

References

- R. Bonic, J. Frampton and A. Tromba, A-manifolds, J. Functional Analysis 3 (1969), pp. 310-320.
- [2] Z. Ciesielski, On the isomorphism of the spaces H^α and m, Bull. Acad. Polon. Sci. 8, No. 4 (1960), pp. 217-222.
- [3] K. deLeeuw, Banach spaces of Lipschitz functions, Studia Math. 21 (1961), pp. 55-56.
- [4] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York 1958.
- [5] J. Frampton and A. Tromba, Spaces of Hölder continuous functions, J. Functional Analysis 10 (1972), pp. 336-345.
- [6] G. Glaeser, Étude de quelques algèbres Tayloriennes, J. Analyse Math. 6 (1958), pp. 1-125.
- [7] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York 1967.
- [8] A. Milutin, On spaces of continuous functions, Dissertation, Moscow State University, 1952.
- [9] R. Palais, Lusternik Schnirelmann category theory on Banach manifolds, Topology 5 (1966), pp. 115-132.
- [10] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), pp. 209-228.
- [11] D. R. Sherbert, The structure of ideas and point derivations in Banach algebras of Lipschitz functions, Transactions AMS, Vol. 111 (1964), pp. 240-272.

UNIVERSITY OF CALIFORNIA SANTA CRUZ

Received June 29, 1974 (856)

An extension of a theorem of Rosenthal on operators acting from $l_{\infty}(\Gamma)$

bу

L. DREWNOWSKI (Poznań)

Abstract. The theorem we prove in this paper, in a somewhat specialized form is as follows: Let Γ be an infinite set, T a continuous linear operator from $l_{\infty}(\Gamma)$ (or $c_0(\Gamma)$) into a topological vector space E, and suppose that the images by T of the unit vectors lie off some neighbourhood of the origin in E. Then there exists a subset Γ' of Γ with the same cardinality as Γ and such that $T \mid l_{\infty}(\Gamma')$ (resp., $T \mid c_0(\Gamma')$) is an isomorphism (= linear homeomorphism).

For E being a Banach space, this result is due to Rosenthal. For an arbitrary t.v.s. E and the standard c_0 and l_∞ spaces some results of the above form have been recently obtained by Kalton.

H. P. Rosenthal proved in [5] that

(R: Γ) If an operator $T\colon l_\infty(\Gamma) \to E$, E being a Banach space, is such that $T \mid c_0(\Gamma)$ is an isomorphism, then there exists $\Gamma' \subset \Gamma$ with $\operatorname{card} \Gamma' = \operatorname{card} \Gamma$ such that $T \mid l_\infty(\Gamma')$ is an isomorphism.

He established also an analogue of this for operators $T: c_0(\Gamma) \rightarrow E$ ([5], Theorem 3.4 and Remark 1 following it), and gave numerous interesting applications of those results to Banach space theory.

When $\Gamma = N$, N the set of positive integers, then the results of Rosenthal can be stated in the form:

(R: N) If T is an operator from l_{∞} , or c_0 , into E, then either $T(e_n) \rightarrow 0$ or there exists an infinite subset M of N such that $T \mid l_{\infty}(M)$ (resp., $T \mid c_0(M)$) is an isomorphism.

Recently, in connection with the theory of the so-called exhaustive operators, N. J. Kalton investigated operators T acting from c_0 , or l_∞ , to an arbitrary topological vector space E [1]. He obtained an exact analogue of (R: N) for $T: c_0 \rightarrow E$ ([1], Theorem 2.3), and proved some special cases of (R: N) for $T: l_\infty \rightarrow E$ ([1], Theorems 3.2, 3.3, 4.3). Kalton conjectured that the statement "If E contains no copy of l_∞ and $T: l_\infty \rightarrow E$ is a continuous operator, then $T(e_n) \rightarrow 0$ (and hence T is exhaustive)" should hold without any further restrictions on E.

