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Proof. From Lusin’s Theorem ([1], IT, p. 95) there exists an absol-
utely continuous function F(z) such that

(3.1)  the Fourier series of its derivative f(w) and its conjugate converge almost
everywhere,

(8.2) the funciion f’(m), conjugate to F (), is essentiolly unbounded in any
interval [a,b] < [0, 27].

So from (3.1) we have feL and §n(f, x) = O(1) for a.e. x.
Suppose for this f that there exists an ' satisfying (i) and (ii) in the
theorem, i.e., for a.e. #, 3 S,(f, #)a,(p) converges for all peAQ.
n=1
Then similar to Corollary 1.1 we would get that for a.e. x,

]j Ban1(0) 8 (f, W)] < oo for all peAC.

n=0

Hence from Lemma 3.1, for a.e. ®, IM, such that

(3.3)

(3:4) | 3 tansa(0) 80(f, 0)| < M lplao  for all geAO.
n=0

el

1 ~

Hence from [4], p. 133, Th. 3, -S-‘E A (f, £)~—F () is equivalent
nm=] .

to a function differentiable a.e. which contradicts (3.2). m
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Best order conditions in linear spaces,
with applications to limitation, inchision, and high indices theorems
for ordinary and absolute Riesz means

by
A. JAKIMO-VBKI (Tel-Aviv) and D. C. RUSSELL (T'oronto)

Abstract. It is the first purpose of this paper to obtain simple order conditions.
which hold for certain sequences of continuous linear functionals on a Fréchet space
with a Schander basis, and to investigate best-possible order conditions. We then
specialize the results to Banach spaces and to summability fields of matrices. By using
results on summability fields and absolute summability fields of Riesz typical means
and generalized Cesdro means, some of them new, we are able to obtain some best-
possible order conditions in these fields; in particular, we can specify the best-possible:
limitation theorems for a sequence (or series) which. is limitable, or absolutely limitable,
by the Riesz method. We then apply our limitation theorems to obtain two
equivalence theorems, of ‘high-indjces’ type, for ordinary and absolute Riesz
summability. Finally, we can obtain improved forms of two inclusion theorems.
which specify necessary and sufficient conditions for an arbitrary matrix method
to include the ordinary or absolute Riesz methods.

1. Introduction. A locally convex linear topological (Hausdorff) space
(over the complex number field) which is complete and metrizable has
a topology generated by a countable set of seminorms p = {p;}, and such
a space (X, p) is a Fréchet space (F-space). We may assume without
loss of generality that no seminorm p; is identically zero. An F-space
with a norm topology, (X, | |lx), is & Banach space (B-space). A. sequence
space is a vector yubspace of o, the space of all complex-valued sequences.
An TK-space (X, p) is a (locally convex) Fréchet sequence space for which.
the coordinate functionals (i.e., the maps P,(x) =, » =0,1,...) are
continuous; an FK-space has a unique FR-topology. A BK-space is o
Banach sequence space with continuous coordinates. Examples of BK-
spaces are the spaces m, ¢, ¢ of bounded, convergent, null sequences,
respectively, all with

= {o: ol = Yol < ool

liell = wup Jae |5
ke k=0

o
P = {:1;: ]l === Tim Jagy) - 2|mk~m,ﬂ_,‘1[ < oo}; P =c'No.
¥ Ji=0

A countable collection of points, {a*}, of an F-space (X, p), i¥
a (Schauder) basis for (X, p) if there are unique functionals f (k = 0,1, ...)
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=)

such that @ = Y' fy(%)a” for each z« X (in the topology of X). If an FK-

=0

space has the basis {¢%}, where ¢* =(0,...,0,1,0,0,...) (with 1 in
rank %), then necessarily fi(#) = @, and (X, p) is then called an FK-AK
space. Examples of BK-AK spaces are ¢, I, v°. The spaces ¢, v have eL{d}
as basis, ¢ = (1,1, 1,...). Throughout this paper, “basis” always means
“Schauder basis”. )

~ For an infinite matrix A = () se and an infinite sequence
@ = {4 )0, Of complex numbers, denote Aw = {(AD)}nz0, (42),

= > a,,a; the existence of Aw requives the convergence of this last
=0

series for each » = 0. If F is a sequence space, we write I, = {#: AdweF};
thus w4 is the existence domain of the matrix 4. The matrix 4 is called
F-reversible when, for each yeF, y = Az has a unique solution zew;
a normal Matrix A (a,, = 0, %> n; a,, 5 0) is w-reversible. A normal
matrix 4 is said to have the mean-value property Mg(A), 0 < K < oo,
‘when

Kid “
6 . n=0,1,...).

(1) VmecA: Ig a’nk“’k‘ < KO::}LZ); lk;o‘ a’ﬂkwk‘ (m’! Eat )
For a normal matrix with zero column-limits ({¢*} = ¢%), (1) is equivalent
to the property that ¢4 has AK (see Wilansky and Zeller [29], §§ 3 and 4).
We denote the unit matrix by I, and write J = (jui), Jur =1 (0 <k < ),
Jue =0 (k> n), with inverse I = (jzi), Jan =1, Jun— = —1 Juz =0
otherwise; thus a series ) a,, a = {a,}, is related to its sequence of partial
sums & = {2,} by @ = Ja, a =J "o )

2. General results.

THEoREM 1. Let (X, p) be an F-space with Schauder basis {a%}z,
with the representation

(2) 7= Ef,,(w)a’“ for each weX.

