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An extension of a theorem of Rosenthal
on operators acting from 1 (I")

by
L. DREWNOWSKI (Poznari)

Abstract. The theorem we prove in this paper, in a somewhat specialized form
is as follows: Let I' be an infinite set, 7' a continuous linear operator from I (I")
(or ¢o(IM) into a topological vector space F, and suppose that the images by T' of the
unit vectors lie off some neighb\ourhood of the origin in B. Then there éxists a subset
I of I with the same cardinality as I' and such that 1|l (I”) (resp., T'|ey(I')) is
an isomorphism (= linear homeomorphism).

For F being a Banach space, this result is due to Rosenthal. For an arbitrary
t.v.s. B and the standard ¢, and I, spaces some results of the above form have been
recently obtained by Kalton. .

H. P. Rosenthal proved in [5] that

(R: I') If an operator T': 1,(I)—>H, B being a Banach space, is such
that T|co(I') is an isomorphism, then there emists I < I' with card I”
= card I" such that T'|l (I") is an isomorphism.

He established also an analogue of this for operators T': ¢o(I')—>E
([5], Theorem 3.4 and Remark 1 following it), and gave numerous interest-
ing applications of those results to Banach space theory.

When I' = N, N the set of positive integers, then the results ef Rosen-
thal can be stated in the form:

(R: N) If T is an operator from 1o, or ¢4, into B, then either T (e,)—>0
or there ewists am infinite subset M of N such that T |1, (M) (resp., T'|co(M))
8 an isomorphism. '

Recently, in connection with the theory of the so-called exhaustive.
operators, N. J. Kalton investigated operators T acting from ¢,, or I,
to an arbitrary topological vector space E [1]. He obtained an exact
analogue of (B: N) for T: ¢,—~E ([1], Theorem 2.3), and proved some
special cases of (R: N) for T': 1,—~% ([1], Theorems 3.2, 3.3, 4£.3). Kalton
conjectured that the statement “If ¥ contains no copy of I, and T': I —~H
is a continuous operator, then 7(e,)—0 (and hence 7' is exhaustive)”
should hold without any further restrictions on F.

In this paper we extend (R: I') (and hence also (E: N)) to arbitrary
topological vector spaces ¥. Moreover, our Theorem and its proof cover
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both the cases of Ix{I') and ¢,(I") simultaneously, and actually even more
is proved. Our proof of (R: I'), though having in common with the proof
of the basic Lemma 1.1 in [5] the use of cardinal and ordinal numbers
and transfinite induction, seems to be much simpler and clearer. And,
after some rather obvious changes, it becomes a considerably simpler
proof of that lemma itself; see the Remark at the end of this paper. Note
also that the only essential property of I, (I') we use is that ety <1
whenever |zl < 1, |yl < 1 and 2, y have disjoint supports.

We give also an independent proof of (B: N), stated below as Corol-
lary 2, mainly because of its simplicity. (In connection with this, note
that the well-known result of Phillips that there is no projection of 7,
onto ¢, is a trivial consequence of (B: N).) The precompactness argument
used in the first part of this proof stems directly from [1]

In what follows, I" denotes an infinite set, (") the Banach space
of all bounded scalar-valued functions on I' under the sup norm, and X
a fixed vector subspace of I,(I") such that

(214 X

where ¢, is the pth unit vector of 1., (I") (ie., e(a) =11if a =y and 0
otherwise), and

sze X

for all yel,

whenever ¢ X and 4 <= T,

where y, is the characteristic function of A.
If 4 = I, then X(4) denotes the subspace {w,,: < X} of X, and
B(4) the unit ball of X(4); B = B(I).

The most important examples of such spaces X are ln,(I") itself, .

its closed subspace ¢o(I") = le: {ye I': \@(y)'> ¢} is finite for every

&> 0}, and its subspace 6y (I") = {#: s(2) is finite}. Two other examples -

are the spaces X = {w: cards(#)<n} and X = {&: cards(z) < n}, where
nis a fixed infinite cardinal number < card I" and s(@) = {ye I': w(y) - 0}.

Let us note that the spaces X in these examples have the property
that if A = I' is such that card A = cardl', then X(4) is isomorphic
to X. .

E will denote a Hausdorff topological vector space and % a base
of open balanced neighbourhoods of 0 in . If W < B and ne N, then
W™ will denote the set W4 ... +W (n copies of W).

TuEOREM. Let T: X be a continuous linear operator. Suppose that
Jor some neighbourhood U of 0 in B the set I of all ye I such that

C(+) T(e)¢ U

is infinite. Then there ewists a subset I" of I with card I" = card I'" such
that T|X(I") is an isomorphism.

Proof. There will be no loss of generality if we assume that I = I,
In our proof we will represent I' as a set of ordinal numbers. Tf « is an
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ordinal number, then P, will denote the set of all ordinals less than a.
Let m = card I, and let u be the least ordinal number ¢ with card P, = m.
We may and will assume that

I'=P,.