In this paper we extend $(R: \Gamma)$ (and hence also (R: N)) to arbitrary topological vector spaces E. Moreover, our Theorem and its proof cover

both the cases of $l_{x^*}(\varGamma)$ and $c_0(\varGamma)$ simultaneously, and actually even more is proved. Our proof of $(R\colon\varGamma)$, though having in common with the proof of the basic Lemma 1.1 in [5] the use of cardinal and ordinal numbers and transfinite induction, seems to be much simpler and clearer. And, after some rather obvious changes, it becomes a considerably simpler proof of that lemma itself; see the Remark at the end of this paper. Note also that the only essential property of $l_{\infty}(\varGamma)$ we use is that $||x+y|| \leqslant 1$ whenever $||x|| \leqslant 1$, $||y|| \leqslant 1$ and x, y have disjoint supports.

We give also an independent proof of (R: N), stated below as Corollary 2, mainly because of its simplicity. (In connection with this, note that the well-known result of Phillips that there is no projection of l_{∞} onto e_0 is a trivial consequence of (R: N).) The precompactness argument used in the first part of this proof stems directly from [1].

In what follows, Γ denotes an infinite set, $l_{\infty}(\Gamma)$ the Banach space of all bounded scalar-valued functions on Γ under the sup norm, and X a fixed vector subspace of $l_{\infty}(\Gamma)$ such that

$$e_{\gamma} \in X$$
 for all $\gamma \in \Gamma$,

where e_{γ} is the γ th unit vector of $l_{\infty}(\Gamma)$ (i.e., $e_{\gamma}(a)=1$ if $a=\gamma$ and 0 otherwise), and

$$x_{\alpha_A} \in X$$
 whenever $x \in X$ and $\Delta \subset \Gamma$,

where χ_{Δ} is the characteristic function of Δ .

If $\Delta \subset \Gamma$, then $X(\Delta)$ denotes the subspace $\{x_{\chi_{\Delta}}: x \in X\}$ of X, and $B(\Delta)$ the unit ball of $X(\Delta)$; $B = B(\Gamma)$.

The most important examples of such spaces X are $l_{\infty}(\Gamma)$ itself, its closed subspace $c_0(\Gamma) = \{x: \{\gamma \in \Gamma: |x(\gamma)| > \varepsilon\} \text{ is finite for every } \varepsilon > 0\}$, and its subspace $c_{00}(\Gamma) = \{x: s(x) \text{ is finite}\}$. Two other examples are the spaces $X = \{x: \operatorname{card} s(x) \leq \mathfrak{n}\}$ and $X = \{x: \operatorname{card} s(x) < \mathfrak{n}\}$, where \mathfrak{n} is a fixed infinite cardinal number $\leq \operatorname{card} \Gamma$ and $s(x) = \{\gamma \in \Gamma: x(\gamma) \neq 0\}$.

Let us note that the spaces X in these examples have the property that if $\Delta \subset \Gamma$ is such that $\operatorname{card} \Delta = \operatorname{card} \Gamma$, then $X(\Delta)$ is isomorphic to X.

E will denote a Hausdorff topological vector space and $\mathscr U$ a base of open balanced neighbourhoods of 0 in E. If $W \subset E$ and $n \in \mathbb N$, then $W^{(n)}$ will denote the set $W + \ldots + W$ (n copies of W).

THEOREM. Let $T\colon X{\to}E$ be a continuous linear operator. Suppose that for some neighbourhood U of 0 in E the set Γ'' of all $\gamma\in\Gamma$ such that

$$(+) T(e_n) \notin U$$

is infinite. Then there exists a subset Γ' of Γ'' with $\operatorname{card} \Gamma' = \operatorname{card} \Gamma''$ such that $T | X(\Gamma')$ is an isomorphism.

Proof. There will be no loss of generality if we assume that $\Gamma'' = \Gamma$. In our proof we will represent Γ as a set of ordinal numbers. If α is an

ordinal number, then P_a will denote the set of all ordinals less than a. Let $\mathfrak{m}=\operatorname{card} P$, and let μ be the least ordinal number a with $\operatorname{card} P_a=\mathfrak{m}$. We may and will assume that

$$\Gamma = P_{\mu}$$
.

