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So by putting together [6], Theorem 1, p. 201 and Lemmag 2:1, 2.2
and 3.1, 3.2, we obtain

TamorEM. Let G be any compactly generated LOAG. Then INQ) admits
discontinuous tfranslation invariant linear functionals.

Remarks. (i) In order to extend this result to oll locally compact
abelian groups it would suffice to prove that 4 (LZ*(6)) is not closed for

all discrete groups; alternatively one might try to prove an ‘extension’
lemma: ‘

Let Gy be a compact open subgroup of w locally compact abelian group G.
Suppose that A(L'(Gy)) is not closed. Then also A(LN@) is not closed.

We would conjecture that the above is true, but so far have been
unable to prove it.

(ii) Tb is interesting to mote that in the dage of compact groups K
we have the following corollary:

There is a linear mapping T: T* (K)—L'(K) such that T (e, *f) = g, Tf
Vye K, fe IME) and T is not continuous.

Proof. Let a be any discontinuous translation invariant linear
functional, and let f, be the constant function fol9) =1 Vg. Then T:
LNE)->L'(K), given by f > a(f)-f, plainly commutes with translations
since g,%fy = f, Vg and is not continuous.

This is in contrast with the known fact that any linear map from
I'(R) into L'(R) which commutes with translations is continuous, viz. [5].
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Power factorization in Banach algebras with-a bounded
approximate identity

by
GRAHAM R. ALLAN (Leeds, T.K.) -
and ALLAN M. SINCLAIR (Edinburgh, U.K.)

Abstract. Let A be a Banach algebra with a bounded left approximate identity,
let X be a left Banach-4-module, let « be in the closure of 4-X, and let (a) be a se-
quence tending to infinity with a, > 1 for all n. Then there is an aAin 4 and a sequence
(¥n) In X such that o =-a"y, and |ly,|| < of|||| for all n, This is used to show thls;,:;
a radical Banach algebra A with bounded approximate identity cannot have [|o%||U%
tending to zero uniformly in the unit ball of 4. :

1. Introduction. In this paper we show that an element @ in & Ba,nfwh
algebra A with bounded left approximate identity may be factorized
as & = a"y, for some @, ¥, Y5, ... in A with some contro% of the growth
of the sequence of norms |ly,ll, |lysl, ... Like all factorization results.con-
cerning bounded approximate identities (see [2], [6]) the method is an
adaption of that of P. J. Cohen [3]. P. C. Curtis and H. Stetkaer [5] 1.1a1ve
shown that for each # in A and each positive integer » there are a, y in A
such that # = ¢"y. J. K. Miziotek, T. Miildner, and A. I.B:ek [?] ham.ve
proved that a radical Banach algebra with a bounded approximate identity
cannot satisty a condition that forces the growth of the products |lzyz, ...
... " uniformly to zero for certain sequences (,). We streng'bh.en
this result by showing that if 4 is a radical Banach algebra for which
there is a positive sequence (a,) converging to zero such that, for each o
in 4, liminf |z"(|/"/a,, is finite, then A does not have a bounded left approx-
imate identity. We obtain this from the factorization » = a"y,,. )

If A is 2 Banach algebra recall that A has a bounded left o_»p_p'rommate
identity [for a Banach-A4-module X] bounded by d 1f for each finite subset
{%yy ..., w,} of A [0of X] and ¢> 0, there is an ¢ in 4 sx}c!l.tha,!: [lell <_d
and |lw; — exyfl < & for § =1, 2, ..., n. This form of the defm%tmn is equiv-
alent to the usual form that there is a met {e(4): Ae I} in A bpunded
by d such that # = lime(A) for all # in A. The former deﬁm‘tmn is more
convenient for our applications as it simplifies the notation slighfly.
For a discussion of bounded approximate identities and kmown results
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see E. Hewitt and K. A. Ross [6], §32, or F. F. Bonsall and J. Duncan [2],
§11. A left Banach-A-module X is a Banach space X that is a left A-module
and for which there is a constant K such that |az| < K |la|- |lz| for all a
in 4 and z in X. We work with left structures throughout and the results
for right Banach-4-modules and bounded approximate right identities
may be obtained from these by considering the reversed product on the
algebra and module ([2], p. 6).

