also,
it 0 <p <1, there exists p;, such that p < p, < 1. Since the ly,-topology
on 1, is weaker than the l,,—topology on 1, the injection from l mugt be
T -con‘mmwu,\ Hence 7 is weaker than the g- topology.

TamoxnM 5. The Uinear topology on & generaled by the collection of
paranorms, {|l ly): (2,)€@}, is the strongest linear topology, ©

Proof. Let 7 be the linear topology generated by the collection
{ll ligyy: (44) €@} Clearly, " < . The topology  is known to be locally
conve\: (ef. [2]). Let N be a convex balanced z-neighborhood of 0. Choose

0, < 1 such that ,e,¢ N. For some s, 0 < ¢ < 1, choose (g,) in Q

such that 2 /l ~< 1. Then [Allig,) << & implies 2 is in N. Hence 7 = 7.

Proes Y
Trmowwy 6. Let N be a g-neighborhood of 0 in (1,
quence of positive nuwmbers increasing to one, and let

Ay ={4 = (A, oy Ay 0, .. )e B: M@y 4.+ Appe N for every e S,,k}
Then Ay is a neighborhood of 0 in ®.
Proof. Consider the collection & = {4,: N a balanced ¢-neighbor-"

hood of 0}. If Ayes?, then 4y is balanced because N is balanced. Also
Ay+Ay = Ay i M+McN. Let A = (b, /15, ey Py 0,00 be any

element in @. If ¢ iy a scalar, then tle»S’ = tz 4;8,,. Thus tz 238,
is contained in N for all sufficiently small t. Cths 11111:11@&. that A n i ab-
sorbing.

Ience o in a local base at zero for a linear topology (cf. e.g. [1]).
Thus A, is a v-neighborhood of 0.

Trworum 7. Let N and Ay be as above and let N = {Aay 4o+ 2,0,
leAN and wye S, ). Then {N Ne 8}, where % s a loeal base for the g-topology,
W8 @ local base for the g-topology in U

Proof. Olearly, N < N. Alsoif iilis in {N N ¢ 48}, then ir s a.bsoxl)mg
and also M is balanced because SQ,,G is balanced. I‘ur‘rhermore, it I is
in {¥: Ne #) we will coiwtruct a G in {¥: Ne &} such that G+& = M.
There exists % > 0 such that 6 (1417 +1ul e K (|Al+ |ul) for all 4=,

, let (py) be a se-

¢ — Studia Maihematica L VIS8
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and for all 1 and u. Choose @ in & such that K@ +KG < M. Let Z be in
G +G-. Then there exists A =(1y, ..., A, 0,:..) 80 gt = (f1g, -+ +, ftn, 0, ...)
in Agsuch that Z = (A8, ... + 4, 8,) + (83Y1 +. .. + 1Y), Where 2; and y;

are in S, . Then
n Y 123
7 1 1
Z = (12" + ™) 1( @y -+ ; v yl)+...
' ' (Pal™ + L™ (2™ ™
g }'7 :”'n
+ }' lﬁ7l+ ’Ilpn)ln“ (——J_—.J—_‘»—‘— N 1), B / )
(a7 b U%WFMfWM'L(mWWIVMM””
Since
[ A%y
) D, = ?
U+ ™)™ |,

we need only show that

OB 1l™™ L T P 0, )

is in A, To see this, let 2, be in 8- Then

Al g P oy e (7 ) P,

o
= (1A LA LN e LY
(1] + ) =B

«e KG+KG < M.

From the above considerations we see that the collection {N NeB}
is a local base at zero for a linear topology which is stronger than the
g-topology. Since the injections, 4,, are continuous in thig topology, the
topology must equal the g-topology.

ProrosiTioN 8. If (p,) s a sequence of positive numbers inereasing
to one, then the colletion of all sets {3 A;m;: 3[4, < 1, ()¢ D, and w; e o;8n.},
where (a;) ond (g;) are in Qp, form a local base at zero for a lmam topology
in Jl, Thw topology also has a local base at zero given by tlm collection

of all sets {Z% Gre a8y, nis @ natural number), where (a;) is an Qe

Proof, The set: N = {Jhum;: J%<1, (4)ed, and w,eb,,} is
clearly balanced and absorbing. Also if ¢ = { 34,2, 3'4,% < 1, /'li)e b,
and ;e /S‘iAS’pi}, where ¢; < p,, and ﬂlé a;[2 1”’ then G--@ < N. Henoe
the collection of sets {3Az: X14,1%<1, (4 )e @, and w;¢ 0;8,,} forms
a local base for a linear topology.