For each $\alpha < \mu$ let $F_{\alpha} = \{\beta \colon \alpha \leqslant \beta < \mu\}$.

Let $V \in \mathcal{U}$ be such that

$$V+V\subset U;$$

then choose $r \in N$ for which

$$T(B) \subset rV$$

and finally take $W \in \mathcal{U}$ such that

$$W^{(r)} \subset rV$$
.

We shall first prove that

(I) There is a subset Δ of Γ with $\operatorname{card} \Delta = \mathfrak{m}$ such that for every $\sigma \in \Delta$

$$(*) T(e_{\sigma} + y) \notin W$$

if $y \in B(\Delta \cap F_{\sigma+1})$.

To prove this statement we need the following simple observation:

(1) If $\sigma < \mu$ and A_1, \ldots, A_r are disjoint subsets of $F_{\sigma+1}$, then there is an i, $1 \le i \le r$, such that (*) holds whenever $y \in B(A_i)$.

For otherwise we could find for each i an element $y_i \in B(A_i)$ such that $T(e_\sigma + y_i) \in W$. Then, writing $y = \sum_{i=1}^r y_i$, we would have $y \in B$ and

$$T(re_{\sigma}+y) \in W^{(r)} \subset rV.$$

Since $T(y) \in rV$, it follows immediately that $T(e_{\sigma}) \in U$, and this contradicts our assumption (+).

Now let \mathscr{G} be a family of subsets of Γ such that $\operatorname{card}\mathscr{G} > \mathfrak{m}$, $\operatorname{card}G = \mathfrak{m}$ for each $G \in \mathscr{G}$, and $\operatorname{card}(G_1 \cap G_2) < \mathfrak{m}$ if $G_1, G_2 \in \mathscr{G}$ and $G_1 \neq G_2$ (see [6] and [5]).

Fix a $\sigma < \mu$ and consider any r distinct members G_1, \ldots, G_r of \mathscr{G} . For sufficiently large τ , $\sigma < \tau < \mu$, the sets $H_j \equiv G_j \cap F_\tau$, $j = 1, \ldots, r$, are disjoint, each of them is of cardinality \mathfrak{m} and $\operatorname{card}(G_j \setminus H_j) < \mathfrak{m}$. By (1) there is an $i, 1 \leqslant i \leqslant r$, such that (*) holds for all $y \in B(H_i)$.

Let \mathscr{G}_{σ} be the subfamily of \mathscr{G} consisting of all those $G \in \mathscr{G}$ for which there is $\tau > \sigma$, $\tau < \mu$, such that (*) holds if $y \in B(G \cap F_{\tau})$. It is clear from what was said just before that $\operatorname{card}(\mathscr{G} \setminus \mathscr{G}_{\sigma}) < r$. Hence the family

is nonempty, so let H be any of its members. It is obvious that H has the following property:

(2) For each $\sigma < \mu$ there exists $\tau \in H$, $\tau > \sigma$, such that $T(e_{\sigma} + y) \notin W$ if $y \in B(H \cap F_{\tau})$.

From this we easily deduce the existence of an increasing transfinite sequence $(\eta(\alpha): \alpha < \mu)$ with terms in H such that

$$T(e_{\eta(a)}+y) \notin W$$
 if $y \in B(\{\eta(\gamma): a < \gamma < \mu\}).$

Indeed, put $\eta(0)=\min H$ and suppose that for some $\alpha<\mu$ we have already determined all the terms $\eta(\gamma)$, where $\gamma<\alpha$, in such a way that $\eta(\gamma)\in H,\,\eta(\gamma_1)<\eta(\gamma_2)$ if $\gamma_1<\gamma_2<\alpha$, and $T(e_{\eta(\gamma)}+y)\notin W$ for all $y\in B(H\cap F_{\eta(\gamma+1)})$ provided that $\gamma+1<\alpha$.

Then choose τ in H so that $\eta(\gamma) < \tau$ for all $\gamma < a$ and, in case a has the predecessor a-1, so that τ satisfies the condition in (2) for $\sigma = \eta(a-1)$. Then set $\eta(a) = \tau$. This completes the inductive definition of $(\eta(a): a < \mu)$.