For each a< u let F, ={f: a<<f < p}.
Let Ve % be such that

V4+V < U;
then choose r< N for which

T(B) <1V,
and finally take We % such that

W<V,

We shall first prove that
(I) There is a subset A of I' with card A =m such that for every ce A

T(e,+y)¢ W

(%)
if ye B(ANTF,,,).
To prove this statement we need the following simple obsérvation:

If o<uand A,, ..., A, are disjoint subsets of ¥, ,, then there is an 1,
1< i<, such that (x) holds whenever ye B(4;).

@

For otherwise we could find for each ¢ an element y;e¢ B(4;) such

r
that T(e,-+¥;)¢ W. Then, writing ¥ = > y;, we would have ye<B and
im1 .

T(re,+y)e WO < rV.

Since T'(y)erV, it follows immediately that T'(e,)e U, and this- contra-
dicts our assumption ().

Now let ¢ be a family of subsets of I' such that card ¢ > m, cardG
=m for each Ge¢ ¥, and card(G,NG,) <m if G, Goc ¥ and G, #* G, (see
[6] and [5]).

Fix a o< u and consider any r distinet members G4, ..., @, of %.
For sufficiently large 7, ¢ <7< p, the sets H; =G;nF,, j=1,...,7,
are disjoint, each of them is of cardinality m and card(GH\H;) <m.
By (1) there is an 4, 1 < 1 < r, such that (x) holds for all ye B(H,). -

Let ¢, be the subfamily of ¢ consisting of all those G'¢ ¥ for which.
there is v > o, v < p, such that () holds if ¥y« B(GNF,). It is f:lear from
what was said just before that card(¥\¥,) < r. Hence the fmm}y

Ng,

o<p
is nonempty, so let H be any of its members. It is obvious that H has
the following property :
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(2) For each o< u there ewists ve H, ©> o, such that T (e,+y)¢ W if
ye B(HNF,).
From this we easily deduce the existence of an increasing transfinite
sequence (n(a): a < u) with terms in H such that

T(eqn+9)¢ W it yeB({n(): a<y<p).
- Indeed, put #(0) = minH and suppose that for some a < x we have

already determined all the terms #(y), where y < a, in such a way that

(V) e Hyn(ysd < nlye) if 91 < y3 < oy and Ty +y)¢ W for all ye B(HN
NF,,.y) provided that y+1 < a.

Then choose v in H so that #(y) < v for all y < a and, in case a hag
the predegessor a—1, so that v satisfies the condition in (2) for ¢ = n(a~1).
Then se?; 7n(a) = 7. This completes the inductive definition of (n(a): a < u).

Itj is evident that the set 4 = {n(a): a < 4} is as required in (I).

) Since card 4 =wm, to simplify notation we may again identify A
with P,. Under this convention, for each « < u,
Te,+y)¢W it yeB(F,,,).
N ow;take V1€ %, then choose se N, and finally W, e # so that
Vi+ Ve W, T(B)<sV,, WcsV;.
We are going to prove now that
T(II) There is a subset I of A with cardI" =m such that for each
ae
() T(a+e,+y)¢ W,
if e B(I"NP,) and ye B(F,,,).
Similarly as before -we easily check that

(3) If a<<p and Ay, ..., A are disjoint subsets of P,, then there is'a k, ‘
< k < s, such that (**) holds for xe B(4,) and ye B(F,,,).
Let

A7 ={0}, A;={1}, ..., 4%, ={0} and A;=0

for o+l<igs
for 0 =0,1,...,5—1. o

Suppose that the s-tuples
A7, ..., A
have been already defined for all ¢ < 7, where & <
that s
(a) ¢U1 A7 =P, and A{nA] =@ if ¢ #§;

7< g, in such a way

(b) Afc A if &’ <o, 4 =1,...,8

(¢) If acAf, then () holds for all e B(A7NP,), and Yye B(F ).

»ThenAHAu
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Let
' 0, = UA4;,

o<t

i=1,...,8.

.
Then | JO; =P, and O;nC; =@ if ¢ #j. By (8) there isa %, 1<k<s,
i=1

such that

T{w+e+y)d W,
if we B(C,) and y e B(F,,). Then we define
0; for ¢ %k,
4; = . )
Cpuf{r} for i=k;4=1,...,s.

This completes the inductive definition of a transfinite sequence of
s-tuples A, ..., A (o < p) such that (a), (b), (c) hold for all ¢ < u.
Let
) 4; = U 47,
o<p .
. u4d,, hence for some k, 1 <k <s, card 4, =m. Write
I = Ak Then, for each aeI", (%+) holds for all zeB(I'NnP,) and y
eB(I'nF,,,). Hence, since W1 is balanced, if ze B(I") is such that
[#(a)] = 1 for some ae I, then T'(e)¢ W,. It follows easily that T'(2)¢ W,
for each ze X(I") with Ilzl[DQ = 1. This implies that T|X(I") is an iso-
morphism.