Fe==0
Let B be an infinite matriz of complex numbers whose only non-zero elements
oceur on a fived finite number of diagonals, namely b,, =0 for &
<max(0,n+7) and for k>max(0,n+s), r<s (r,s fived); for each
zeX and n =0,1,..., write

(3) ua(®) = buifelo)-

Then for each j =0 and each xeX:

(4) g{lij(ak)fk(w) =0,

(8) (%) = O{MEgLH(Ibml/pj(a"))} as - m->oo.
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Prootf. Since }'f, () a” is a convergent series (in the topology p = {p,}),
it follows that its terms tend to zero in this topology, which gives (14).
Now, by hypothesis, since no seminorm is identically zero, we have, for
each fixed j and for all sufficiently large n, n+r = 0 and p;(a*) % 0 for
k> n-+r. Thus, by (3) and (4),

n+s

tia(@) =] D) buufi()]
k=n4-r
s
< {n+21?g1+s(lbnkl /pj (a]‘)) } Ic%,'l’j(ak) Ifk (w)[
= 0{ max (lbnk:l/pj(a'h))} a8 N-—>»00,
ntr<k<nt-s

TagorEM 2. Let (X, p) be an F-space, and a*<X, a® # 0 (k = 0,1,...).
Let B be an infinite matriz with no zero vow, saiisfying the conditions in
Theorem 1, and let {6,}cw, 0, 5= O(1). Then Iv*cw and Jz*<X such that

o = AE vga® (with convergence in the topology of (X, ), and
=0

! (6)

where

0,(Bv"), # o{ max

(1bael [Pr)} as
nt+r<k<n s

n->oc0,

P, = max p,(a"),

k* = k i H I A
max max (k, min {j: p;(a®) + 0))

Proof. From {6,} choose a subsequence {0n;}ino Of mon-Zero terms,

such that
(7) Wy +r>m4+5=20 (1 =0,1,...),
(8) D 16,17 < oo
i=0
then choose k; in n;4-7 < k; < n;+8 such that
¢ - 4 . .
(‘)) ni+i22271;+5(lbni'kl/Ph> = ]b-ni,k,;l/Phi (7' - 01 13 A ')'

Define v} = (|0,,|P;)™ i k=% (¢ =0,1,...) and v} =0 otherwise.
For a fixed j it then follows from the definitions of +* and P,, and using
(8), that for all sufficiently large integers I, m,

m n
d
n( vk < Y omyaty = 3 otypy(a)

le={ o= I<ksm

— — . . -
= D 167 PEp@ < Y 16,710
Ik <m <k <m !
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as m > l—co. Thus the series Y via® is Cauchy, and hence convergent

E
to a value 2%« X. Now, by (7) and the definition of %,

ny+s§
(B/D ng = Z bn k'ul., = b'nl kz/ulri = bni,lciw‘nirlpl:@-l-
k=nj-+r
Thus, by (9),
n,;(B'” n, = max “bni,k”-PIc) (t=0,1,..),
nytr<h<ng+8

and (6) follows.

Combining Theorems 1 and 2, and specializing to a Banach space
with a basis, it follows in the notation of these theorems that o} = Fula™),
and we get:

THEOREM 3. Let X be a B-space with Schauder basis {a*}s, ond
representation (2). Let B be am infinite matriz satisfying the conditions
of Theorem 2, with u,(x) defined as in (3). Then for each weX we have

(10) Uy (@) = 0{ max (!bnkl'llaklrl)} as

ntr<h<nt

n—>00,

and (10) is best-possible, in the sense that given any unbounded complex
sequence {0,}, theve is an element #*eX such that

(11) Optn(a") # 0f max (bl lafI™)} as
n+r<k<nts

M—>00.

Remark 1. We can apply the above theorems to sequence spaces
containing {¢*}, with continuous coordinates. It then follows, in Theorems
1 and 3, that fy(z) = @, and so u,(2) = (Bz),. While in Theorem 2 we
get v = 25 and so Bv* = Bz*. The simplest choice of B is of course
B = I, but if, for example, we choose B = J ™ we obtain limitation the-
orems for @, —a,_;; that is, for the terms of a series Ya,, with partial
sams {z,}.

CororrARY 1. Let (X, ||]) be & BXK- space containing {€}.

(a), Given any {0 }ew, 0,7 O(1), Io'= Z wee X, o' = Zm}c'e"’ex

k=0
such that

Outn # 0(l€"17Y), O, ()) —a_y) # o {max (&7 e" 1)}

(b) If {€"} is a basis for X, then

VoeX, @, =o(le"|™) and @, —u,_; = o{max ("™, l¢"I™N}.
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Proof. Use Remark 1 and substitute the two choices of B mentioned
there into Theorems 1 and 2:

The application to maitrix fields depends on the following lemma.
Limmma 1. (a) Let (F, p) be an FK-space and A an infinite matriz.
Then 4 is an FK-space with the seminorms

Pi(Am) (7 =0,1,...); o (6 =0,1,...);

sup l Zfan,cwkl , 1,00

M0

(12)

If A is row-finite, the last set of seminorms can be discarded. If A 45 P-
reversible, the last two sets com be discarded (leaving only {p;,(Aw)}).

(b) If I is & BK-space and A is F-reversible, then F, is a BK-space
and Hw ]zr = Aallp.

o) If (F, p) is an FK-space with basis {a*} and representation (2), and
i ﬂw matriz T is F-reversible, then the sequfmce {@%}, given by Td* = o

" k= 0), is a basis for Frp, and Voely, o = Z,‘fk(Tm ax.
k=0 .

Proof. Part (a) is due to Zeller ([30], Satz 4.10 — see also Wilansky
[27], § 12.4); and. (b) is an obvious deduction from (a). Part (c) 1s given
in Jakimovski and Livne [7], Theorem 2.7 (it is stated there for a* = &,
but the proof is the same).

OoROLLARY 2. Let F' be o BK-space, A an F-reversible matriz, and
{ T,

(a) Let 0, # O(1). Then o™ eF 4 such that 0,z + o(|Ae|[F).

(b) If F is AK, then VoeF,, o, = o(|Ae"|7).

Proof. This follows from Corollary 1 (with X = F,) and Lemma 1(b).

