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Composition operators on F+
by
JAMES W. ROBERTS and MANFRED STOLL (Columbis, South Carolina)

Abstract. Let U = {¢: |g] < 1}. We denote by F+ the space of holomorphic
funotions f(2) = Sa,z® in U for which |ifll, = 3'lan] exp[—c¢Vn] < oo for all ¢> 0.
F+ with the above family of (semi) norms is a Fréchet space containing N+ as a dense
subspace. In the paper we consider composition operators of Ftinto F+ and H?,
0 < p< . We give several necessary and sufficient conditions for a composition
operator U, to map F* into HP, 0 < p < oo. Using these regult we show that if Op:
P+->HP for some p, then Op: F+—HE for all ¢, 0 < ¢ < oo, and that O, is compact.
We also give an example of a holomorphic function ¢: U—U such that the compo-
sition operator O, maps F+ into H? for all p, 0 <p < oo, but not into H*. Some
results concerning multiplicative linear functionals and maximal ideals in F+ are
also included.

1. Introduction. Let U denote the unit dise {J2| <1} in C. A holo-
morphic function f(2) in U belongs to the class N of functions of bounded
characteristic if

27
1 .
sup ————-f log*t|f(re®)|d6 < oco.
0

o<r<1 27

A function fe IV is said to belong to the dlass N'* if
21 2m )
lim [ log™* |f(re")|d0 = [ log* If(¢*)1a8,
=1y 0

where f(¢%) = lim f(re®) a.e. on J¢| = 1. For, f, ge N*, define
r—+1

@) o(f, ) = 5 [ Tog (L4 156" —g(e™l)ao.
0

The space N+ with the metric given by (1.1) is an F-algebra, i.e., an F-space
with continuous multiplication [6]. Nt is neither locally convex nor
locally bounded but has sufficiently many continuous linear functionals
to separate points in Nt [6].
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The class F* consists of those functions f(z) holomorphic in U which
satisty, for any ¢> 0,
1

9) ifie, = [ exp[5=% |wtr. 11 < o,
0

where .

(1.3) M(r,f) = s IF(2)]-

Also, for a function f() = Ya,2"e F, define
(1.4) Ifle = D laslexp [—¢Vn] (c>0).
n=0"

By [7], Theorem 2, the (semi) norms given by (1.2) and (1.4) are
equivalent and F* with either of the above family of seminorms is a Fré-
chet space containing ¥* as a dense subspace. If f and g are in I, it
is clear that for any ¢> 0,

(1.5) ' 17glle < 15 llega llg e

Hence F'* is closed under multiplication. Furthermore, (1.5) also shows
that multiplication is continuous in F'*t.

In §2 and §3 we extend some of our results in [4] to F*. In § 2 we
show that every multiplicative linear functional on F* is continuous
and is given by point evaluation at some AeU. Oonsequently, if .,
= {feF*: f(2) = 0}, A, is a closed maximal ideal in F*, Tn [9] N. Yana-
gihara has shown that if M is a maximal ideal in F'f, M = #, for some
AeU if and only if .M is closed in the topology of uniform convergence
on compact subsets of U. Using a result of Arens [1], we prove that it
suffices to assume that M is closed in F*. In § 3 we show that every ring
homomorphism of F* into F* iz given by a composition operator and
that every composition operator is continuous.

In § 4 we consider composition operators of F* into HP, 0 <p < oo,
We first give several equivalent necessary and sufficient conditions for
a composition operator O, to map F* into H?, Using these results we show
that if the composition operator C, maps F* into HP for some P, then
Op: F*—H? for all g, 0 < g < oo, and 0, is a compact operator. We also
give & characterization of the compact composition operators of F* into
?’; Some of the results are then applied to composition operators on

2. Multiplicative linear functionals and maximal ideals. For je U,
define y, on F* by , ‘

(2.1) () =f4).
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It is clear that y; is a multiplicative linear functional on F*. By [7],
Theorem 1,

(2.2) o< (8/ceﬂ)exp[ 20

1—14

]llfilpc (> 0),

where || |, is given by (1.2). Consequently, y; is a continuous multiplica-
tive linear functional on F* for every 1¢ U. For each A¢ U, define

(2.3) M, = {fe F*: f(2) = 0}.

Also, let (2—A)F* = {(z—N)f(2): fe F*}. Then (2—A)F* = #,. How-
ever, if fe #,, then one can easily show that f(2) = (z— A)g(2) with ge F*.
Therefore

(2.4) M, = (z— ) F*.

Since ., is the kernel of a continuous multiplicative linear functional
on F*, #, is a closed maximal ideal in F*.

TEEOREM 1. If y is a (nonirivial) multiplicative linear functional
on F'F, then there emists Ae U such that y(f) = f(2) for every fe I+ and hence
¥ 8 continuous.

