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Freely solvable systems of linear inequalities

by
K. SENATOR (Warszawa)

Abstract. A system of linear inequalities (in RX) is called freely solvable if each
of its “partial solutions” can be extended to a solution. A class of such systems is
described. It yields a method of solving systems which differs from Farkas’ lemma.

Let U and V be topological vector spaces and let ¢ be a convex
cone in V. A linear system is given by A% < a where A: U->V is a linear
operator and aeV. The following statement is a simple consequence
of the separation theorem.

FARKAS TEMMA. Let AU+C be a closed conver cone. Then one and
only one of the following alternatives holds:

(i) There ewists an element 1 e U such that Aw<a, i.e, a—AueC.

(i) There emists am fe O* such that A*f =0 and f(a) <0, where

= {fe V*: f(v) = 0, for all ve C}.

The aim of this paper is to study linear systems where U = R*, ¥V = R7,
¢ = R%, possessing a property which we call free solvability. The result
obtaﬂned is related to Farkas’ lemma. The method of step-by-step extension
is used, similarly as in the proof of the Hahn—Banach theorem.

Let X be a set. The support of a function a: X—+R is the set s(a)
= {pe X: a(z) # 0}. For any function ¢ on X with a finite support
the functional

u—»(a,@c)g Za(m)u(w) '
zeX
is well defined on R, linear and continuous with respect to the product
topology. Moreover, every continuous functional on R¥ is of that form.
By a linear inequality over X we mean the expression

la, ) < a

where o is @ real number and a, a real function on X, has a finite support.
A function u: X—R is called a solution of & system of linear inequalities

M = {{ay, u) < o te T}
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over X if, for every te T,
D w(@)u(®) < o
xeX -~

For any ¥ =« X we put
My ={{m,uy< o
and for every ze X
M, = {a(2)u < o s(ay

s(a) < ¥, te T}

< {z}, te T}
(it is a system over {z}).

In particular, if ¥ = @ then M, is the subsystem of M consisting
of all inequalities of M with empty supports which are identified with
inequalities on real numbers.

A function ¢: YR (@ # Y < X) which is a solution of My is
called a partial solution of M. A system is called freely solvable if it has at
least one (partial) solution and any partial solution can be extended to
a solution of the system.

Evidently any freely solvable system M has the following individual
extension property: for any Y < X and z¢X every partial solution
p: ¥Y—R can be extended to a parma,l solution. ¢;: Y u{x}->R. The con-
verse Statement is-also true.

PROPOSITION 1. A system of linear imequalities over X is freely solvable
iff it has the mdmdual extension property and there exists at least one partial
solution.

Proof. Let M = {(a;, u) < ¢, te T} be a system of linear inequali-
ties over X with the individual extension property. Let {¥,} be a family
of subsets of X, linearly ordered by the inclusion relation. If a function
y is defined in the set X, = {J ¥, and, for every », v| r, is a partial solu-

tion of M, then v is also a partial solution of M. This statement is a con-
sequence of the following evident fact: for every e, with s(a,) = X, there
exists an index » such that s(e) = Y,. Thus the assumptions of the Ku-
ratowski-Zorn lemma are satisfied for the family of all partial solutions
ordered by the inclusion relation (we identify a function with its graph).
Therefore there exists at least one maximal partial solution. This solution,
¥.in X; < X, is a partial solution of M and has no extension beyond X,
which would be a partial solution of M. By the individual extension
property, X, = X. Thus the proposition is proved.

Two systems of inequalities are called equivalent if the sets of their
solutions are equal. Evidently if a system M is freely solvable and M,
is an equivalent system, M, > M, then M, is also freely solvable. Let
M be a system of linear inequalities and let M be a system congisiting
of all inequalities which are consequences of the system M. The system
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M is equivalent to M. If there exists a freely solvable system equivalent
to the system M, then the system M is also freely solvable.

It is not true that every solvable system can be extended to an equiv-
alent and freely solvable one, as the following example shows.