Our main result is the following theorem.

TusorEM 1. Let A be a Banachk algebra with a bounded left approvimate
identity bounded by d, and let X be a left Banach-A-module. Let (a,) be
o sequence of real numbers such that a, > 1 for all n and o, ag n-—>»o0,
let 6> 0, and let N be a positive integer. If @ is in the closed linear span
of the set A-X = {bs: bed, zeX}, then there is an & in A and Yy, Y, ...
in X such that ‘

(i) z.=dy; for j =1,2,...,

() el <4, ‘

(iii) y;e(4d-2)” for j =1,2,...,

(iv) lw—yull< 6 for b =1,..., N, and

V) Iyl < ddllell for j =1,2,...

In Section 2 we prove this result (except for (iv)) for a commutative
Banach algebra assuming that the factorization az = y holds for all
Banach-4-modules. This proof does not extend to the non-commitative
case. In Section 3 we prove Theorem 1 in full, and in Section 4 give an
application and an example to show that the growth condition (v) is
essentially best possible.

2. Proof of the commutative case. Tt is known that C*-algebras [1]
and group algebras L'(@) of a locally compact group & [7] have bounded
left approximate identities that are commutative. The following proof
will apply to such an algebra B, say, by regarding B as a module over
the closed (commutative) subalgebra 4 generated by a commutative
bounded left approximate identity of B. We assume the factorization
theorem in the form due to M. A. Rieffel [11] (see [2], [6]) and state
it as Lemma 1. :

LevMA 1. Let A be a Banach algebra with bounded left approvimate
identity bounded by d, and let Y be o left Banach-A-module. If 2 is in the
closed linear span of A-Y amd if &> 0, then there is an a in A and y in ¥
satisfying 2z = ay, la| < d, ond |z—yl<s ‘ ~

The idea in the commutative proof of Theorem 1 is to write & = u,w,,
Wy = UgWs, Wy = UgWs, ... USing Lemma 1. Then & = u, ... u,w, for all n.
We now factorize the sequence (u,) as u, = av, for some @, vy,,, ...
in 4. This implies that & = a"v,...w,w, and choosing ¥, = v, ... v,
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gives Theorem 1(i). In the proof below we shall assume that K =1 and
that d <a, for all » to simplify the calculations. We shall not prove (iv)
though it can be obtained by tight control of lle—yll < & in applying
Lemma 1. i

Proof of Theorem 1 (when A is commutative). By normalizing we

may assume that |w| = 1. We choose > 0 and a real sequence (y,)
such that

) Yn>1

for all »,
(2) (@9 "yy ey, < a,  for all m,
(3) @+ ) tall>00 a8 nm—>oo.

This choice may be made by choosing 5 > 0 so0 that (d+7) < a, for all
using the assumptions d < a, for all # and a,—>00 4§ n->co. Then u
=inf{ai(d+5)"" n>0}>1. We choose the sequence (y,) so that
¥n>1 and p; ...y, < u for all n. We then choose a sequence (f,) +o that

(4) (@+Bum) o (Q+Lom)ys . yu < o for all m,
(5) 1<p, for all m,
(6) Bn>o© as  m-soco.

This choice is possible by (2) and (3). i A
Using Lemma 1 applied to A and X repeatedly with suitable 2z and g,
at each. stage we choose sequences (%,) from A and (w,) from X such that

T = Uy Wy, o]l < 91, and

101l < 91 -

) lut < dy

Wy, = UpWyp1y gl < d - Yng1  Tor all m.

The condition |w,, <y, ... Yny1 follows from (1) and 011l <l
+ [0y4.1 — Wyl for small enough 1001 — Wyl

Let Y = {(a,): a,cd, |a,/8,~0 as n—oo}, and define a norm |- ||
on ¥ by )|l = sup{lla,ll/B,: n>1}. Tt we let a-{(a,) = (a-a,) for all a
in 4 and (a,) in ¥, then ¥ is a Banach-4-module, and A4-Y is dense
in ¥ because |a,/p, 0 for all (a,) in ¥ and becanse A has a left approxi-
mate identity. Lemma 1 gives us an @ in 4 and (v,) in ¥ such that a(v,)
= (t,), llall < d, and [[(v,) ~ ()| < 5. Thus a-v, = u, and |[o,]l < | +
+ 1By << d-+nby, for all . Substituting back in our previous equations
we obtain @ = w, ... wyw, = a0, ... v,w, for all n. Further,