Remark 2. To shorten the exposition, the phrase “VaweX, u,(s)
= 0(g,) I8 @ best-possible limitation theorem” will mean that VweX,

Uy (@) = 0(@,) a8 n—-oo, and that, given any unbounded complex sequence
{0,}, 30"« X such that 6,u,(s*) = 0(,).

OOROLLARY 3. () Let 4 be a ®reversible matriw and ¢ be AK. Then

we have the best-possible limitation theorem: Vwec, @, = 0(L1/SUP]|pyl)-
m

(b) If A is mormal, with the mean-value property Me(A), and lima,,,,m

=0 (n=0,1,...), then |t,,| < SUp (0n,] < K |@,,|, and so the best lwm-
el

“tation theorem is: Vwedy, @, = o(L/|@u,l)-

'P1 oof. (a) Put F =¢'in Corollary 2. (b) The hypotheses ensure
that ¢% is AK (see the remarks following (1) above).

Corollary 3 (b) is given in Wilansky and Zeller [29], p. 263; see also
Jurkat and Peyerimhoff [12], Sétze 4, 5, and Wilansky [28], Themem 11.1.
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3. Application to Riesz means: definitions and lemmas. We need
first the definitions of the Riesz summability method (B, 4, ») and the
(discrete) generalized Cesdro method (C*, A, %) (see Bosanquet and
Russell [4]). Here, and throughout, 4 = {4,} is any fixed sequence satis-
fying 0 = Ay < A < ... < A~ oo (we tale 4, = 0 without loss of generality)
and x%3>0; when x>0 we write x =p+7 (p =0,1,...; 0<y<1).
For real sequences, we shall also use the notation a, = b, to mean that
there are finite positive constants %,, k, such that ultlmamely Iy b, < @,
< kyby,.

For any & = {®,}ew write, for n =0,1,...,

n

=2 U=

=0

0:‘ = By, (}m.{-p""l )(wv v—-l)

(#_y =0, p=1,2,..),
Bo=1, BE=lpgeedprp (P =1,2,..;
Py = B = (1P Gyypir—Wu[A oo Aypin]  (0<w <),
where f,[4, ... A,ps1] is a divided difference of the function
Fal) = Gpypa—ul™  (u<

(for definitions and basic properties of divided differences, see [18], Ghali-
ter 1, [22], §4, or [4], §2). Also write

ot = 3 by OF,

va==0
thus B* is the value of O} for the sequence z =¢ = (1,1,1,...). We
then define the (0™, A, x)-means of z as

(13) ty =1 (@) = Cy/Hy.

Thus if 7* is the (sequence to sequence) matrix of the (C*, , »)-transform,
and if the matrix A*" = (af?) is defined by

(14) ahy =M BY[ERTT (0<vy<<m), p=0,1,..,
AP* =T (unit matrix), p =0,1,...;

z’ﬁ+17+1)

n
B2 = M b, BY  (p=0,1,..; 0<y<1);
! =0

0<n<1l,

then 21" = Z‘ aZ#, and so we have the matrix product 77"

valid for p = 0 1,... and 0 << <<1 (see Bosanquet and Russell [4],
§3). It is proved in [4] (see §3 and (46)) that 4" is a normal, regular
¢->¢ matrix possessing M;(4), namely the mean-value property (1) with
constant K = 1. Also it is an easy deduction from [4], inequalities (24),
(28), (37) that

= APIT?,

<Pt
'(15) —T 1;' T Anr?? Anp = Zn+p+1/(}~n+p+1 - Z’n) .
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If 7+ —*T"J and & = Jo, then T%a = T*w, so that T is the series-to-
sequence (07, 4, ») matrix. Writing (7%)~! = (%) we have (see [26],
pp. 297-298)

(16) 78 = (—1)"" (g s — ) g - k4p+1),

Mpralbir O<EL <
74, = 0 otherwise,
where
ﬁﬁm = (Ap—4,) ’
k<o<htp+ 1,y

p=1,2,..

another way of expressing ;. s A2, = w}(A,), e () = (2 —Ag) . . (% — A ypon)-

The inverse of T% is given by (T%)™' = (18,) = J(T%)~'; thus
n
@ =D (0<k<n< k+p),
i=k
75, = 0 otherwise, p =1,2,...

For p =0 we have (vny) = I, (Tpz) = J*; and, for p =1,
Ton = Ay, T}z,n——l =1—-Ad,, 1 =0 otherwise,
An = Ano = Zn-e—l/(ﬂ'n-ﬂ"")ln)'

The Riesz (2, 1, »)-means of x are defined, as usual, by

=E@0) = D (1-

<o

(18) B*(w) Wlo)y' (@, —w, ;) (0>0), RB0) = ax,,

where #_; = 0. The (E*, 2, »)-means of « are B} = E*(z, 4,,,).
We now define the sequence gpaces:
Ry, = {#: dlimR*(z, v)},

W00

R}, = {@: limE*(#, ©) = 0},
»-roo

By = {w: f |aB" (@, lw)l < °°}’ Bl = RN R,
0

R}, = {o: AlimE*(z, A, ,,)}, Bl ={o: 3 IR @, Apya) —
N0 7=0
— B, dpy)] < oo};
oy, = O = {0 Alim ¢ (2)}, oD = = {w: im#(x) = 0},
n—ro0 fi~+00

o = {m: an [t (@) —tppa (@)} < 00}

n=0

C’Wl -—v C’,A,‘,r\C’M.
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Clearly,
R?m S By S RTZ%H Ry, B s R, Mn| < Cwq € 0.
Also it is well known that
(19) ¢ Ry, <Ry and o0& Ry s By, for 0<x<u.
LEMMA 2. (a) Ry, B}, are BK-spaces with norm ||z|l;, = Sﬂpolli"‘(m, )|;

Rysy Bh are BE-spaces with norm
ol = Hm|B (@, o)+ [ 4R (@, w)].
W-+0Q 0

(b) C%,, C52 are BK-spaces with norm ||@ly, = 51;%) [t (@)l Oy Oy are
n.
BXK-spaces with norm

Iz = lim 43(@)|+ 2 167(%) =t 41 (2)]
n=0

Proof. (a) The result for B,, is given in Peyerimhoff [19], §8; RY,
follows immediately, and we can follow through a similar argument to
establish the results for R, and Rp,. (b) Since T* is a normal matrix,
the results for the O* spaces follow at once from Lemma 1(b). There are
-obvious analogues for the R* spaces, which also follow from Lemma 1(b).