ExampLE 1. Let N be the set of natural numbers. Consider the system
M over Nu{0}:

M = {u(0)+u(n)<0: ne N}.
For any finite subset F of N, every function u,: F—-R can be extended
to a solution of M; it is enough to put #(0) = —u(n) = min(—-uo(m))
ze R

(ne N—F). This fact implies that the system My consists only of trivial
inequalities. It is easy to verify that a function #,: N--R has an extension

to a solution of M iff supu,(n) < co. On the other hand, every function
neN

#o: N—R is a partial solution of M. This means that the system M
is mot freely solvable. v

Now we are going to describe a class of freely solvable systems.
First we give a few definitions.

DEFINITION. Let 1, >0 (¢ =1, ..., %). The inequality

Oyy+ ovee Fhay, ) < o+ ... +4,0,

is called a linear combination of inequalities (g, uy <
with coefficients 4,, ..., 4,. I A; 054 .

@ (6 =1,...,1)
. + 2,0, < a, then the inequality

pog+ oo 0, u) < o is called an elementary consequence of the
mequahtles lag, wy < a; (¢ =1, n):
Let M = {{ay, u) < oy: te T} be a kystem of linear inequalities.

By M* we denote the set of all solutions of a system M. A system M,
is said to be a consequence of the system M if My o M*.

A system is called an elementary consequence of M if each of its
inequalities is an elementary consequence of a finite subsystem of M. Two
systems are called elementarily equivalent if each of them is an elemen-
tary consequence of the other.-

We put

coneM = {{Ayay + ... + A0y, ) < oyt .o A0
tiel,2;20,i=1,...,n;0 =1,...}.

DEFINITION. Let # be a natural number. A system M = {{a;, u)
< o, teT} is called n-full if, for any ¢,, ..., 4,¢ T and any non-negative
numbers A, ..., 4,, not all of them zero, the inequality

Syt + s Ay, 1) <
is a consequence of the subsystem My where ¥ = s(har+ ... +24,a).

Instead of ¢2-full” we say “binary full”. A xystem which is n-full
for every » is called a full sysiem.

Aoy A+ e Ay,
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PROPOSITION 2. For any system M the system coneM is full.

Proof. The above is an immediate consequence of the formula
cone(coneM) = conel.

DeriNITION. Let X be a set with at least two elements. We say that
a set of real fanctions on X, A4 = {a;: te T}, satisfies the symmetry condition
at a point we X if, for every te T such that the support of a, is at least
a two-element set, there exists a t,e¢ 7 such that

sgnay(2) = —sgna(e) and - s(ay) = s(a).

We say that the set A satisfies the finiteness condition at point we X
if the subset {te T': a;(2) # 0} is finite.
: If the set 4 satisfies the symmetry condition at every point of X,
then we say that A satisfies the symmetry condition. The same applies to
the finiteness condition.

If X'is a one-element set, then the set of functions, 4 = {g,: TR,
. te T}, is in fact a set of real numbers. Such a set is said to satisfy the sym-
metry condition if for every teT there exists a t,e T such that sgna,
= —sgna;, i.e., there are two non-zero elements with opposite signs or
all elements of A are zero.

In a natural way we apply the above definitions to systems

= {{ay, uy < 052 teT}.

. Remark. If a system I satisfies the symmetry condition, then the
system cone M does not, in general, satisfy this condition. But if for every
e X the system M, satisfies the symmetry condition, then the system
coneM also satisfies it. If 4 = — 4, i.e, if for every ¢ T there exists
a tpe T such that @, = —a,, then coned = —coned and the symmetry
condition is satisfied. In this case the corresponding system of inequalities
is equivalent to the system o0f inequalities of the form
1) o <<a,uy <a
each.

Lemva. Put M = {au < o teT}, where @, a; are real numbers
(teT). If the system M is binary full and satisfies the symmetry condition
or is finite, then M is solvable iff all the inequalities of M, are true.

Proof. Assume that each inequality of M is true. (The necessity is
obvious.) Put Ty = {teT, sgna; =k} for %k =0,-+1. The symmetry
condition implies the following alternative: the sem T, are both empty
or both non-empty. If T,, = @, the lemma iy trivial: any real number

is a solution of M. Let. T, be non-empty; then a real number w is a solu-
tion of M iff

S LG
(2) sup — < u << inf —
ter_, O ter; O
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Evidently, there exists a u satisfying (2) iff for every ¢'e« Ty, t"'eT_;
the inequality

ar 272
— < —_—
Ay
holds, i.e.,
3) 0< apray—opap.