(14" | gty [Py
-8 Ay lgl) =T
L+ (| Wnl) Mn|+wn|

The collection of sets {2/ Tyt Bye S} obviously forms a local base

for a linear topology Whlch 1% weaker than the topolog y given above.

icm
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Given N as above, choose (y;)eQ; such that V(y Ja)Mt < 1, and let
M = {Zw #;€9;8,,}. Then M = N. Hence the two topologies agree.

TrroreM 9. The g-topology has each of the Sfollowing as a local base
at zero
YA e YA <L, (A)e @, and ;e a8y}, where (a))<Q and
(gn) eQ , .
i) { S we 0y Sy} where (a;) is in Q.

(111 (Dms S0, (A)ed, and o o;8,,}, where (a)) is in @
and g is amy (fiwed) number between 0 and p,.

Proof. The collection of sets given in (iii) forms a loeal base at zero
for a linear topology on ()1, by a proof similar to the proof of the previous
theorem. It is clear that the topologies generated by the sets in (i), (ii),
and (iii) are the same. Since the injections 4, are continuous in these
topologies, we need only show’ that they are stronw(ﬂ than. the ¢- topo]og‘y
By Theorem 7, {N N« 28} is a local base at zero for the g-topology. Let by
be in {N: Ne .43} By Theorem 6, Ay is a v-neighborhood of 0 in ®. By
Theorem b, there exist (qn)eQpl and & 0 <e<1, such that {le &:
{]M|,,?) < ¢} « 4y. Hence *

N = {Yuw: %< s, (1) @, and 2 e 8}
S {Zhes <1, (e P, and o678, ).

Remark. Sets of the form | o, #Sp,s Where (a,)e@ cannot be g-neigh-
) and ﬂ,,) in @ thexe exist an 2 and ¥ in
Us.s. p, Such that @ -+y¢ | J(a,S,

OOROLLARY 10. There exists a local base, B, at zero for the g-topology
on \J1, such that for every N in B if g‘a,ﬂe,v z's wn N, m(n) is a permutation
of the natural numbers, and |n,| <1, lthm ) N1 O Caprey 18 1 IV,

P1001 Let B be the local base at 701l0 glven in (ii) of Theorem 9.

Lot o == za, ¢, be in NV amd Nin B. Then » == zwj, where Ih in a8,

We can aﬁﬂume that 12, le € Smco wy is m ajS],f, Yy = 31’710“*1/; ()
m fo

Iv in 8,,. Hence 2, Mol Gty = Z y; iy in V.
e Jmal

Remark. Let ( .,,,) be any bounded sequence of numbers which is
bounded away from zero, and let #(n) be any permutation of the natural
numbers. If 7' is the linear mapping of |1, onto itself such that T'(e,)
= €, 6qmy, then I'is a g-isomorphism. Moreover, if 7', is the linear mapping
of | I, onto itself such that T,(e,) = €ain), then the family {T.: = a per-
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mutation of the natural numbers} is equi-continuous. These facts follow
from Corollary 10, and they show the “svmmetn 7’ of the basis {e,} with
respect to the g-topology.

THEOREM 11. Let B be a subset of \_J 1, such that P, B < B for n = 1,2,

; then if B is g-closed, B is l-closed (in \J1,)
¢ Proof. Let «# be any point in (JI, which is in the {;-closuve of B,
and let IV be any open ¢-neighborhood of . Choose a sequence {y,} such
that y, is in B and converges to x in the I;-topology. By Theorem 1, P,w
converges'to 2 in the g-topology. Hence there exists an 2, such that P, o ®
is in N. Clea,lly,l’,‘oa/“ converges to P,Lom in the g-topology. Ilence P, vy,
is eventually in N. Since P,,[)a/,b is also in B, this implies that » is in 1he
g-closure of B and hence in B.

COROLLARY 12. The g-topology has & local base at zero whose members
are ly-closed.

Proot. The ¢-closure of any of the sets given in (i), (ii), or (iii) of
Theorem 9 satisfy the conditions of the previous theorem.