Levma 8. (a) R, = O}, (x> 0);

(0) Bypy =iy (# =0,1,2,...).

Proof. (a) is due to Russell [22] and Meir [17] when » is an integer
and to Bosanquet and Russell [4], Theorem 2, in the general case. (b) is
«due to Korle [15].

Remark 3. It is not at present known whether a definition of |C™, 1, |
summability can be formulated, which will be equivalent to |R, 1, x|
summability for every » > 0 and every 1,/ co. When x =17, 0 <7 <1,
then O}y, = R},, but even the equivalence R, = R, (0 <n<1) is
apparently known only for restricted 2 (see Kérle [13], Satz 3).

LeMmA 4. For p =0,1,..., 0 <9 <1, D =AP"(A")" is g
normal, regular ¢c—>c matriz with the mean-value property M, (D).

Proof. Note that, from (14), for 0 <#, <97 <1,

(20) anplant = hg [ (0< v < m);

we can then emﬁploy a method of proof of Bosanquet and Russell [4] to
show that the ratios in (20) deelesu%e When 0<r/ <nand 0 <m <yl
(We use ‘the two functions. f{z) = (o —z)" f]‘( (cp —y)PFI yerify
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that

§ \P+2 [ g \P+2
(6(;) (’017) @)@ =0 @)} > (0 —a) (0 —y)" g —a),

where ¢ > 0, and follow through the proof as in [4], Lemma 2.)

Now substitute 4 = 4™, B = 4% in Peyerimhoff [20], Theorem
I1.21, from which it follows that D = BA™! is regular (hence ¢, < cg),
and that D has a normal inverse D~ whose only positive elements are
on the leading diagonal. This is enough to ensure that M, (D) holds ([29],
p. 261; or see [20], Theorem I1.16). For the case 7, = 0, the definition
AP =T gives D = AP, which we already know to have the required
properties.

LeMMA 5. Let x = p -0, where p is a non-negative integer and 0 < n < 1,
and let 6% be defined by TP 8" = ¢’ (j = 0,1, ...). If X denotes either one
of the spaces R, or R, then {0%};5, is a basis for X, and we have the rep-

resentation x = > 17 (x) 87 (VzeX), with convergence in the norm of X,
=0
where 1 () are the (0%, A, p)-means of w.

Proof. These results are due to Jakimovski and Tzimbalario; for
. 5ee [9], Theorem 5, and for Rl see [10], Theorem 5

Remark 4. In the case » =, 0 < <1 (that is, for p =0), we have
6% = ¢/, and Lemma 5 shows that R}, and R, arve then AXK-spaces.
This result for R}, is due to Peyerimhoff [19], Satz 8.2.

LemMA BA. Let » = p-n, %, = p-+ny, where p is a non-negative
integer, and 0 < 1, < n< 1, and let 8 be defined by T*1 6" = ¢ (j =0 1, D

Then {8"7};5,0 is & basis for R),, and

(21) VoeRS, @ = Y t1(n) 6.
F=0

Proof. For 0 < ny < < 1 the matrix D = A’””(A‘f"’l)‘1 is, by Lemma

4, nomnl and regul‘n‘ and possesses M, (D); hence ¢}, is AK and so
5’ ;6! (wedd). In the notation of Temma 1(c), take F = ¢}, of = e’
1’ T"l then By = (cD) = cT,,, @ = 87, and f;(Tw) = (Ta), = 17 (2).

Temma 1(c) then shows that {6"’} is a basis for ¢}, and w = > #72(a) &
F=0
(wecy,). Since, by Lemma 3(a), ¢ = = (% = Rj,, the result follows.
Note that by taking »; = 0 in Lemma 5A, we obtain an alternative
proof of the case X = R, of Lemma 5.

2 — Studia Mathematica LVI.2
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Lmmwa 6. Write g(f) = g,4(1) = R*(8%,17) (where » = p+ 14, TP s
= ¢’). Then
(22)  ge0P[0, ), gU0+) =g =0 (i =0,1,...,p);
(23) ¢90) (4 = 0,1, ..., p) has exactly i distinct zeros in 0 < t < At
(24) ¢ has exacily one relative mamimum point ¢ (0, 471); g is strictly in-
creasing in (0, ], strietly décreasing in [, A, zero in [47", o0).
Proof. Let 4, » (=p+y), j be fixed, and write

Br=ldie (P =0,1,...,p+1), ppy, = +o0;

b= (=1 (ppis — o) phs - -t
(@) = (1—at)®*" (st<1), de) =0 (@>1);
(1 — wt)?+n

@) =
o (@ —orga) oo (B —ppi1)

(Bo < @< gty <7< ),

the denominator of () being interpreted as 1 if » = p+1 (as with every
empty product). The (C*, A, p)-transform of & is, by definition, {#}
=1T78" = ¢/. By a slight modification of the argument in Russell [22],
DPp. 424425 (use ¢,(v) = (0 —a)* for # < o instead of (0 — @)%, write
{ = 1/w, and omit the last five lines of p. 424, which are not then valid
for » > p), it follows that

(25) () =B, 47 =b-dy o - - pp4.]

and that this can also be written as

for t>o0,

(R Ha e ] for

0 for

Hrh <t < it
12 uyt.

