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On the isometries of spaces of Hilder continnous functions
by
A. J. TROMBA* (Santa Cruz, Calif.)
Abstract. Let M be a compact O"-Riemannian (1 < 7 < o) or analytic Rieman-

nian m-manifold and let C%(M) denote the continuous functions which satisfy a Holder
condition with exponent a and with A2(M) the closure of the C’-functions in. ce(M).

In this paper we show that A2(M) is isometrically isomorphic to Af(W) iff M is O

(analytically) isometrically diffeomorphic to ¥, and o = g.

1. Introduction. It is a classical result called the Bamach—Stone
theorem that if M and N are two compact Hausdorff spaces, then C(M)
is isometrically isomorphic to C(¥) iff M and N are homeomorphic.
Thus isometries of C'(X) determine the topological type of the underlying
space completely. This is not true of isomorphism. For example, if M
and N are uncountable compact metric spaces, O(M) and C(N) are iso-
morphic (Milutin [8]). ' ‘

Let M, N be two compact 0", »>1 (analytic) finite dimensional
Riemannian manifolds and let 0*(M) and C#(V) denote the spaces of real
valued Holder continnous functions on M and N defined with respect to the
Riemannian metrics on M and N (see definition below) with 0 < a, 8 < 1.
Let 2*(M) and 1°(N) denote the closure of the O functions in C*(M) and
CP(N), respectively. In [1] it is shown that A*(M) and A*(N) are isomor-
phic for all M, N, a and 8. In this paper we show that A°(M) (C(IM))
is isometrically isomorphic to A*(N) (C%(N))iff « = f and M is isometrically
0" (analytically) diffeomorphic to N (Theorem 3, § 4 and Remark 2, §4).
This generalizes work of deLeeuw [3] who proved a version of this result
when M and N are both the unit intervals. ;

The author wishes to thank D. X. Elworthy for his thoughtful and
stimulating advice.

) 2. Definitions and preliminaires. Let M be a compact C"-Riemannian
manifold (perhaps with boundary). The Riemannian structure induces
a metric g, on M as follows.

Let I denote the unit interval and let ¢: I—+M be a (' mapping

(once continuously differentiable). Then o (f)e To4 M, where o (t) is the
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-derivative of. o at t. The map t—>[|cr ,,(“ = l/<a

" (1D o 18 continuous.

Thus we may take the integral f 1|a Vldt. Let p, ge M. Then the metric

oy is defined as ou(2; 9) mt f llo’ (£)|d¢, where the infimum is taken

over all " paths o with ¢(0) = p and ¢(1) =¢. It is well known (e.g.,
see [9]) that g, induces the given topology on M. Let 0 < ¢ << 1. The
space (°(M) is defined to be the set of continuous real valued functions
on M with

o) =1l _
22y Ou(%, ¥)°

The norm on % M) is defined by

_ fi—1))
@ Ilfllu-zli%(lf@)!: O

Il |l gives C*(M) the structure of a real Banach space. The 0" functions
are not dense in 0*(M), and we shall denote their closure by A*(M). The
space A*(M) can be characterized as the set of functions f in C*(M) with
1f (@) —F(y)| —o(gM(m,y)) In addition in [1] it is shown that A%(M)
is 1somorph10 to the space ¢, of sequences converging to 0.

It might be helpful to note (1) is not a ‘‘canonical” norm for c-.
‘One could, for example, define the norm by taking the sum

4o @ =IO

e Al

The main result of this paper depends strongly on the choice of norm
for O%

By an ssometry T: A*(M)->i*(N) we mean a linear map T with [ Zf],
= [Ifll, for all fe A*(M). :

An isometry ¢: M—N is a (" diffeomorphism (a 0" homeomorphism
with 0% inverse) with Dy,: T, M—+T N (the derivative of ¢ from the
tangent space of M at » to the tangent space of IV at ¢ (2)) alinear isometry.
It is not difficult to check that if ¢: M —N is an isometry it must preserve
distances; i.e., ox(®,¥) = ox(p(®), p(¥)-

Example of an jsometry 7. Let « = § and suppose that N is iso-
metrically diffeomorphic to M with ¢: N—M the isometry. Then T;:
AN M)—>A%(N), & =1, 2 defined by

() (y —1)'f(e(y)
are isometries of A°(M) and A*(N).

icm°
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We shall show that all isometries of A°(M) and A*(N) arise from iso-
metries of the manifolds M and ¥ in the above manner.