Remark. It is not necessarily true that the sets given in (i), (ii),

oQ
r (ili) of Theorem 9 are closed. For example, if Y|q;”" < oo, then =
1

. n
= (a;, Gy, ...) is in the closure of B = {)"wA: ;€ a;8,,} but @ is not in B.

DerinitioN. The #-topology is defmed to be the linear topolo gy on.
Ul genemted by the sets {&: [, < e}, where &> 0, ll2el ) = ]oonl ™
and (r,) is any sequence of numbels inecreagsing to one.

THROREM 13. The set | JI, equals the set ﬂ{l(,.n)

Proof. It is clear that the set (I, is contained in the set ﬂ{l(rn):
(ry) e B}. Conversely, if  is not in |_JI,, choose a sequence (n;,) of positive
integers such that n, < mn, < ... and 1Py, () — ~P,  (®)l, =1, where
Pnn(m) =0. If (r,) = (p1, s D1 Pay - oy P2y Ps,y ...), where p, appears
Ny — Ny Bimes, then 2 is not in Uy

THEOREM 14. The space \ 1, is complete for the g-topology.

Proof. To see the space iy complete for the g-topology, let {y,: de D}
be a ¢-Cauchy net in (JI,. Since the net is g-Cauchy, it is r-Caunehy, and,
hence r-converges to some point y in (JI, (¢f. [1]). Since limyg =y in
the r-topology, limy, =y in the I;-topology.

By Corollary 12, the g-topology has.a local base congisting of I;-closed
sets, and this implies that limy, =y in the g-topology.

TrroREM 15. The g-topology is mot locally conven. '

Proof. The topology is strictly stronger than the I-topology. Further-
more, it is weaker than the l,-topology on each 1,, 0 <p < 1. Hence
any locally convex topology Weaker than the g- Lopology must be weaker
than the I;-topology. This implies that the topology is not locally convex.

n)ER}'
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ProPOSITION 16. Suppose {x,
Sfor some p, 0 <P <<

) 18 @ sequence which is 1,-bounded in 1,
< 1. If1 = ¢ > p and if lim|lz,[l, = 0, then lim jiae,|l, = 0

. 00
Proof. Suppose that the result is not true. Then there are positive
numbers 4 and B and a subsequence {y,} of {z,} such that 4 > B, |ly,l, < 4
and B << yll,. By applying the mean value theorem to f(s) =1¢* for

0<t=<1, we find that )‘|~,[7’ \’|zk1“ Zp — @) In(|ll0) 217  for
ma |

every sequence of o alars ¢ = (%) huch that ||z[]°°\ < 1. If we replace (2;)
by {v,} in this last inequality, we obtain (p — @) In(Walle) Waly < Wally —
—plly- Hence A —Bz (p-—-g)n(ly,lo)B holds for n =1,2,... Since
imlly,lle = 0, this is impossible.

COROLLARY LT. If 0 < p < qand 0 <

< @l [@llg-

Proof. The proof follows immediately from the proof of the preceding'
proposition.

TumornM 18. 4 sequence {wx,} in {1, coawergos in the g-topology
if and only if there ewists a p, 0 < p < 1, such that {x,} = 1, and {x,} con-
verges n the L-topology.

Proof. We first prove that an r-convergent sequence l,-converges
in some 4,. In so doing, we can assume that the sequence {z,} r-converges.
to zero. First of all {o,} must be I,-bounded in some I, 0 < p <1, for
otherwise one can find a vubsequence {z, } and a strictly increasing se-
quence {my} of non-negative integers such that (P, —Pin, _1+1) By llpy, = Fo
and this contradicts the fact that {z,} »-converges to zero. Since {m,}
r-converges 0 zero, {®,} converges to zero in the I -topology. Thus, by
Proposition 16, {z,} converges to zero in any I, when g > p. This completes
the proof for ‘rhe r-topology.

If @ sequence converges in the g-topology, then the sequence must
converge in the r-topology. Hence it must converge in some 1,,; 0 <p < 1.