”’l’l A ’Uw,wn” < (d+77/31) R (d+77l8n)71 ot Vn < a;

follows from (4) and (7). The proof is completed by taking y, = v, ... VW,
for all . . - :

3 — Studia Mathemallea LV
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3. Proof of Theorem 1. References could be given ([2], [6]) for the
two lemmas but we include them in order to make this paper self contained,
and to have the statements in exactly the right form. In the lemmag A
is a Banach algebra with a bounded left approximate identity bounded
by d, A, is the Banach algebra obtained from 4 by adjoining an identity 1,
Y is a left Banach-4-module, and Z is the closed linear subspace (Banach-
A-submodule) of ¥ spanned by {a-y: acd, y¢¥}. We shall regard ¥
as a Banach-4,-module by defining (A1 -+a)y = Ay +ay for all scalars 4,
all ¢ in A, and y in Y.

LeMmMA 2. The Banach algebra A has a bounded left approximaite identity
for Z bounded by d.

Proof. Let 2y, ..., 2, be in Z, and let £ > 0. Then there are a; in .4
and y; in Y for 1<<i<<n, 1<j<<m such that

m
#— 2 Ay Y
Cog=1

for all 4. There is an ¢ in A so that ||| < d and
lloez; — eagll < &/2mK (1 + llyyll)

From these inequalities we obtain

m
& — Z Ay Yy
=1

g=1,...,m.

< ¢f2(1+Kd)

for all 4,5.

sy, — o2l < (L+X) |

+E ) llog—eayllly,l
F=1

<e for

This proves Lemma 1.

LeMMA 3. Let 0 <A <(d+1)"% If e is in A with le| < d, then
(L—A+2re)™" emists in A, and (L1 —24+2)7" < (L—A—d))™% If e> 0,
then there is an n>> 0 such that ecd, le|<d, ye¥, |y —ey|l <u implics
that ly —(L—A+2e) " y| < e.

Proof. Since 1 —) is positive and

R -2l < A(L—A)"td < 1,

the element (1+A(L—2)"¢) is invertible in A,. Standard estimates
using geometric series imply that ‘

ML —=2+2e)7 = @=L +A(L -2 < X —A—ad)
Thus
ly — (1 —2+2e) Yl < E(L—A—Ad) " (1 -4+ e)y —ll
‘ S EAL—2—2d)" y —eyl.
Taking 5 = & K'47"(1 —1—2d) completes the proof.
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The idea behind the proof of Theorem 1 is to apply Lemma 3 in-
ductively to construct a sequence (b,) in 4, that converges to an element a
in 4, and such that (b; %) is Cauchy in X for each fixed j even though
the sequence ([[b;7]) is unbounded for each fixed j. The control on the
growth of the sequence (y,) is obtained by considering a subsequence
(agm) of (a,) that diverges to infinity fast, and doing the construection
for the jth powers on the intervals. [H(n), H(n +1)].

Proof of Theorem 1. We shall assume that |@| = 1, and that

d<min{l, ar—1: » =1,2,...}.
1V H ?

We choose and fix a A satisfying 0 < 1 < (d+1)"". We choose H(0) so
that H(0) > N and for all j > H(0) the inequality

;> 2K (1—A—Ad)~ +1

holds. The sequence (H (n)) of positive integers is now chosen so that
H (n) is the maximum of H(n—1)+1and inf{j: az> K-2"(1—1—Ad)™+1
for all 7> j}. The choice of the sequence (H (n)) satisfying these con-
ditions is possible because «, > 1 for all » and a,—oco0 as n—oo.

‘We shall inductively define a sequence (e,) in 4 and a sequence (b,)
of invertible elements in 4, such that b, =1, |e,l<d,

(1) by = D AL — A Te 4 (12,
k=1

and. )

(2) 677 @ ~b77; mll < 82"

for all j < H(n) and all positive integers n. We may choose ¢, and b, to
satisfy (1) and (2) by applying Lemmas 2 and 3 to X.