Before proceeding with Section 3 we shall state a proposition proved
in [5] which we shall need later.
. ProrosrrioN 1. The second dual A*(M)*™ of 1°(M) is naturally isome-
trically isomorphic to (M) so that the isometry I: A*(MY*—~C*( M) makes
the following diagram commute

AS( M) e go( M)

N
N OE(L)

where ine denotes the natural inclusions. In addition, identifying (1%)**
with 0% f,—f weak* iff f, tends to f uniformly and ||f,|l, is bounded for
all n.

In the .Eollowmg paragraphs we shall often identify C°(M) with
A*(M)*™ and weak* convergence with uniform convergence with uniformly
bounded. C* norm.

3. Extreme points of the unit sphere of 1“(M). As in the Banach—
Stone theorem the main tool will be the characterization of the extreme
points of the unit sphere §* of the dual space A*(M)* of 1*(M).

For each pe M and (p, q)e M X M — 4, where 4 is the diagonal of M,
define 8, A*(M)* and 6, ,¢ A*(M)* by

0 (f) = f(p)
and
_ ) —=flg)
bl =
Clearly, (16, = 1. I g (p, q) > 21’", then
!f —f(q) 2
< 1.
el =200 TN e

80 (16,4l <1 if gy(p,q) > 2Y% We shall show that for gm(p, ¢) <2, .
1054 = 1, and that the extreme points of the unit ball 8* of A*(M)*
are the Va,luatlom 48, for all p and d,, for all p, ¢ with 0 < on(p, @)

< 2% Thus if gy (p, g) = 2", ||8,,4l = 1 but 8, , is not an extreme point.
To see this, note that for such P, ¢ = 40, — %4, which shows that
dp,q 18 nOt extreme.

Our first step will be to show that every extreme point of §* must

be either of the form 6, or of the form 4, ,.

619: [


GUEST


202 \ A. J. Tromba

TEMMA 1. Let the locally compact space X be the disjoint union of M
with (M xM)— A4 (4 = diagonal of M <X N). There is an isometry of A°*(M)
onto a closed subspace of Cy(X), the continuous functions on X wvanishing
at infinity.

Proof. Define a map ~: A*(M)->0,(X) as follows. Given fe 2°(I0),
define

£(2) it ze M,

T = fw=f@ it z=(p,q)eM xM—diag(M x M);

en(?, 9)°
~ is clearly an isometry into.
Let X be a locally compact Hausdorff space. Let Z' < C,(X) be a closed
subspace and denote its dual by F*. We have

Leuma 2. Let G be an ewtreme point of the unit sphere of F*. Then
there exists a 2eX such that

either D(f) = +f(z) or D(f) = —f(z) for all feF.
Proof. This follows from the Krein—Milman theorem. Se%é Lemma
V.8.6 of [4].
COROLLARY. The extreme points of 8* = A*(M)* must be of the form
iapi 5p,q fOT QM(pJ Q) < 21/“'
Proof. By Lemmas 1 and 2 the extreme points must be of the form

+6, or §,,. But we have already seen that d, , is not an extreme point
i onr(p, 9)°>2. (Tn fact, it gx(p, 9)°> 2, 8,.¢ 8%)

We must now show that the d,’s and the 8, ,’s given in the above
corollary are in fact extreme points. For the next proposition we will
need the following standard inequalities

LEMMA 3. Let © and % be real positive numbers, and 0 < a <. 1. Then
[2¢ — 9% < v —n|* with [t°— 2% < |2 —|* if ©and 7 are non-zero and v # 9.

ProrosITION 2. Let pe M, and (p,q) be such that gy (p, q) < 2Ye
Then ”61;“ = ”612 q” = 1.