Inequality (3) is a linear combination of the inequalities a,u < oy and
e < ap with coefficients —ay. and ay, respectively. By the binary
fullness assumption inequality (3) is & consequence of M, and so it is
true.

If the symmetry condition is not satisfied, one of the sets T,, is
empty and the other is non-empty. Assume that T_; =@ and T, # O;
then T, is finite and the set of solution of M is the interval v < min %.
tely ¢

The remaining case is analogous. Thus the lemma is proved.

THEOREM 1. Let M be a binary full system over X. If for every xe X
the system M satisfies the symmetry orv the fimiteness condition ot x, then
M is freely solvable iff for every we X the system M, is solvable.

Proof. Suppose that M, are solvable: in particular, that the inequali-
ties of M, are true.

To prove the solvability of M it is enough, by Proposition 1, to prove
the individual extension property of M. Let a function #,: ¥ =R be
a partial solution of the system M = {{a;, 4> < o;: te T} and ve X — Y.
We have to show that the following system over the one-point set {x}

(4) 4(@)u(o) < - )

a(y)uy(y), tel’,
ye¥ —{x} :

where
T = {teT: s(a) = YU{z}},

has a solution. It is easy to deduce from our assumptions that system (4)
iy binary full and each of its inequalities with empty support is true.
If system (4) satisfies the symmetry condition, then by the lemma it is
solvable. If it does not satisfy thiy condition, then the numbers a,(#),
te T', are all non-negative or all non-positive. Put T" = {t« T"': wes(a)
# {#}} and Ty = {teT': w¢s(a,)}. The system M,—M, consisting of
inequalities (4) cerresponding to te T —(T,uT") ix solvable. Assume that
a(x) =0 (teT'); then the set of solution of M,—M, is an interval
{# < o} and the set 7" is finite (by the finiteness condition assumption).
Therefore system (4) is solvable and the set of its solution is an interval

{u<p}
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CoROLLARY 1. If a system M ovér X is binary full and satisfies the
symmetry of the finiteness condition at every point xe X, and each system
M, satisfies these assumptions, then M is freely solvadle iff each inequality
of M, is true. ' .

Taking into account the remark after Proposition 2, we immediately
get the statement. L} :

COROLLARY 2. Let M be a system over X. If for every ze X the system
M, satisfies the symmetry condition, then system M is solvable iff each in-
equality of coneld with empty support is irue.

An analogous statement can be formulated for systems consisting
of inequalities of the type (1).

As an illustration of Theorem 1 consider the following example.
B ExampLE 2. Let X be a set with at least two elements. Denote by
X the set of all two-element subsets of X. A pseudometric is a function
d: X—R which satisfies the conditions

(a) d(z,y)= 0, (b) d(z,y) < d(w, 2)+d(z, y),

where #, ¥, are any points of X, o % y 5 2 5= 2. The following system
of inequalities is elementarily equivalent to the previous system:

(5) (a') ‘d(w:y)<03
(b) d(wla wn)—d(wly mz)"“ e _d(mn—ly ‘I"n) < 07

where @, ..., @, X, @; % x; for ¢ + j.

Using the well-known properties of a cyclic path (in graph theory
sense), we easily check the binary fullness of system (5). Subsystem (5) (b)
satisfies the symmetry condition; subsystem (5) (a) is solvable. Thus
all the assumptions of Theorem 1 are satisfied and system (5) is freely
solvable. In this way we have obtained a characterization of functions
in a set @ = X which can be extended to a pseudometric in X. Namely,
a function d,: @->[0, oo) (G = X) can be extended to a pseud.ometric
in X iff for every cyclic path {(#,,%,), ..., (2,1, @), (2, 2,)} in @ the
following inequality is satisfied: '

do(@y, 2,) < do(y, %2"*‘ oo Fdo(@yyy @)
Such a statement is not valid for metrics (unless X is a finite set).

Now ‘we are going to discuss the free solvability of finite systems.