COROLLARY 19. A set B is g-bounded if and only f there ewists a p,
0 < p << 1, such that B s contained in 1, and B is bounded in the 1,-top-
ology. » :

Proof, This covollary follows from the preceding theorem and the
fact that a set I3 is bounded in a linear topological space if and only if
for every Hequmwe {b,} contained in B and every sequence (a,) of scalars,
lima, b, ==

TTIlu()RluM 20. Let B be o subset of \J1,. Then B is g-totally bounded
if and ouly if B is ly-totally bounded in some 1, 0 <p < 1.

Proof. Since B is totally bounded, B is bounded. Hence by Theorem
18 B is confained in , for some py, 0 < po < 1. We will show that B
is I,~totally bounded fm‘ every p, po < p < 1. If B is not totally bounded

I#lleo < 1, then (P ) llldn (lilles )
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in ,, then by [4] there exist a sequence {z,} in lpy an & > 0, and a strictly

increasing sequence (I,) of positive integers such that 3 |z, 7 > s,
fo=N,

where @, = (#,,;, ®,,, ...). Since B is totally bounded, B is tota;llzv bounded

inl,. Héncelim ) [, x| = 0. Proposition 16 then implies that lim 2 o
n—>oo k=N, N0 fee= N,
=0, and this is a contradiction.
THEOREM 21. Let B be a subset of Ul Then B is g-compact if and
only if B is 1,-compact in some I, 0<p<l.

Proof. Since B is compact, B is totally bounded. Thus Theorem 20
implies that B is totally bounded in some ly 0 < p < 1. Since B ix closed,
B is closed in 1,. Hence B is l,-compact.

?

TEEOREM 22. Any subset of U1, is separable in the g-topology.

Proof. Let X be any subset of Uy, and let X, = X Ny, Select
an I, -dense countable subset, ¥,,, of X, . Then ¥ = UY, is a countable
-dense subset of X, ‘

Remark. It is not necessarily true that a subset of a separable
linear topological space is separable — even when the subseb is a closed
subspace. An example of such a space is given in [3].

.. THEOREM 23. Let X be an infinite-dimensional subspace of (1, which
s closed in the g-topology. If (p,) is in R, there ewists a sequence {w,} such
that x;, is in (lmkan)\lﬂk_r

Proof. Suppose the theorem is not true. Then there exists a »,
0 <p < 1, such that X lies entirely in 1. Since the I,-topology is stronger
than the g¢-topology, X is lp-closed. Also X is I,-closed in l, for any g,
P <g<1 for the same reason. The identity mapping of X onto itself
is I,-50-1, continuous, and therefore the identity mapping of X onto itself
is an I,-to-1, isomorphism by the open mapping theorem. But i, and I,
-contain no infinite-dimensional isomorphic subspaces (cf. [3]).

Levua 24. Let {w,,...,,) be linearly independent elements of by
ond let {y,, ..., y,} be linearly independent elements of I,\l,, where 0 < p
< g¢< 1. Assume that (span{y,, ..., Ya})Nly = {0}. Then given any &> 0
there ewists a positive integer & such that 1P (Aa @y o A Ay~ iy Yy e o
st Yalllp < 1 implies that (u;| < & for 4 = 1...,mn.

Proof. Suppose the statement is not true. Then there oxist an
2> 0 and sequences {2}, ¢ =1,...,m, and {gSirs § =1, ..., m,
such that max (... luy)) > & and WPy(hy0 +... + dy @t iy Yo+
s Tl Ya)llp < 1. By dividing by suitable constants if necessary, we may
assume that ¢ = max (g, ..., ltny]); and by selecting subsequences if
necessary, -we may assume that lim Uy, =p; for i =1,..., n and ¢ =
AX( |5 - eey ). e
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Case 1. The sequence {(Ay, ..., 4,)}ie; is bounded (in Z7). '
Since the y,’s are linearly independent, ¢ = max(|z4, ..., [g,!), and

(span {Y1, ..., Yu}) Ny = {0}, it follows that }im”Pk(Mlyl Fooet ¥y

= oo . Hence there exists a positive integer % such that
”P/c(zlkml +... +2'mkwm +/"1ky1 +... ‘l“lunhynup >1.