(26) g(» (r=0,...,p+1),

Th_e dedu}ction o.f (26) from (25) is & consequence of the method of deleting
points from a divided difference (e.g. see [22], §4 or [4], §2) by means
of the relation

f[mo v Bp] =1 [mo e Byl

Ful@) = {f(@) ~f(@,)} (@ —,).
The expansion formula for divided differences now shows that

n+1
@7 Alpo e o] = D) mpdylpy), w, =
e=0

(:u‘g - :uv)—l H
0<r<p ;1,70

a,z}du since, for eae]'l fixed # > u,, d,(») has a continuous pth derivative
with respect to ¢, in ¢ > 0, the same is therefore true of g(t)
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Now for 0<i< /‘17117 dpg) = L —p 2" (e =0,1,...,p+1),
and so, differentiating (25) and (27) 4 times, we see that
P+l

090+) = (=1 @+n) ... @+n—i+1)k Y mpl =0 (0<i<p),

0=0
because this last sum is a (p +1)th order difference of the polynomial .
Also, by (26), g(t) = 0 for t > u5*, while

g(8) =Tk (o) =K' (L—pt)?" >0 for pl'<t< pg?,

where %' = py ... pp/{{ttx— pho) -+ (up— o)}, from which we see that
¢ ugh) =0

To examine ¢®+V({) we have, on differentiating (26) p +1 times,

for 0<<i<g<yp.

(28) 9o = B[~ ]y pr <t<pt,
where R

: k=Fk@+n) .. (L+n)y

and

hj(@) = (—i)'w”+15t(w)y Hy(®) = {(frp1=2) ... (ppg1— @) (L —at) "} 70

But any derivative with respect to # (of any order) of any of the functions

(/‘r+1‘—w)N11 reey (/‘Lp+1—'m)—1! (L —aty"

is certainly positive for # < ¢! < p,,;, and it therefore follows by Leibniz’
theorem that the product of these functions, H,(#), has positive deriva-
tives (with respect to #) of all orders — hence the same is true of
Pt H,(x). That is,

(29) (=17 (@0 k() >0 for <o pp << s

I<r<p+l,8=0,1,...
There is a minor exception to (29) when » = p -1, n = 1; then H;(») =1

and the derivative in (29) is zero for s > p+2. But in all cases we have,
by the mean-value theorem for divided differences,

" 1 .
(80) B uo-. 1] = 5 {(0/00) B (@)}omg
and since % has the sign of (—1)**, it now follows from (28), (29), (30)
that

(81) (—LP"Hg?* (1) > 0

for some £ in gy < & < iy,

for prh<ti<pl T =0,1,...,p+1.

Now (31) shows that ¢®+Y is sectionally of constant (non-zero)
sign in each of the intervals (s, 47") (r = 0,1, ...,p--1), and hence
g®), being continuous, is strictly monotone in the closure of each such
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interval. Since, by (22), ¢ vanishes at 0 and 45", it cannot (by monot-
onicity) vanish in either (0, uy1,] or [u7?, 45'); hence ¢® has at most
2 distinet zeros in (0, ug"). Let n, be the number of distinet zeros of g@
in (0, u;"); then since, by (22), ¢ (0 <4< p—1) vanishes at 0 and ust
it follows by Rolle’s theorem that n; < ., for 0 <i< p —1. Thus wc:
now have 0 < my <1y < ... < 7, < p and hence =4 (0 <4< p), which
proves (23). Now (24) follows at once from what we have already proved.
Since n; = 4, the use of Rolle’s theorem also shows that, except at the
end-points 0 and 57, ¢@ and ¢ (0 <i<p—1) cannot vanish simul-
taneously.

Lovwa 7. Define 89 (k20,5 =0,1,...) by T%6% = &, and write
iy = A1p11 /(A4 pe1—A5). Then for p, j = 0,1,2,..., we have '

(32) N8Vl = AR, w =pty, oy =ptay, 0< n<n<1;
(33) 187y = 21671 < 457, =P+7, 0<n<1.

Proof. Note first that an FK- (and hence a BK-) space has a unique
FK topology. Also the matrix T% is normal, and hence

(34) &Y = (TH) el = (APnIPy—led (TP)~1 (A4 Pm)~1gd
Then
1815, = (16173, by Lemma 3(a)
= |T* 5|, by Lemma 2(b)
= [ A" TP(T*)~ (4P|, Dby (34)
= “—Dejucy D = Azm(-Apﬂl)‘.l
= sup |d,,|
m
= |[dy] by Lemma 4 and Corollary 3(bh)
= a,%"/a]ﬂ.;ﬂl
= A A by (15)
= 4y,

By Lemma 2(a) and the notation of Lemma 6,
2 . . . (o] . o0
1%l = M [R(87, )|+ [ AR (8", )| = Ig(0+)|+ [ Idg(e™)].
00 0 0

But, bz Lemmsa 6, g(w™") increases from 0 at o — 2; t0 & maximum at
w = anq th.en steadily decreases to 0 as w->oo. Thus g(0-+) =0 and
the total variation of g(w™?) is twice its maximum value. That is,

18y = 25UD1g (@~)] = 28up IBX(97, w)| = 2 |57,

Since, by (32) with 7y =0, [|6¥],, =< 435", the proof is complete.
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4. Applications to Riesz means: main results. The standard limitation
theorems for Riesz means are well known. For example ([3], Lemma 3,
[1], Lemma 2, [24], Lemma 1):

If R*(w) = o(1), then, for 0 u< % and A, < 0 < lypq,

(35) if uis an integer (with 4, < w if p = 0),

(36)

Hardy and Riesz ([6], footnote p. 37) remark: “It is very curious that the
simpler result which holds when u is intergal should not hold always”.
We shall see that, on the contrary, many properties of Riesz means experi-
ence a change in form as the order x passes through an integer.

TEEOREM 4. Let % = p+7, where p is a non-negative integer and
0 <5< 1; 6t A 00 amd Apy = Ay ryyr] Gsrar —An) (0,7 =0, 1, 2, ...); let
{t4(x)} denote the (O, A, u)-transform of & = {w,} as defined in (13), where
@ is the sequence of partial sums of a series D) ay; and let (), (v5,) be as
given in (16) and (17). If z<RS,, then we have the following limitation the- -
orems, all of them best possible in the sense of Remark 2:

B w) = o(477)
R¥(w) = o (A5 + A% if u is non-integral.