Prood. We have already seen that ||5,] = 1. We shall show |8, .|l = 1.
To see this define ge C*(M) by

9(@) = Fou(®, 9)°—oulz, p)°.
Note that
l9(@) = %low(®, )*— om(®, p)°|
< %lon(®, ¢) — oplw, )1
<deu(P, 9°<1
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Also that

@) 1g9(@) =g ()] < Fleu(®, "= en (¥, 2)*|+1lou(®, )*— 0 (¥, D)7
< dom(®, )+ dou(@, y)
= ou(®, ¥)".
16p,l <1 by definition. Thus, 6,,(9) =1 and |gl, <1 complétes the
proof for O“. By Proposition 1 of Section 2, there is a sequence g, < A%( M),
lgoll <1 with g,—g weak*. But 6, ,(g,)>0,,(¢9) = 1. Thus 18pqll =1
a8 was claimed.
DrriNIrIoN. Let X be a locally compact Hausdortt space. A function
feG (X) peaks at x, and =, if [f 901] = ]f Z,)| =1 and ]f i<l if z,
# 1y # ©,. A function fpeaks at & if If(#)] =1 and lf( ) <1forally s 2.
A function fe 0°(M) C* peaks at a point peM if f (Lemma 1) peaks at
p and f O° peaks at (p, g)e M x M — 4 it f peaks at (p, q) and (g, p).
LuvMA 4. Given any pe M there is a function fe A°(M) which C° peaks
at p and given any (P, q)e M XM — A with g (p, q) < 21’“ there is a Sunc-
tion ge O°(M) which C° peaks at (p, q).
Proof. The first part of this lemma is straightforward. The second
part is not. Let g(z) = %ou(2, q)"«%gM(wlp)" as in Proposition 2. Now .
lg(@)| < %0 (P, 9)* < 1 for all ». Also from Proposition 2 we saw that

@) lg@)—g@)<ele,y)* # oy /
For equality in (2) we must have equality at every step in inequality
(1) of Proposition 2. From Lemma 3 it follows that

loar(®, @) — e (¥, 97 = lear(®, @) — 0ur (¥, DI

iff either o4,(%, @) = en(¥, ) or 0n(#,9) =0 or gy(y,q) = 0. Also for
the next step of inequality (1) |ox (%, ) — 0 (¥, @) = ox (2, y) iff either
ou(®, 9) = on(®, ¥)+ou(y, Q) or ox(y,q) = om(®, Y)+ oar(®, g) which
iy impossible if gy (2, ¢) = oy(¥, ¢) (We are assuming @ s y). Thus
ou(®,q) =0 or ou(y,q) = 0. Therefore # = ¢ or y = ¢. Similarly, we

'get y =p or x =p. Consequently, since @ £y, 2 =p, y = ¢ or vice

versa. Hence

(p,9),
'flL)_J—?’ﬂ <1 i (z,9) #lor
(@, 9)* (g,2).

This shows that g 0 peaks at (p, g).

LeMMA 5. Let ge O°(M) with g(p) = 0. Then there exists a sequence
Gne (M), g,—g weak (*) such that each g, vanishes on some neighborhood
of p (depending on n). If g(p) = g(q) =0, p g, then g, can be chosen
to wamnish on mneighborhoods of p and q.
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Proof. This follows from the fact that 1% is weak* dense in 0* and
that any function ke 1% k(p) = 0 is the limit in norm of functions in A°
which vanish in a neighborhood of p. (See [9].) The proof for two points
is analogous. It is not too hard to prove the lemma directly by working
in local coordinates. ]

LeMMA 6. Suppose ge C*(M) with 6, ,(g) = 0. Then there exists a se-
quence of gne A%(D), g,—g weak* so that for each n, Oy o (g,) = 0 = 8, ,.(g)
for all (p', q') and (¢, p’) in some neighborhoods W, and V, of (p, q) and
(¢, p), respectively.

Proof. Consider the funemon f(2) = g(®) —g(p). Clearly, f(p) =0,
f(g)'= 0. So f may be approximated by a sequence f,, weak* with f, vanish-
ing in some meighborhoods of p and g¢. Let g, = f,+9(p).