Proof. Let A = y(2). Then y(z—2) =0. If A¢ U, then 1/(z—2) is
in N* and hence in F*. However, y(f) # 0 for every invertible function
fin F*. Thus Ae U. Since (¢ —A)F* < kery, by (2.4), #; = kery. But 4,
is a closed maximal ideal in F* and therefore 4, = kery and y is conti-
nuous.

It has been shown by example [9] that not every maximal ideal
in F* is given by an ., for some ie U. However, the following result
holds. }

TEEOREM 2. Let M be a closed mazimal ideal in FT. Then there exists
e U such that M*= A ,.

Proof. Let X = F*/M. Then in the terminology of Arens [1], X
is a complete, nwetrizable, separable, convex complex topological division
algebra. Thus by [1], X = C. But then there exists y a multiplicative
linear functional on F* with M = kery. By Theorem 1, M = .#, for some
Ae U, which proves the result.

3. Composition operators. Let @: U—U be holomorphic. Define
C, on F'* by
(8.1) 0,(N(2) =flp(2), 2eT.

Then O, is a composition operator of F* into H(U), the space of holo-
morphic functions on U. We first prove that if 4: F*—>F* is a ring homo-
morphism, then 5 = 0, for some . We then prove, by two alternate
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methods, that if ¢: U—U is helomorphic, (3.1) defines a continuous
ring homomorphism of F* into F*.

THEOREM 3. If n: FT—>F" is a ring homomorphism, then there ewists
a holomorphic function ¢: U—U such that 5(f) = O, (f) for all fe F*. Con-
versely, if ¢: U—U 1is holomorphic, then (3.1) defines a continuous ring
Lomomorphism of F* into F™*.

Proof. Let #: F*—F* be a ring homomorphism and let ¢ = y5(e),
ie. @(&) = n(#) (&), & U. For Ae U, define y(f) = 5(f)(4), fe F*. Since
y is a multiplicative linear functional on F*, by Theorem 1, y corresponds
to point evaluation at some fe U. Thus f = 5(2)(1) = @(1). Hence for
all Ae U, <p(Z.)e U and for every fe F*, n(f)(A) = f(p(A)). Thus ¢: U-T
and 9(f) = Cy(f)-

Gonversely, let : U—U be holomorphic. We now give two alternate
proofs that O, given by (3.1) is a continuous ring homomorphism of F+
into F*. Proof (i) uses methods of functional analysis and results on com-
position operators on N* given in [4], whereas proof (ii) uses: classical
analysis and properties of F™.

(i) Let n = O, . By [4], Theorem 1, 7 is a continuous linear oper-
ator of N* into N 7. + Let (N*)* and (F*)* denote the spaces of continuous
linear functionals on N *and F'*,respectively, with the topology of uniform
convergence on weakly bounded subsets of N* and F*. For a discussion
of these topologies the reader is referred to [3]. By [8], Theorem 3, (F+)*
= (N*)* both set theoretically and topologically. Let *: (N*)*—(N+)*
given by #™(y) = yon, ye(N*)*, denote the adjoint map of #. Cleanly,
7* is a continuous mapping of (¥+)* into (N*)* and hence of (F ¥ into
(F*)*. Since F* is reflexive ([8], p. 35), the second adjoint of 7, 7**,
is a continuous mapping of F* into F*. Let f< F*. Since N* is dense
m T, there exists a sequence {fn} in N+ such that f,~f in F+. Therefore
7 (f) =0 (1) and 7*(£}(2)»n**(f)(2) for all ze U. Since niy+ =7

P?

7 () (2) = limn f, (v(2) =fle(e) &

for all ze U. Therefore C, is a continuous linear map of F* into F*.

(ii) Let ¢: U-U be holomorphic. We first show that O,(f)e F*
for all fe F*. Let 1 = p(0). Without loss of generality we assume that 1
is real and nonnegative. For 0 < r < 1, let U, = {2: |¢| < r}. By Schwarz’s
lemma, ¢(U,)< D, where D, is given by

D, ={w: w—A <7r[Ll—lw}.

Let C, denote the boundary of D,. Then 0, is a circle with center at o
= A(1—7r*)/(1—%212) and radius o = r(1—72) /(1 —7r242). Hence ¢(U,)

‘
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o) where

(3.2) " o(r) =a+o = (A7) [(L+Th).

Clearly, r < o(7) < 1. Therefore, since ¢(T,) < Uyy,
(33) M(r, Cy(f)) < M(o(r), 1),

where M (r,f) is given by (1.3). Let ¢> 0 and 0 < B <1 be arbitrary.
Then by (3.3),

R R

(3.4) fexp[ ] {ry Cp(N)dr < fexp[ r]M(g(r),f)dr.