(37) B (z) = o(4]5™) (0<m <),
(38) B7H®) = 0{(Anip —An) Tt MAX (A A1y Anipdip)} (@ =1),
(39) Ly, = 0(Ps)s Prnn = INAX (Ifﬁkl*/ll’ép)i
n—p<k<n
(40) O = By —0p_y = 0(Pna)s Ppe =  IAX (]?ﬁklAZp)

n—p-—Il<k<<n

Proof. Let X = Rf, which, by Lemma 2, is a BK-space.

(a) By Lemma 5A, X has basis {6"’} and representation (21). Now
the choice B = I in Theorem 3, and use of Lemma 7 (32), gives, with
#y =P+,

(@) = (@) = o(IF"5}) = o(A75™).

(b) As is easily verified from the definitions in § 3 (or see [22], (28)),

(41) ('z'n—(-z)—ln)tg‘l = )‘71+]1tf:-21lt517—1'
Choose in Theorem 3 the basis {6™} (so f;{x) = f(x), by Lemma B5),
and by, = Ayips byg—1 = —Any by, = 0 otherwise. Then, by Theorem 3

and (32) (, = 0),
U (@) = (Apyp— M) 5 () = 0{max (4, 167" M}y Ay 16711510}
= o{max (A, A} _1,p) Anspdip)}-

(¢) Since (IT%)™* = (+%,) and T?» = {iL(x)}, we have x,, = D k(@)

=n—7
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Choose in Theorem 3 the basis {6%} and B = (z%,), and we get

Uy (%) = @y, = 0{n max n( [h] - 16751500}

which, by (32), gives (39).

n
(A)He, =2, —2, ;,thenTPa = TPpand 0 o, = Y #,12(x). The
f=n—p—1
choice B = (%) in Theorem 3 now gives the required result (40). In
every case, the use of Theorem 3 gives the best-possible order conditions.
Remark 5. It it proved in [4], Lemma 7(a)(i) that if 305 (% = p+9)
then

(42) (@) = o(45,).

But since the matrix A?" which transforms {12} into {27} satisfies the
hypotheses of Corollary 3(b), and af = A, by (15), we deduce thab
(42) is a best-possible limitation theorem in Oy (and hence in R, by
Lemma 3(a)). It is easy to deduce from (41) and (42), by induction
(see [4], Lemma 7 or [22], Theorem 3) that if xe (% (= RJ,) then

(43) tﬁ(m) =O(A-£r—r+n)! r =0,1,...,p,

but this is not best-possible for 7 < p except in certain special cases.

If geR},, then w<R), and the limitation results (37), (38), (39), (40)
follow from Theorem 4. However, in applying Theorem 3 to determine
whether these results are best-possible in R{’M, the only Schauder basis
which we eurrently have for R, is {6%} (Lemma 5). Nevertheless, this
allows us to deduce the best-possible nature of all the results of Theorem
4 except the fractional case 0 < #, < 7 of (37); the proofs are identical
to Theorem 4 except that [6%|,, replaces |8”],, — but Lemma 7 (33)
then ensures that the actual order conditions remain the same. Thus
we have:

TEBOREM 5. With the notation of Theorem 4, let weRfy, . Then (42),
(38), (39), (40) hold, and these order conditions are all best-possible in R?M,.

Remark 6. Although (37), (38), (42) give order conditions for gener-
alized Cesaro means rather than Riesz means, we can deduce results
for the latter, at least for integer means or when the order of magnitude
is increasing. Thus from [22], Corollary 4, and the Riesz convexity theorem
[5]; Theorem 1.71, we have, for 1, < o < Iy @ <p<xg=0,1,2,...,

(44) i =0(m), (7, >10) = BY0) =o( max m)
Neg<hSn

(45)  [RB*(@) = o(1) and B%(w) = 0(e,) (0 < g, 7)]=
' > R*(w) = ool

)

icm

Best order conditions in linear spaces 115

A simple example using (42) and (44) is, for 1, < o < Any1s

BRP*"w) = 0(1) = & =o0(4],) = R?(w) = o max Ajp).
n—p<k<n

The standard limitation theorem (35), which yields RP(w) = o(4}), 1s

n
n.

weaker because (i) max Ay, < 4,, and (i) we may easily construct
n—-p<Lh<n
a sequence {4,} for which 4, # O( max A.) (e.g. take p = 1, A, = n,
n—-p<h<n

Ao =M+0yy 0< 6, <1, 6,—0).

Remark 7. Notice particularly that (16) gives a simple explicit
formula for %%, so that (40) specifies the best-possible order condition
on the terms a, of an (R, 1, »)-summable series Ya, explicitly in terms
of 2 and ». Two special cases of Theorems 4 and 5 deserve mention:

(i) The case p = 0. Observe, from (39) and (40) with p = 0, that

(46) Prre = A:a
thus best order conditions in both R, and R, 0 < x< 1, are
(47) @, =o0(dy) and @, =z,—2, ; = o{max (A, A:_)}.

(ii) The case 4,_, = 0(4,). Here (16), (17) and [23], pp. 416417,
show that the expressions for ¢,, and @,, in (39) and (40) satisfy

Apy = 0(4y), x> 0.