THEOREM 1. 6, and 8,4, 02(P, q) < 2° are estreme poimts of §*.

Proof. (a) Suppose 6, = 3¢1+ 3ps, ¢ 8% Let fe 1%( M) with f(p) =
and [fl, = 1. Then g (f) = 1 = 3p: (f) +40:(f). But o () < Ifll. = 1.
Therefore @;(f) =1 if f

To show that ¢; = 4, 1t qutflces to show tlmt ®;(9) = 0 whenever
g(p) = 0, ge 2°. Suppose g(p) = 0, in fact, suppose g vanishes in a neigh-
borhood U of p. Pick an f in A°(M) with f(p) =1, ||fl, = 1 and Whlch
C%peaks at p. Then thereisa i > 0so small that l sup ig(w)| <1-— sup [f
Therefore [|Ag—fll, =1 and (Ag+f)(p) = 1, and so we=U

Pi(Ag+f) =1 = Jgy( g)+%<f =g (9)+1.

Hence ¢;(g) =0. If ge 2* does not vanish in a neighborhood of p,
we can approximate g by g,—g weak*, lg, || <1, with each g, vanishing
in a neighborhood of p. In fact, since ge 2% we can find such a sequence
gy, with |lg,, —gll.—0. From above it follows that ¢;(g,) = 0 for all n and
therefore that ¢;(g9) = 0. This shows that J, (and hence — dp) 1s -extreme.

(b) Suppose 8, , = 3¢, -+ 1ps, ;e 8% Again it suffices to show that
®;(g) = 0 whenever J, ,(g9) = 0. By Lemma 4 there is a function fe 0%(M)
which 0 peaks at (p, q), 5ay.d,,(f) = 1. Now technically ¢,(f) is not
defined since fe C*(M). But since We are identifying 0°(M) with A*(M)**
we can take this to be f (¢;) where f is the nmge of the natural 1bometry
A: O*(M)—2A*(M)*™. From the fact that 1 —f( Opg) = Oyl (f) = dou (f) +
+ 4. (f) it follows that ¢;(f) =1, 4 = 1, 2. Suppose first that Opolg) =0
and that 8, ,(g) = &y,,-(¢9) = 0 for all (p’,¢’) and (¢, p’) in neighbor-
hoods W of (p,q) and V of (g, p), respectively. Let A be so small that

Ig(#)] <1— sup

If(@)l-
x2eX—(UUT)

From this we may conclude that [[Ag-+fll, =1 with ¢,(dg+f) =1
= Api(9) +@i(f). Thus g;(g) = 0.

A sup

zeX—(TUT)

icm
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In the case that we only have 4§, ,(9) = 0 we can apply Lemma 6
to obtain a sequence g,—g weak (*) with ¢;(g,) = 0 for all n. Therefore
(pz(y) = O a’nd ®; = 6_13 aq°

We conclude Section 3 with a proposition which we have essentlally
proved in this section.

. ProrosirioN 3. We have ||6,— 6, = on7(p, )18, 4. Therefore if
ou(p, 9) < 2V,

16, — 85l = enlp, 0)*.

4. Jsometries of Héalder spaces. Suppose T: A*(M)—2°(N) is an
isometry. Then T*: 28(N)*—=A*(M)* is also an isometry and so takes
extreme points of the unit sphere of A*(V)* to extreme points of the unit.
sphere of A*(M)*. Denote the extreme points of the former by Zy and.
of the latter by 27,;. From the last section we know that Xy = {+46,, d,,,
0 < gyl(m, y) < 2%} and Xy = {£6,, 8,4 0 < on(z, ¥) < 2% Now
T*Zy = Xy and so T* 8, is an extleme point of the type -4, (call this
an extreme point of the first type) or of the type 4, , (call this an extreme
point of the second type). We shall show that 7§, = +d, for some p.
Moreover, T™ establishes a bijective correspondence between extreme.
points of the first type and a bijective correspondence between extreme:
points of the second type.