It is evident that the set $\Delta = \{\eta(\alpha) : \alpha < \mu\}$ is as required in (I). Since card $\Delta = m$, to simplify notation we may again identify Δ with P_{μ} . Under this convention, for each $\alpha < \mu$,

$$T(e_{\alpha}+y) \notin W$$
 if $y \in B(F_{\alpha+1})$.

Now take $V_1 \in \mathcal{U}$, then choose $s \in \mathbb{N}$, and finally $W_1 \in \mathcal{U}$ so that

$$V_1 + V_1 \subset W$$
, $T(B) \subset sV_1$, $W_1^{(s)} \subset sV_1$.

We are going to prove now that

(II) There is a subset Γ' of \varDelta with $\operatorname{card} \Gamma' = \mathfrak{m}$ such that for each $a \in \Gamma'$

$$(**) T(x+e_a+y) \notin W_1$$

if $x \in B(\Gamma' \cap P_a)$ and $y \in B(F_{a+1})$.

Similarly as before we easily check that

(3) If $\alpha < \mu$ and A_1, \ldots, A_s are disjoint subsets of P_{α} , then there is a k, $1 \le k \le s$, such that (**) holds for $x \in B(A_k)$ and $y \in B(F_{\alpha+1})$.

Let

$$egin{aligned} A_1^\sigma = \{0\}, \quad A_2^\sigma = \{1\}, \; ..., \; A_{\sigma+1}^\sigma = \{\sigma\} & ext{ and } \quad A_i^\sigma = oldsymbol{\varnothing} \ & ext{for } \quad \sigma+1 < i \leqslant s \end{aligned}$$

for $\sigma = 0, 1, ..., s-1$.

Suppose that the s-tuples

$$A_1^{\sigma}, \ldots, A_s^{\sigma}$$

have been already defined for all $\sigma < \tau$, where $s \leqslant \tau < \mu$, in such a way that

- (a) $\bigcup_{i=1}^{\sigma} A_i^{\sigma} = P_{\sigma+1}$ and $A_i^{\sigma} \cap A_j^{\sigma} = \emptyset$ if $i \neq j$;
- (b) $A_i^{\sigma'} \subset A_i^{\sigma}$ if $\sigma' < \sigma$, i = 1, ..., s;
- (c) If $\alpha \in A_i^{\sigma}$, then (**) holds for all $x \in B(A_i^{\sigma} \cap P_a)$, and $y \in B(F_{a+1})$.

Let

$$C_i = \bigcup_{\sigma < \mathfrak{r}} A_i^{\sigma}, \quad i = 1, ..., s.$$

Then $\bigcup_{i=1}^{\sigma} C_i = P_{\tau}$ and $C_i \cap C_j = \emptyset$ if $i \neq j$. By (3) there is a $k, 1 \leqslant k \leqslant s$, such that

$$T(x+e_\tau+y)\notin W_1$$

if $x \in B(C_k)$ and $y \in B(F_{r+1})$. Then we define

$$A_i^{ au} = \left\{ egin{array}{ll} C_i & ext{for} & i
eq k, \ C_k \cup \{ au\} & ext{for} & i = k; \ i = 1, \ldots, s. \end{array}
ight.$$

This completes the inductive definition of a transfinite sequence of s-tuples $A_1^{\sigma}, \ldots, A_s^{\sigma}$ ($\sigma < \mu$) such that (a), (b), (c) hold for all $\sigma < \mu$. Let

$$arDelta_i = \bigcup_{\sigma < \mu} A_i^{\sigma}, \quad i = 1, ..., s.$$

Then $\varDelta=\varDelta_1\cup\ldots\cup\varDelta_s$, hence for some $k,1\leqslant k\leqslant s$, card $\varDelta_k=\mathfrak{m}.$ Write $\Gamma'=\varDelta_k.$ Then, for each $\alpha\in\Gamma'$, (**) holds for all $x\in B(\Gamma'\cap P_\alpha)$ and $y\in B(\Gamma'\cap F_{\alpha+1}).$ Hence, since W_1 is balanced, if $z\in B(\Gamma')$ is such that $|z(\alpha)|=1$ for some $\alpha\in\Gamma'$, then $T(z)\notin W_1.$ It follows easily that $T(z)\notin W_1$ for each $z\in X(\Gamma')$ with $\|z\|_\infty=1.$ This implies that $T|X(\Gamma')$ is an isomorphism.