It follows that the standard limitation theorem w, = o(A%) (put p=0
in (35)), together with a, =, —x, ; = 0(4%), are best-possible in both
R}, and R}, for every x>0, when 4, , = O(A,). However, without
some restriction on A when » > 1, the result @, = 0(4%) is certainly weaker
than that given by Theorem 4. For example, when 1 < x < 2, the best
limitation theorem is

Pue = max(dy, 45_1), 0<n<L;

(48) P = P < A% when

zeR), (1<%<2) =, =o0(p,),

Prn = (Anga “‘}“n)*lma‘x(}m/l::i,nZn+1/1;:1_1)7

and the example at the end of Remark 6 shows that 4% # O(g,,) in this

case. .
COROLLARY 4. Let %> 0 and @,,, Pn. b¢ defined as in (39) and (40).-
(8) In order that b,w, = o(1) whenever weR), it is necessary that
b, = 0(1/p,,) as n—oo.
(b) In order that b,a, = o(1) whenever xeR},,, where o, = B, —@y_y,
it is necessary that b, = O(1/@,,) as n—>co.
Proof. (a) Suppose that 0, =b,p,, % O(1). Then, by Theorem 5,
Ao* e R}y, such that 0,2 5 o(p,,); that is, byay # o(1). (b) The proof
is similar.
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Remark 8. Since the convergence of }'b,x, implies that b, x, = o(1),
Corollary 4 gives a mecessary condition for convergence factors in any
space containing R, .

COROLLARY 5. Let %> 0, and if »> 1 assume A, , = 0(4,). Given
any 0, # O(L), there is a sequence {m,}, and a series Y o, both summable
IRy Ay %lo, b0t such that 0,@), 5 o(A7) and 0,a) # o(AL).

Proof. Apply Corollary 4 and the two special cases in Remark 7.
When 0 < x < 1 the condition 4,,_, = O(4,) is not required for the con-
clusion since, by (46), we then have g,, = 4% and @,, > 4.

Corollary 5 has been proved by Jakimovski and Tzimbalario [10],
Lemma 3, and includes earlier results of Russell [23], Theorem 2, for
the larger space R},, and of Jurkat [11], Satz 4, where a heavier restric-
tion on 2 iy also used. In all these previous proofs, it is shown that {3}
can also be taken as the sequence of partial sums of Sl

Our next application ‘concerns the following theorem (*) of Borwein
and Oass [2], which we shall extend, together with its analogue for absolute
summability, to fractional orders of summability.

THEOREM A. Let p be o non-negative integer and f > p. Then in order
that (B,2,8) ~(R, A, p)itis necessary and sufficient that lim nf (AypppafAy) > 1.

n~»co

The condition liminf(A,,,.,/A,) > 1 can also be written Ay = 0(1);
N—+00

and for completeness the statement and proof of the sufficiency part of
Theorem A is given as Theorem 6(a).

TrEOREM 6. (a) Let p be a non-negative integer and Ay = O(1)
(n—>o0). Then
R, =Ry, for every axp.

(b) Let B> %>0 and R, = R,,. Then
‘/lnp = 0(1) ('”’_>'°°)7 P = [”]

Proof. (a) Note that 4, as7 » ;lLence if A,y = O(L) then A, = O(1)
for each r = p. Rewriting (41) in the form

(479) t:z = Anr (t:ﬁ"l —it] ) + t;‘tll

N1
we see that if A,, = 0(1) and {#;'}cc then {i/}cc. Tt follows that Orri1
" Oy for = p and, by (19) and Lemma 3(a), Ry, = Ry, for every a >p
(b) Liet B > » = p+1,, where p = [»] and 0 < 7 < 1, and take the
equivalent hypothesis R, = Rj,. Then, by (19), RS, oy = B ppn = B3 sy
for some 7y, n with 0 5, < 5 < <l and p+y<p. éu]);pose ﬁi'lél/t
Ayp # O(1). Then choose 6, = Aip™ # O(1) (since 5—zny > 0), and it

where

. (*) The case f=p+1 (which includes the sufficlency part of theorem A) was
given by B. I. Korenblyum [Dokl. Akad. Nauk SSSR 81 (1951) pp. 725-727;
Theorem 2].
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follows from Theorem 4 (or Remark 5) that Ia*<Rj,,, such that & (2*)
5 0 (AL, A7), Lee., 12(a") 5 0(A%,). But since also @R pyn,, Theorem
4 (or Remark 5) gives (") = 0(A47), a contradiction. Hence A,, =0(1).

THEOREM 7. () Let p be a non-negative integer and A,, = O (L) (n—>o00)
Then

By = Ry for every a=p.
(b) Let p> %220 and By, = Ry, . Then
A'np = 0(1) (%”’oo)’ p = [M]

Proof. (a) If ,, = O(1), then A, = O(1) for each » > p. Now,

from (49),

(50) t:‘,,_ —752+1 = An+1,§(tz+1 - taﬁ{-ll) - (Am ’_1) (t:ztll — Z17;.+1);

hence if 4, = O(1) and {5} ev then {f}} ev. If follows that O .., S Ol
for r > p and, by (19) and Lemma 3(b), B, = R, for every a> p.

(b) The proof follows in the same way as that of Theorem 6(b), but
using absolute summability fields and ap]bea.ling to Theorem 5 instead
of Theorem 4.

Remark 9. (i) Theorems 6 and 7 show the remarkable result that
if all the Riesz means (or absolute Riesz means) are equivalent from order
x onwards, then they are in fact equivalent down to [»]; that is, the equiv-
alences can never stop at a fractional value of .

(ii) As a corollary of Theorem 7 (take p = % = 0) we see that
(51) Jor any B>0, Rpyy =0 < d,=0(@1).
The < implication in (51) may be deduced, for instance, from Ratti
[21], Theorem 1 and Remark on p. 1006; the = implication in (51)
was conjectured by Maddox [16], p. 263, and proved by Jakimovski and
Tzimbalario [10], Theorem 7.