Let I be a linear subspace of R”. An elementary vector of I is de-
fined as a non-zero vector of I whose support is minimal, i.e., does not
properly contain the support of any other non-zero vector of L. Any
subspace L has only finitely many elementary vectors, up to scalar multi-
plies ([11, [3], [4]).

icm

Freely solvable systems of linear operalors 197

Denote by A the set of all elementary vectors of L. We have span
A = L and moreover

(6) . RiNL = cone(ANEY),

where R, is the set of non-negative numbers.

The proof of formula (6) is of a combinatorial character.

THEOREM 2. Let M = {{a, u) < ap: ¢t =1, ..., m} be a finite system
of linear imequalities over {1,...,n}. For each set o = {1,...,n} let 4,
be the set of elementary vectors A = (A, ..., Ay) of the subspace

L, = {Ac R™: s(A1ay+ ... +inay) < o}.
Then the system

(7) Q = {<}'1a1+ +lma7n) u><}‘1a1+ +Z1na’m1 }"L> O: 2'6 UAH}

is full and finite up to scalar multiples. .

Proof. For every o the set 4, is finite up to scalar multiples, and so
system (7) has the same property.

Let {a,u)> < a be an inequality of coneM. Put s(a) = o. Taking
in (6) L = L,, we have RYNL, = cone(4A,NEY). By this formula the
inequality <{a, %> < a is an elementary consequence of @,. So the system
Q is full. .

Applying Corollary 1, we immediately obtain the statement.

COROLLARY 3. If M is a finite system of Uinear inequalities, then there
exists a finite system elementarily equivalent to M and full. A finite system
M is solvable iff every imequality of cone M (or system (7)) with empty
support. is true.

This means, in particular, that we have independently proved Farkas’
lemma for finite systems. (Compare proof of Th. 22.6 in [4]. See also
[21.)

Various generalizations of combinatorial character as well as for
topological vector spaces will be presented elsewhere.

The author wishes to thank everyone with whom he discussed an
early draft of this paper. Thanks are especially due to Professor Jerzy
Fo§ for his critical comments and advice, and to Professor Tyrrel Rockafel-
ler for his kindness in reading over the first version of this paper and
pointing out its faults.
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On the isometries of spaces of Hilder continnous functions
by
A. J. TROMBA* (Santa Cruz, Calif.)
Abstract. Let M be a compact O"-Riemannian (1 < 7 < o) or analytic Rieman-

nian m-manifold and let C%(M) denote the continuous functions which satisfy a Holder
condition with exponent a and with A2(M) the closure of the C’-functions in. ce(M).

In this paper we show that A2(M) is isometrically isomorphic to Af(W) iff M is O

(analytically) isometrically diffeomorphic to ¥, and o = g.

1. Introduction. It is a classical result called the Bamach—Stone
theorem that if M and N are two compact Hausdorff spaces, then C(M)
is isometrically isomorphic to C(¥) iff M and N are homeomorphic.
Thus isometries of C'(X) determine the topological type of the underlying
space completely. This is not true of isomorphism. For example, if M
and N are uncountable compact metric spaces, O(M) and C(N) are iso-
morphic (Milutin [8]). ' ‘

Let M, N be two compact 0", »>1 (analytic) finite dimensional
Riemannian manifolds and let 0*(M) and C#(V) denote the spaces of real
valued Holder continnous functions on M and N defined with respect to the
Riemannian metrics on M and N (see definition below) with 0 < a, 8 < 1.
Let 2*(M) and 1°(N) denote the closure of the O functions in C*(M) and
CP(N), respectively. In [1] it is shown that A*(M) and A*(N) are isomor-
phic for all M, N, a and 8. In this paper we show that A°(M) (C(IM))
is isometrically isomorphic to A*(N) (C%(N))iff « = f and M is isometrically
0" (analytically) diffeomorphic to N (Theorem 3, § 4 and Remark 2, §4).
This generalizes work of deLeeuw [3] who proved a version of this result
when M and N are both the unit intervals. ;

The author wishes to thank D. X. Elworthy for his thoughtful and
stimulating advice.

) 2. Definitions and preliminaires. Let M be a compact C"-Riemannian
manifold (perhaps with boundary). The Riemannian structure induces
a metric g, on M as follows.

Let I denote the unit interval and let ¢: I—+M be a (' mapping

(once continuously differentiable). Then o (f)e To4 M, where o (t) is the

* Research partially supported by NSIF grant GP-39060.
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