Suppose that e, ..., ¢, have been chosen. Let B: {ecd: |l < d}—4,
be defined by

Ble) = DAL= (1 —2+2e) e+ (1 —A)™

k=1
Then

n
H(e)—b, = 22(1—A)"'l((l——l—l—le)*‘ek—ek).

k=1
By Lemma 3 applied with ¥ equal to the direct sum of n copies of 4
regarded as a left Banach-4-module in the natural manner, ||E(e)— b,
may be made arbitrarily small provided that |ee,—e,ll are sufficiently
small for % =1, ..., n. Since Inv(4,) is open and the mapping g > g~*
is continuous on Inv(4,), it follows that F(e) is invertible and || #(e)™* —
—bY is arbitrarily small provided that |lee, —e,|| are sufficiently small
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for & =1, ..., n. We now apply Lemma 2, and Lemma 3 with ¥ equal
to the direct sum of n copies of A and H(n-+1) copies of Z. We chooge
€y Wibh [le, 11| < d 50 that e, — e, 64/l (B =1, ..., n)and I|bm7w"'3n+1b ||

(4 =1,..., H(n)) are so small that B (e,,,) is 1nvert1ble in Ay, [1B(eys)7 "
< [by 1II-l~1

(3) 1B (6ns2) ™" — b3 Il < K277 (L — A= 2d) MO,

and

(4) (L =2+ 0,10) 7" = 130770l < nE 727 (b7 + 1)

for j =1,..., H(n+1) where # to be chosen later does not depend on
€ne1 OF by, . Then

n
bppr = (L—=2)" ' (L -2 e, + 2 A1 — )t
k=1
= (1—21+16,4.) F(6p1)
and so
biall < ML =2+ A€ s0) 1 B (600) ™M < (L — A —Ad) ™ (10741 +1) ™

Because of the term (1 —2)~" in b, we have [b;Y]|> (1—2)"" > 1 which
gives ||b; 11l 2(L~1—24d)" b *]l. Repeated use of this formula and
by, =1 leads fo

Bl < 27 (L —2—Ad)~"~"
Let 1 <7< H(n). Then
btz —ba Vb5 2l = I{B (6ppr) (1~ 4 QTR el on 1 el
S KB () I (L~ A 6, 0) " — 1} b7 0] +
1 FENB (6nrr) ™ =M1 10571 < 7
by (3), (4), and the bound for |b:Y. Hence

i=1

o —b57al < 3 Kb+ (bt — b7 0770l
- om0
i-1

< D E-{2" (L —2— )1,

r=0

= K- (2" (1 —2—2d)~"" Yy < 59,

provided 7 is small enough, for j =1, ..., H(n). This completes the in-
‘ductive construction of the sequences (¢,) and (b,) satistying (1) and (2).

icm®
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The sequence (b,) is Cauchy in 4,, and limd, = ¢ is in 4 because
limb, = 3 A(1—2)*"l¢,. Further a] < d. The sequence (b;’x) is Cauchy
1
in »n for each j, since » > m and H(m+1) > j imply that

(3) by —byia) < F Ibziio —bii el < 8/2™
by (2). We let y; = limb; 75 for eaeh j. Then @ = a'y, for each j. Since
is in (4-@)7, by Lemma 1 we have (4;:#)” = (4 2)~ so that y;< (4d-2)~
for all j. By (5) we have |y, — by ol < 6/2™ if H(m-+1) > j. Hence ||yj—w|[
<dforj=1,. NbecauseH()>Nandbo—1

T1<i H (0 ), then [ly;| < 1+ 6 so that |y;l| < o] by the restriction
on 6. Now suppose that H(m) < j<< H(m-+1). Then the choice of H (m)
implies that a;> K-2™(1—21—id)"™+1. Also

sl < b7 2l + 6 < Kbt +1 < K- 2™ (1 —A—Ad) ™™ 41
by the bound on [b;;}|. Hence
lly;l < {E2™(1—2—2d) +1¥ < of
by the choice of H(m +1)> j. This completes the proof of Theorem. 1.