COROLLARY 1. Let $T\colon l_\infty(\Gamma)\to E$ be a continuous linear operator such that $T\mid c_0(\Gamma)$ is an isomorphism. Then there exists a subset Γ' of Γ with $\operatorname{card}\Gamma'=\operatorname{card}\Gamma$ such that $T\mid l_\infty(\Gamma')$ is an isomorphism.

The next corollary is a particular case $(\Gamma = N)$ of the Theorem. However, since its independent proof though somewhat similar is considerably simpler than the proof of the Theorem, we find it worth presenting here.

COROLLARY 2. Let X be either l_{∞} or c_0 , and let T: $X \rightarrow E$ be a continuous linear operator. Then exactly one of the following two possibilities holds:

(i)
$$T(e_n) \rightarrow 0$$
,

(ii) there exists an infinite subset M of N such that T|X(M) is an isomorphism.

Proof. Suppose (i) does not hold. Then $F = \{T(e_n) \colon n \in \mathbb{N}\}$ is not precompact.

In fact, if (i) is false, there is $U \in \mathcal{U}$ such that

$$T(e_n) \notin U$$

for infinitely many n, and we may suppose that for all $n \in N$. Let V, r, W be chosen as in the proof of the Theorem. Then, assuming that F is pre-

compact, we can find a finite subset F_0 of F such that

$$F \subset F_0 + W$$
.

Hence for some m the set $T(e_m)+W$ contains infinitely many members of F, say $T(e_{n_1})$, $T(e_{n_2})$, ... $(n_1 < n_2 < ...)$. Then

$$T \Big(\sum_{i=1}^r e_{n_i} \Big) \epsilon \ r T(e_m) + W^{(r)} \subset r T(e_m) + r V$$

and hence

$$rT(e_m) \in T(B) + rV \subset rU$$

so that $T(e_m) \in U$. A contradiction, for we have assumed that $F \cap U = \emptyset$. Now, since F is not precompact, there is $U \in \mathcal{U}$ (possibly different from the U we had above) such that for any compact set K in E the set K+U does not contain F. In particular, for any $n \ge 0$ there is m > n such that $T(e_m) \notin T(B_n) + U$, where $B_n = B(\{1, \ldots, n\})$ for $n \ge 1$ and $= \{0\}$ for n = 0.

Without loss of generality we may assume that

$$(*')$$
 $T(e_{n+1}) \notin T(B_n) + U, \quad n = 0, 1, ...$

Let V, r, W be chosen as in the proof of the Theorem. We shall define inductively a decreasing sequence (A_i) of infinite subsets of N such that the sequence

$$m_i = \inf A_i$$

is strictly increasing and

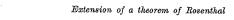
$$(**') T(x+e_m+y) \notin W$$

whenever $x \in B(\{m_1, \ldots, m_{i-1}\})$ (or x = 0 if i = 1) and $y \in B(A_{i+1})$; $i = 1, 2, \ldots$

Set $A_1=N$ and suppose that the infinite subsets $A_1\supset\ldots\supset A_k$ of N have been already chosen so that $1=m_1<\ldots< m_k$ and (**') holds for $i=1,\ldots,k-1$; $k\geqslant 2$. Then consider any decomposition of $A_k\setminus \{n_k\}$ into r infinite and mutually disjoint sets C_1,\ldots,C_r . As in the proof of the Theorem we easily deduce from (*') that there is $j,1\leqslant j\leqslant r$, such that $T(x+e_{m_k}+y)\notin W$ if $x\in B(\{m_1,\ldots,m_{k-1}\})$ and $y\in B(C_j)$. Then we define $A_{k+1}=C_j$. The set $M=\{m_1,m_2,\ldots\}$ is as required in Corollary 2.