0
Singe L00) _ =2 1—h
e R e S Y

(3:5) )

1—2
(r) = for all r, 0<r<1
e'(r) 152 or s >

144
~ter.sar <355

R " f—
f expll_
0

Rexp[l_e( ]M(@ ), f) rdr,

where ¢, = ¢(1—2)/(1+A). However,
R o /
6o [ | =gt e e

o(R)

~ | e[| e e < -

i

Hence, since (3.4)—(3.6) are valid for all R, 0 < B < 1,

(3.7) 10,( Pl < ( )ufuq

—* ) Therefore, C,(f) e I+ and C,: F*—F* is continuous.

where ¢; 20(1—!-}.

4. Compact composition operators. A function f holomorphic in U
is said to belong to the Hardy space H?, 0 < p < oo, if

bid

. 1 20
i = [ [ neepae]” < o
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Tt fe H?, then f(6%) = lim f(re®) a.e. is in I? and
r—>1

27

" —[ L f |f(e®) [”d@]

For the above and other properties of the spaces H? the reader is referred
to [2].

The following lemma will be used throughout this section to establish
continuity of the composition operators.

Levma 1. Suppose that X is an F-space and I' is a linear map of X
into B+ (N* or H?) which is continuous in the topology of umiform conver-
gence on compact sets; then I' is continuous in the usual topology on Ft
(N* or HP).

Proof. For 0 <r <1 define u, by y,.(f) =f, feFt (Nt or H?),
where f,(2) = f(r2). Set I, = y,oI' Clearly, I', is a continuous mapping
from X into F* (N* or H?). Furthermore, for each ze X, I'.(x)—I'(x)
as r—1. Hence as a consequence of the uniform boundedness principle
([5], Theorem 2.8), I' is continuous.

THEOREM 4. Let p: U->U be holomorphic and let 0 < p < oo be arbi-
trary. Then the following are necessary and sufficient that O, given by (3.1)
48 a continuous composition operator of F+ into HP.

(a) Cp: FT->HP.
(0} If f(2)

(¢} If 3,0 and 2,-0, then exp[A, Valg"—~0 in HP,
(d) There ewists 2 > 0 such that exp[i l/ﬁ]qp"——w wm H?.

n
= Y a,&"« F'*, then a,¢"—>0 in H?.
n=0

(&) There exists 4> 0 such that 3 exp[AVn]|p(e?)" is in L2[0, 2x].
n=0

1
(0) 35— [ 1p(e?)P"a6 = O(exp[ —2Vn]) for some 2> 0.
] .
(¢') limsup "V < 1.

Proof. (a)=(b). If C,: F*—H® for some p, 0 < p < oo, then by
Lemma 1 0, is contmuous Suppose f(z) = Zanz ¢ F*. Then for every

¢>0, [Ifll, given by (1.4) is finite and thus ||a 2"|,—~0 for every ¢> 0.
Therefore O,(a,2") = a,¢"—=0 in H?.

(b)=(c). Suppose 4,>0 and A,—0. Consider f(2) = Y a,2", where

= exp [4,Vn|. Since a, = Olexp [0(1/—) 1), by [7], Theorem 1, fePT,
from which (c) follows.

icm
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(e)=(d). We first show that there exists A>0 such thab
limsupexp[AVn]llp"l, < oco. Suppose such a4 does not exist. Let g >0,

n->00

g | 0 be arbitrary. Then for each j, there exists »;, n; > n;_;, such that

(4.1) exple,V/n;] g™, > 1

Define A, = 0 as follows:

g i m=uwny,

}, =
" 0  otherwise.

Then A,~>0 and by (¢), exp [M)/;z}qa’"»o in H?, which is a contradiction
of (4.1). Hence there exists 2 > 0 such that limsup exp [M/q—w]ucp"lfp is finite.
Choose ¢ > 0 such that 0 <¢ <A Then oo

llexpleVn]e"|, = expl—(A—c)ValllexplWnlg"],

which converges to zero since A—¢> 0 and I]exp[ll/ﬁ](p"np is bounded.
The proof that (d) is equivalent to (d') is obvious.
(d) =(e). Choose ¢ > 0 such that exp [eVn]g"—>0 in HP. Hence there
exists I such that for all n3>I, [lexpleVn]e"|, < < 1. Therefore,

an
2 [ lptetynae < expl—pevn)
T
0 B

for all n > I, form which (e) follows with 4 = pe.

The proof that (e) is equivalent to (') is also straightforward and
is omitted.