COROLLARY 1. Let T: I (I—H be a continuous linear operator such
that T|co(I") is an isomorphism. Then there ewists a subsel I" of I' with
cardI” = cardl" such that T|lo(I") is an isomorphism.

The next corollary is a particular case (I" = N) of the Theorem.
However, since its independent proof though somewhat similar is con-
siderably simpler than the proof of the Theorem, we find it worth pre-
senting here.

COROLLARY 2. Let X be either 1y, or ¢y, and let T: X—F be a continuous
linear operator. Then exactly one of the following two possibilities holds:

(i) T(en) >0,

1=1,...,8.

or

(i) there ewists an infinite subset M of N such that T|X (M) is an
isomorphism.

Proof. Suppose (i) does not hold. Then F = {T'(e,): ne N} is not
precompact.

In fact, if (i) is false, there is Ue % such that

' T(e¢ U

for infinitely many n, and we may suppose that for all ne N. Let V, r, w
be chosen as in the proof of the Theorem. Then, assuming that F is pre-
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compaet, we can find a finite subset F, of F such that
Fe Pt W.

Hence for some m the set T(ey)-+W contains infinitely many “members
of I, say T(enl), T(en,) - (M <my<<...). Then

T ( Zr' eni) 1T (6,)+W® < T (e,) +rV
=1

and hence
1T (ep)e T(B)+rV < rU,

50 that T'(e,)e. U. A contradiction, for we have assumed that U = @.
 Now, since F is not precompact, there is Ue % (possibly different
from the U we had above) such that for any compact set K in H the seb
K+ U does not contain F. In particular, for any #>> 0 there is m > n
such that T(e,)¢ T(B,)+ U, where B, = B({l,...,n}) for n>>1 and
= {0} for n = 0. : '
‘Without loss of generality we may assume that

(%) Tt )¢ T(B)+TU, ° n=0,1,...

Let ¥, r, W be chosen as in the proof of the Theorem. We shall define
inductively a decreasing sequence (4,) of infinite subsets of N such. that
the sequence ‘ .

m; =inf 4,
is strictly increasing and
(') T(w+en,+y)¢ W
whenever ®e B({my,...,m;_,}) (or @ =0 if 4 = 1) and yeB(4,.,);
i=1,2,..

Set A4; = N and suppose that the infinite subsets Ay> .. 04,
of N have been already chogen so that 1 = My < ... <my and (**') holds
for i =1,...,%k—1; k> 2. Then consider any decomposition of .4;\{n,}
into r infinite and mutually disjoint sets Oy ..., C.. As in the proof of
the Theorem we easily deduce from (#') that there is j, 1<j < 7, such
that T(m+emk+y)¢W if we B({m,, ceey My} and Ye.B(0;). Then we
define A, = ;. The set M = {m,, m,, ...} is as required in Qorollary 2.

Remark. The proof of the Theorem can eagsily be modified so that
it will become a considerably simplified proof of Rosenthal’s basic Lemma
1.1 in [5]. We shall briefly indicate how this can be done, ‘Without loss
of generality we can formulate this lemma ag follows: ‘

(L) Let {m,: ae I} be a family of fimitely additive positive measures
on the power set of I such that sup {ma(I): aeI't = a < 0. Then, for all
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&> 0, there ewists I' = I' with card " = card I’ — m such that
m(I'\{e}) <& for all acI".

Choose r« N so that o <r(e/2). Then observe that if aelI' and
Ay, ..., A, are disjoint subsets of I, there is 4 such that m,(A4;) < g/2.
Given ¢ < p, consider the subfamily ¢, of ¢ consisting of all those Ge %
for which there is 7 > ¢ such that m,(FNF,) < £/2. Then card (¥\%,) < r.

Take any H in |J %,. Then, via a transfinite sequence with terms
o<u

in H, we obtain a subset 4 of H with card 4 = m such that m,(4NF, 1)
< e/2 for each ae 4. We identify 4 with P, so that we have m,(F,,,)
< &2 for each a < p. Then we continue quite similarly as in the part (II)
of the proof of the Theorem (take s = r). (In particular, condition (e)
should be replaced by the following one: If ae A7, then m (47NP,) < £[2.)

‘This gives us I" = 4 with card]" =m such that m,(I"NP,) < &/2 for

all ael”, and I" is as required in (L).

Added May 4, 1975. The referee has kindly pointed out a recent paper by
J. Kupka [2], where a much simpler proof of Rosenthal’s Lemma is given.

Let us also mention that a variation of the argument used here has been recently-
applied by I. Labuda ([8], [4]) to obtain some interesting results on finitely additive-
vector measures and some relevant classes of topological vector spaces.

Added in proof. On combining the techniques of this paper with those of [2],.
the author has found in the meantime an extremely simple proof of the Theorem,
see Un théoréme sur les opérateurs de lo (I'), C. R, Acad. Sc. Paris, Sér. A, 281
(1975), pp. 967-969.
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