Remark. The proof of the Theorem can easily be modified so that it will become a considerably simplified proof of Rosenthal's basic Lemma 1.1 in [5]. We shall briefly indicate how this can be done. Without loss of generality we can formulate this lemma as follows:

(L) Let $\{m_a: a \in \Gamma\}$ be a family of finitely additive positive measures on the power set of Γ such that $\sup\{m_a(\Gamma): a \in \Gamma\} = a < \infty$. Then, for all



 $\varepsilon > 0$, there exists $\Gamma' \subset \Gamma$ with $\operatorname{card} \Gamma' = \operatorname{card} \Gamma = \operatorname{m}$ such that

$$m_{\alpha}(\Gamma' \setminus \{\alpha\}) < \varepsilon$$
 for all $\alpha \in \Gamma'$.

Choose $r \in N$ so that $a < r(\varepsilon/2)$. Then observe that if $a \in \Gamma$ and A_1, \ldots, A_r are disjoint subsets of Γ , there is i such that $m_a(A_i) < \varepsilon/2$. Given $\sigma < \mu$, consider the subfamily \mathscr{G}_{σ} of \mathscr{G} consisting of all those $G \in \mathscr{G}$ for which there is $\tau > \sigma$ such that $m_{\sigma}(G \cap F_{\tau}) < \varepsilon/2$. Then $\operatorname{card}(\mathscr{G} \setminus \mathscr{G}_{\sigma}) < r$. Take any H in $\bigcup_{\sigma < \mu} \mathscr{G}_{\sigma}$. Then, via a transfinite sequence with terms in H, we obtain a subset Δ of H with $\operatorname{card} \Delta = \mathfrak{m}$ such that $m_a(\Delta \cap F_{a+1}) < \varepsilon/2$ for each $a \in \Delta$. We identify Δ with P_{μ} so that we have $m_a(F_{\alpha+1}) < \varepsilon/2$ for each $a < \mu$. Then we continue quite similarly as in the part (T) of the proof of the Theorem (take s = r). (In particular, condition (c) should be replaced by the following one: If $a \in A_i^{\sigma}$, then $m_a(A_i^{\sigma} \cap P_a) < \varepsilon/2$.) This gives us $\Gamma' \subset \Delta$ with $\operatorname{card} \Gamma' = \mathfrak{m}$ such that $m_a(\Gamma' \cap P_a) < \varepsilon/2$ for all $a \in \Gamma'$, and Γ' is as required in (L).

Added May 4, 1975. The referee has kindly pointed out a recent paper by J. Kupka [2], where a much simpler proof of Rosenthal's Lemma is given.

Let us also mention that a variation of the argument used here has been recently applied by I. Labuda ([3], [4]) to obtain some interesting results on finitely additive vector measures and some relevant classes of topological vector spaces.

Added in proof. On combining the techniques of this paper with those of [2], the author has found in the meantime an extremely simple proof of the Theorem, see Un théorème sur les opérateurs de $l_{\infty}(\Gamma)$, C. R. Acad. Sc. Paris, Sér. A, 281 (1975), pp. 967-969.

References

- N. J. Kalton, Exhaustive operators and vector measures, Proc. Edinburgh Math. Soc. 19 (1974), pp. 291-300.
- [2] J. Kupka, A short proof and generalization of a measure theoretic disjointization lemma, Proc. Amer. Math. Soc. 45 (1974), pp. 70-72.
- [3] I. Labuda, Sur les mesures exhaustives et certaines classes d'espaces vectoriels topologiques considérés par W. Orlics et L. Schwartz, C. R. Acad. Sc. Paris, Sér. A, 280 (1975), pp. 987-989.
- [4] Exhaustive measures in arbitrary topological vector spaces, Studia Math. 58. (1976), pp. 239-248.
- [5] H. P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), pp. 13-36.
- [6] W. Sierpiński, Cardinal and ordinal numbers, Warszawa 1965.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY POZNAŃ, POLAND

Received October 16, 1974

(900)