4. Applications.

COROLLARY 1. Let A be a Banach algebra with a bounded left approxi-
mate identity, and let B be a radical Banach algebra such that there is a
sequence. (y,) of positive real numbers tending to zero so that liminf [B*[*™y;?
is finite for all b in B. Then the zeéro homomorphism is the only continuous
homomorphism from A into B.

Proof. Let (a,) be a sequence tending to infinity with a, > 1 for
all #, and lima,y, = 0. Suppose that 6 is a continuous non-zero homo-
morphism from 4 into B, and let # be in A with |6 ()| = 1. Regarding A
as aleft Banach-4-module we apply Theorem 1. Then there are a, ¥, Ya; -+
in 4 such that @ = o’y and |ly;|| < of | for all j. Hence 1 < [|6(a o) |18kl o
for all j so that 1< liminf{f(ay|"¥y;'Lim a,y, = 0 This contradlctlon
completes the proof.

Remarks. (i) The growth condition [yl < of ol is essentially the
best possible. If A is a radical algebra with bounded approximate identity
(e.g. Ly [0,1]; see [10], p. 316, [2]), and @ = a"y, With [y,ll< B 2]l for
all n, then |lz/" < o™ |l|/" 84" implies that Y™ —oo as n—>occ. Taking
a, = B gives the form of Theorem 1.

(ii) By applying Theorem 1 to a radical Banach algebra 4 with
bounded approximate identity and using working similar to (i) for each
sequence a,—>co there is an ¢ in A such that lla”|*" a,—oco. So there are
elements with ™™ tending to zero arbitrarily slowlv.
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(i) Let A be a semisimple regular commutative Banach algebra, and
et @, y Y1y Yoy ... tn A satisfy @ = ay, for n =1,2,... If |y does
not tend to imfinity as n tends to infinity, then there is an f in A such that
fo =2

For let F be the support of @ in the carrier space @ of 4. The remark
will follow if we show that the closure F~ of F is compact ([10], Corollary
3.7.3; Theorem 3.6.13).

If ¢ is in F, then

1 = limint |y ()" < |p(a)|-limint |y, "

Thus there is a d > 0 such that {¢(a)| > 6 for all p in F, and so for all ¢
in '~ . Therefore F'~ iz compact, completing the proof of (iii).

(iv) Corollary 1 and Remark (iii) lead to the following question.
If # in a (commutative) Banach algebra A may be written as o = a"y,

for all n and if [, "™ does not tend to infinity is there an fin A such
that fo = x?
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On the minimum time control problem and continuous
families of convex sets

by
8, ROLEWICZ (Warszawa)

Abstract. Lot a linear systom with time variable he given
A By
(X —mer [ Y ),

where X, [, ¥ are Banach spaces, 4 and By, 0 < ¢ < T, are continuous linear ?perators.
Let U be a convex closed set in X containing 0 in. its interior. Let ||w|| = inf{f > 0:
©/te U} be the Minkowski norm generated by U. By ¢(f) we denote

p(t) = inf{|{wl|: BrdweX (0)},
where T (f) is a given continnous family of closed sets.

‘We prove that if 13,4 (U) is & continuous family of setis ati #, and the set 15'50/1 (o)
has an interior, the @(f) is & continunous function at %;.

By a time control linear system we shall understand a system of three
Banach spaces over reals, X being called the space of input, 01 the space
of trajectories, and Y the space of output, of a continuous linear operator 4 :
X[, called the operator of input, and of a family of continuous linear
operators B;: [1—Y, ¢ being real, 0 <4< 1.

Let U be a convex closed bounded set in X. Let ¥ (1), 0 <t < T,
be a family of sets in ¥. In the minimum time control problem we are
looking for

) T,y =int{t > 0: BA(U)NY(t) + 0}
and we ask when
(2) B,,OA(U)'nY(TO) %0,

The problem has been investigated in papers [2], [8], [4], where
the respective sutficient conditions for (2) were given. Those condifions
were only of the existence type.

In many problems which appear in the theory of control another,
morve effective, approach to the problem iy used. . ‘

Namely, we assume that the set U has an interior. Of course, W1thoub:
loss of generality, we may assume that 0« Int U. Let | | be the Minkowski
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