Case 2. The sequence {(Ay,, ..., 4y, )} i unbounded (in 7). Fix k,
such that the veetors Py @y, ..., Py oy, arve linearly independent. Then
(1P, Ay 4o 4 Ay @)}y 18 unbounded. Since max (|}, ...y Ith,]) =&
it follows that there exists an integer % > k, such that

HPI:;M Ikml + }'mlnmm "l':“]kyl e +:umc:yn)”p
> HPkuulk +een +Amhmm +/“']ky1 +.. +Mn/cyn)”ﬁ
>1.

TuroreM 25. If X is an infinite-dimensional subspace of (1, and if
Xy, is finite dimensional for every k (or equivalently, .X N, i8 Ffinite
dimensional for each p, 0 < p < 1), then X is r-isomorphic to P.

Proof. Choose p, in the interval (0, 1) and let {:, s, ..., %, } be
a basis for Xnl, . By induetion choose (p,) in B such that d.il?}l(X r?l_pn)-
> dim (XN, ), choose a strictly increasing sequence (%,) of positive
integers and choose 2 sequence of vectors {z;}j2; ., such .that the set
{@y, ..., 3, } forms a basis for XN, . _ .

Define a linear map I'from the span of {w,} onto @ by letting T'(x,) = e,
and then extending by linearity. Since I' is one-to-one and onto @, and
since 7' is continuous, we need only show that 7' is continuous. To show
this, let N be any balanced convex neighborhood of 0 in @. Choose a se-

1
om
construct a sequence (7,) in B and find a 6 > 0 such that if =121 Ay

=

quence (a,) such that a, > 0 and a,e,¢ N, and let f, = a,. We will

and [lll,,) < d, then |4| < f; for j =1,...,n This will show that T
is continuous. ) ‘

There exist a positive integer #, and a positive number & such that
1Py, Aoy Ao s A Ay By My < & Tamiplies |2l < By, 4 =1,..., k. ’l‘hfere gxists
& soquence (yi)iuy,.. of positive numbers such that |4, < y; implies

&
H'l)’lbl(Z‘/x‘l'~|-lw/-:1-\-1 + ;°Ic1+2wkl.1-2 +.. ~>”1:0 < ’2"

By Lemma 14 we can select a positive integer m, > n, such that
NPy —Pr,) (a3 ..+ Ay i)l < L implies (4] < By, g for j = ky+1,...
<y by, There exists a sequence (yy)ini,,. of positive numbers such that.
2] < po; implies [(Pp, Py} (Aoy i1 ®Begpr + My 2 Tz +.)lp, < 4. By Lem-
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ma 24 we can select a p(}sitive integer ns > n, such that .
WPy =Pag) (Rar .. + A @)y, < L implies 4] < By, 75, 9

for j =ky,+1, ..., k. There exists a sequence (7s0)f%py 41 ©f DOSitive num-
bers such that |4;] < ys; impliey W(Pog = Pry) (Agey11 gz + Ategra ey n - llp,
<< 4. Continue this process inductively and obtain sequences (" and
{Vi)izrgens © = 1,2, ... Choose a sequence (r,) in B such that p, == Prer
Cformy_ < m < mg(ny =0), & o=1,2, ..., and lot & = min(}, }e).
i
To complete the proof, suppose that @ == > Ay and Hmll(,.n)< 4.
By the choice of (r,), we have T

”’Pn]wupo + H(-P‘ng ""Pnl)w”ﬂl "'I"- vt ”(—an . “-Pw,m,_l) '/I"”pm,~1 < 57

hence [(P, ~P,,_)al,_, <3} for j=2,...,m, and 1B, 2l < 4o Tt
follows from the above that |4, < g, for j = 1,2, ..., Ty -

TurRoREM 26. Let X be an infinite-dimensional subspace of UL, which
is closed in the g-topology. Then X contains o subspace which is wsomorphic
o @.

Proof. By Theorem 23 there exists a sequence {y} in X such that
@y, by, N\l . Let ¥ be the subspace spanned by {wy,}. Since dim (Y Nly,)
=k, Theorem 25 implies that ¥ is r-isomorphic to @. Since the g-topology,
stronger than the r-topology, Y, is g-isomorphic to @ also.

TrmOREM 27. \Jl, contains no infinite-dimensional melrizable sub-
spaces in the g-topology.

Proof. Suppose X is a metrizable subspace of U Then, ¥, the
closure of X, is also metrizable. By Theorem 26, ¥ contains a copy of @.
Since @ is not metrizable, this is contradiction.
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