LEMMA 7. fe A°(M) is constant iff the set of real numbers {®(f): Pe Ty}
consists only of at most three points.

Proof. Straightforward.

LEMMA 8. An isometry T: A°(M)—=AP(N) takes constant functions to-
constamt functions; that s, T induces a bijection of the constant functions-
of M with the constant functions of N.

Proof."Let fe A%(M) be constant. By Lemma 7, Zf is constant iff’
{D(Tf): Pe Xy} consists of at most three points. But this set is equal
to {(T*®D)(f): PeZy} = {B(f): Be Xy} By assumption the set on the
right has at most three elements. Consequently, Tf is also constant if f is.

Lavua 9. T8, , = 46, , for some (p, g).

Proof. It suffices to show that (T*&M)(f) = 0 for all constant f.
But (I 6,,)(f) = 8,.,(Tf) = 0 for all constant f by Lemma: 8.

Thus, 7™ takes extreme points of type two bijectively onto extreme-
points of type two. Since T* takes Xy bijectively onto Xy, it must also.
take extreme points of type one bijectively onto extreme points of type one..
So we get ‘

PrOPOSITION 4. For each ze N there is a unique psM with T* 6,

a(@) 6y, where a: N-—>{—1,1} is continuous.


GUEST


206 A. J. Tromba

Proof. The first part has already been done. To see that « is conti-
nuous let g=1 be the constant function on M. Then a(zx) = §,(Ty)
= (Tg)(w). .

For each z< N define I'(x)e M by T*5, = a(a) Or@- Since T is bijec-
tive, it follows that I' is bijective. Since M and N are compact, it follows
ag in the Banach-Stone theorem that I' is a homeomorphism. From this
we can conclude, using a standard result in topology, that AimM = dimN.

PROPOSITION 5. Given ze N; if 4, ye N are sufficiently close to 2, then

on (@, y)f = QM(P('”): F(y))a-

Proof. Since I'is a homeomorphism, we can pick # and y close enough
to z so that they are in the same component of N and oy(w, y)* < 2 and
eu (T'(@), I'(y))* < 2. Using Proposition 3 of Section IIL we have

W0, — T*8,l = l10,— 8yl = on(®, 9)".
But
||T*5a:——T*5y|1 = |la(®) 8@y — a(y) Sryll.

Since # and y are in the same component of N and « is continuous, this
is equal to [[0pg — dpy)ll = Q‘M(I’(m) s F(y))“, which concludes the proof
of Proposition 5. ) :

Before we show that a = p we need a lemma.

Levwma 10. Let I': U->R™ be a map, where U < R* is open, which
satisfies a Holder condition with ewponent y> 1. That is, 17 (@) — ()]
< lw—yl”. Then I'is constant. }

Proof. We shall show that all partial derivatives of I' exist and
are zero. Let & = (@4, ..., z,) e R". Let v; = (0,0, ..., 1,0,...,0), where
1 is in the 7th place. Then

IT'(@ +tv;) — I'(2) | < Conss [¢]”.
So
} I (2 +tv;) — T'(w) < Const £,

t

Therefore as -0,
I(z+tv;) — I{x)
t

lim
i—0

=0

which implies that 0I'/0z;(%) = 0 for all i and for all # and I" is constant.
TrrorEM 2. If T't 2%(M)~2*(N) is an isometry, then o = B.
Proof. We can assume without loss of generality that a < . By
Proposition 5 if # and y are sufficiently close to #

on(®, y)ﬂ = @M(F(w); P(y))a

iom®
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or .
(8) eu(L(@), I'(y) = en(@,9)", v = Bla.

Use coordinate charts to pass to R™ and R™, respectively, and note that
locally Riemannian and Euclidean distances are metrically equivalent.
Then (3) says that I satisfies locally a Hélder condition with exponent
y > 1. Thus (at least locally) by Lemma 10 I'is constant. But this contra-
dicts the fact that I' is a homeomorphism, which means that a = 8.

COROLLARY. If T': 1°(M)~>IP(N) is an isometry and x and y are suf-

ficiently close, then
QM(P(W)’ -r'(?/)) = oyn(®,Y)- )
Therefore I' is locally distance preservimg.