(iliy For |R*, A, f| summability, it follows from (51) that

for any >0, Rjy=v = A, =0(1)
(Maddox [16], Theorem 2);

where

(52)

in the opposite direction, it is known that
(83) for 0<p<LL, A, =0(l) = By =» (Koérle [14], Satz 2).
(iv) By trivial modifications in the method of proof of Theorems
6(b) and T7(b), it is possible to combine these two results into the
following more general statement:
if Ry S Ry, for some > x>0, then 4,, = O(1), where p = [x].
Our final applications of the results of § 2 allow us to write down,

in improved form, and without restrictions on the type A, complete necess-
ary and sufficient conditions for an arbitrary method to include ordinary
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or abgolute Riesz summability. We take the liberty of using ¢z to denote
the set of all B-limitable sequences, B = (b,), even when ¢ may be a
continuous parameter. )

THEOREM 8. Let p be o non-negative imteger, 0 < n <1, % = p-+n;
A7 0035 B = (b,); and let (z5,), given by (16) and (17), be the inverse of

the (%, %, p) sequence-to-sequence matriz T?; let ¢, = max (|74},
PR B ]
»>=p. In order that Ry, = cg it is necessary and sufficient that

(54) Alimb,, =4, (» =0,1,...), Ilm Db, =5,
4 4 v

(85) byl < Hylpwe
and that a family of functions {g,} ewists, defined in [, oo), such that

for each o and for all v = p, for some H, < oo,

o0 oo
(86) by = 4, [ (0—1)'dgy(w), [ o"ldg,(0)] = M,< M < co.
Iy iy

Qondition (BB) may be omitted if either (i) B is row-finite (sinoce (55) is
then trivially satisfied), or ¢f (i) 0 < % << 1 (since (56) implies (B5) in this
case).

Proof. For 0 < » <1 see Russell [25], Theorem 1 and Remark (i).
For »>1 the theorem is given by Jakimovski and Tzimbalario ([9],
Theorem 1) (see also [8], Theorem 1 for 1 < » < 2) with condition (55)
replaced by '

(B7) limu,(#) =0 for each ¢ and for each weR),,
N—>00
‘where
n4p—1 . n+p—~1
U(@) = D) k(@) = D) byth.
k=n j=k

However, since B;, = ¢pimplies that ), b,,, must converge for each p when-
v

ever zeRS,, it follows from Corollary 4(a) that (55) is necessary. Conversely,
if » > 1 and (55) holds then, by Lemma 7 and the definitions of d,, and
@, We have, forn<kgnt+p-—-1,n =0,1,2,...,

max
kj<<ntp—1

ldnlcl < P |bgj'rjx},c] < p- Mmax lbgjrﬁa[ < ,quAk_pn S Kq H‘SMHM

k<i<n+p
and hence, by Theorem 3 and Lemma 5, for each <R},

Uy (@) =0 { max (Idyl |65} = o(K,)  as

n<hk<n+p—1

—>» 00,

Thus (57) holds, and the sufficiency part now follows from [97], Theorem 1.
TemoREM 9. Let p be a mon-negative integer, 0 < <1, % = p-+nu;
Ap 005 B = (by). In order that Ry, < cp it is necessary and sufficient
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that (54) and (85) hold, and that o family of functions {g,} ewists, defined
on [Ay, o0), such that

P a
(58) b, =Af 9e(0) 7~ 4,(1 =2 [0) 14w, esssuplg,(w) =M, < M < oo,

where A,(1—A,[/w)* is to be interpreted as (1—2,[w)* for 4, < o< dyy,-
Condition (55) may be omilted if either B 4s row-finite, or if 0 < »< 1.

Proof. This theorem is given by Jakimovski and Tzimbalario ([10],
Theorem 1) with (55) replaced by the condition that the limit in (57)
should hold for each weRy, . Since we know, by Lemma 5, that { 7%} is also
a basis in R}’M, and, by Lemma 7, Hé”klhm = Ay, , the proof follows in the
same way as for Theorem 8.

Remark 10. (i) If in Theorems 8 and 9 we require the B-limit to
be the same as the (R, 4, »)-limit, we must put g, =0 (» =0,1,...),
B =1 in (54).

(i) If 4, = 0(d,), then (48) shows that (b5) is equivalent to

bel < Ho 47"
Thus the only effect on Theorems 8 and 9 of a restriction on 1 is to simplify
condition (55). Compare with [25], Remark (i), [9], Theorems 2 and 3,

[10], Theorems 2 and 3, and for an alternative form of Theorem 8 in the
case where x is an integer, see [26], Theorem 1.
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On the moduli of convexity and smoothness

by
T. FIGIEL* (Gdadsk)

Abstract. In the paper the moduli of convexity and smoothness of general Banach
gpaces and products thercof are discussed. An attempt is made to give precise estimates
where only qualitative results have been known. (E.g. it is proved that the moduli
of I, (X) are equivalent to the corresponding ones of X.) The problem how far the modu-
lus of convexity can be improved by a suitable renorming is studied for spaces with
local unconditional structure.

In this paper we are concerned with general properties of the moduli
of convexity and smoothness of Banach spaces and certain products
thereof. Our purpose was to obtain some estimates, useful in the isomorphic
theory of Banach spaces, in a precise form and with no redundant assump-
tions ‘on the spaces involved. Renorming problems are considered only
in the case of the existence of local unconditional structure, which may be
regarded as elementary (cf. [5], [24]). Our terminology tends to be con-
sistent with [16].

Section I is of an infroductory nature. The main results are Prop-
ositions 3 and 10 and Corollary 11. The first two of them seem to have
been implicit in the literature, but their role has not been recognized.
For the sake of completeness, short proofs of some known results are
also given.

The main result of Section IT is that the moduli of convexity and
smoothness of I,(X) are essentially the same as those of X. This completes
the results of [7]. The method used to estimate 01, can easily be adapted
to the case of Orlicz spaces of vector valued functions, Ly, (X). The formulae
obtained are analogous to those found in [18], where the case X = R is
discussed. The results of Seetion I allow us to show that the latter formulae
are the best possible. The corresponding results for the moduli of convexity
are obtained by duality, with the use of some formulae for the Legendre
transform.

In Section III we investigate the uniform convexifiability of a space
£ with an unconditional basis. The dual results are not formulated, their

* Supported in part by NSF GP-30798.


GUEST