TEROREM 8. If T: A%(M)—AP(N) is an isometry, then o = and M
and N are O (analytically) isometrically diffeomorphic.

Proof. By Theorem 2, ¢ = f. Since I" is locally distance preserving,
it follows from the Steenrod-Myers theorem ([7]) that I" is a O
(analytic) local isometry; i.e., I' is 0" (analytic) and DI (v,)lrg = 0yl
for all v, ¢ T, N. From the fact that I" i3 a homeomorphism it follows that
I' is also a diffeomorphism. Thus I" is a global isometry.

CororLARY. I' is globally distance preserving; i.e., QM(I’(m), F(y))
= oy(®, y)-

Remarks and generalizations.

1. Although we proved this theorem in the case of real valued func-
tions, there is essentially no additional difficulty in proving the same
result for complex valued functions A%(M). The extreme points of the
unit sphere 8* of A4( M) are functionals of the form &, Op,gr 0 (P, 0)° < 2,
with 6,(f) = 4, and

fe)—-f(g)

Soalf) = Z( 0P, 0)°

2. For reasons motivated primarily by partial differential equations
on manifolds the author is more interested in the spaces A% than C° As
expected the main result of this paper holds for the 0° spaces, namely
0°(M) isometrically isomorphic to C°(N) implies that ¢ = f and M is
C" (analytically) isometrically diffeomorphic to N. The extreme points
of the unit sphere 8* of 0%(M)* will be of the form =4, and &;, where &
lies in the Stone-Uech compactification of M x M — 4. The proof that
igometries carry extreme points of one type to the same type is the same
as before. :

3. A study of the Banach algebra structure of C°(M) and A*(N),
including a classification of the ideals in this algebra, has been carried
out by Sherbert [11].

), where - |A] = 1.
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An extension of a theorem of Rosenthal
on operators acting from 1 (I")

by
L. DREWNOWSKI (Poznari)

Abstract. The theorem we prove in this paper, in a somewhat specialized form
is as follows: Let I' be an infinite set, 7' a continuous linear operator from I (I")
(or ¢o(IM) into a topological vector space F, and suppose that the images by T' of the
unit vectors lie off some neighb\ourhood of the origin in B. Then there éxists a subset
I of I with the same cardinality as I' and such that 1|l (I”) (resp., T'|ey(I')) is
an isomorphism (= linear homeomorphism).

For F being a Banach space, this result is due to Rosenthal. For an arbitrary
t.v.s. B and the standard ¢, and I, spaces some results of the above form have been
recently obtained by Kalton. .

H. P. Rosenthal proved in [5] that

(R: I') If an operator T': 1,(I)—>H, B being a Banach space, is such
that T|co(I') is an isomorphism, then there emists I < I' with card I”
= card I" such that T'|l (I") is an isomorphism.

He established also an analogue of this for operators T': ¢o(I')—>E
([5], Theorem 3.4 and Remark 1 following it), and gave numerous interest-
ing applications of those results to Banach space theory.

When I' = N, N the set of positive integers, then the results ef Rosen-
thal can be stated in the form:

(R: N) If T is an operator from 1o, or ¢4, into B, then either T (e,)—>0
or there ewists am infinite subset M of N such that T |1, (M) (resp., T'|co(M))
8 an isomorphism. '

Recently, in connection with the theory of the so-called exhaustive.
operators, N. J. Kalton investigated operators T acting from ¢,, or I,
to an arbitrary topological vector space E [1]. He obtained an exact
analogue of (B: N) for T: ¢,—~E ([1], Theorem 2.3), and proved some
special cases of (R: N) for T': 1,—~% ([1], Theorems 3.2, 3.3, 4£.3). Kalton
conjectured that the statement “If ¥ contains no copy of I, and T': I —~H
is a continuous operator, then 7(e,)—0 (and hence 7' is exhaustive)”
should hold without any further restrictions on F.

In this paper we extend (R: I') (and hence also (E: N)) to arbitrary
topological vector spaces ¥. Moreover, our Theorem and its proof cover
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