(e)=(a). Assume (e) holds. Then there exists a constant M, A> 0
and I such that

2n

(42) 2 [ ip(etyrmdi < dexpL— V]
27 ¢
for all » > I. Let f(7)y = 2 a,2"e FT. Since H? is complete, it suffices

to show that 2_, oy’ is a Oauchy sequence in H?. Since fe F+, by [7],

Lemma 1, there ex1sts a sequence {1}, 4, | 0 and a constant 4 > 0 such
that

(4.3) la,] < A exp[2,Vn]

3— s;:udia Mathematica LVIL3
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for all n. Let 0 <7 <1 be arbitrary. If 0 <p < 1, then by (4.2), (4.3)
and the inequality |a+b|* < |a® + [b}%,

2 m " m
1 ityi [P -
w4 f [; ap(rey || ar< Ang;exp [(ph— M V5]
for all n> I. Since (4.4) is valid for all r, 0 <r <1,
'i'l't1 m
{4.5) HZ ajqof“; < A7M Y exp[(ph—AV]1.
j=n J=n
If 1< p < oo, then as above one obtains
- mn . ) m
(4.6) | 3 asel], < 4307 3 exp(h—2/p) V51,
j=n j=n

Since ji:‘ exp [(pA; — A)l/j] and 2 exp [(4;— A[p) 1/]] converge, (4.5)
and (4 6) show that Z a9 i a Oauchy sequence in H®. Hence C,f
= 2 a,¢"e H?, Wth]l proves ().

CororLLARY. If C,: F*—H? for some p> 0, then (,: F+—>H“ Sor
all K2 0< g< oo

Proof. Suppose C,: F*—H® for some p > 0. If p = oo, the result
is obvious. Assume p < oo. Clearly, one need only consider H? for p<gq
< oco. Tt is clear that if 0,: F*—>H?, p > 0, then |p(¢™)| < 1 a.e. Hence,
for any ¢ > p,

1 27 1 2m 3
- ity 1an i ity | on
2 | wemas 5 | e

for all n. Hence by Theorem 4 (e), 0,: F*—HY

Remark. As a consequence of the above corollary one might con-
jecture that it 0,: F*—H? for some p > 0, then C,: F*—>H>, the space
of bounded holomorphlc functions on U. One can ea,sﬂy show that C,:
F+-H> if and only if sup lp(?)] < 1. In the following example we con-

struct a function ¢ such that C,: F*—H* but sup ®(2)] ==

ExAwPLE. Let h: U—U be holomorphic a,nd sueh that h is continuous
on U, h(1) =1 and h*—0 in HY, e.g., take h(z) = (1+2)/2. Let ¢> 0
and a> 0 be arbitrary. Choose f§,> 0 with 2 8, =1. Bince B, <1,
expleVn] BT—0. Therefore, exp[c Va) (B 2" is bounded for all n, &
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and
_ an
limexp(eVn] [ (B Ihf")", =
n—>00 0 .
independent of k. Therefore there exists », such that

supexploVal 5 [ (B < a.
" [

Since B+ p.< 1, exp [cVn] (By+ Bs)"—>0. Therefore exple Val (B 1™
+ B2 k%)™ is bounded for all n, k and

2
limexp [cVn] [ (B 1hI™ + B2 B/ = 0
n—>co 0
independent of k. Furthermore, since
1. b - . 1 am
timexpleVal -~ [ (B W™+, 10" = exploVnl 5= [ (Bulb™) < a,
Fe->00 2 H . 27 H
there exists n, > n, such that
2
) 1
swpexp oVl [ (Blh"™+ Bl < a.
” 0

Continuing inductively there exists a sequence ny, gy, > g, b =1, 2, ...,
such that

(4.7) sup exp [cl/ﬁ]—z%f BB+ .. + B < @
v ,, .

Let ¢ = Zﬁkh "%, Clearly, @ is holomorphic in U, continuous on U, ¢:
U—-U and (p(l) = 1. Furthermore, by (4.5) and Fatou’s lemma

explo¥a] 5 f (P a < a
[

for all n. Hence by Theorem 4 (e), O,: F+—HL. Since sup p(2)] =1,
0, cannot map F* to H™.

Let X and Y be topological vector spaces and let I' be alinear map
of X into ¥. As in [3], we say that I" is compact if there exists a neighbor-
hood ¥ of 0 in X such that I'(U) has compact closure in Y.
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THEOREM 5. If 0, is a composition operator of BT into H?, 0 < p < oo,
then O, is compact.

Proof. Suppose 0,: F*—~H” and assume 1< p < oo. By Theorem
4(d) there exists > 0 such that exp[AVn]¢"—0 in H? as n—oco. Choose
¢ such that 0 < ¢ < 1 and let .

‘ U={feF*: |fl,<1}.
Let ¢ > 0 be arbitrary. Choose an integer K such that
(4.8)
for all n> K and

lexp [4Vn]g"lp < 1

2 exp [(c—l)l/ﬁ] < &.
n=K+1

(4.9)

Let f(2) = 3 a,2"¢ U be arbitrary. Since |fl, <1, |a,] < exp[eVn]

=0

for all n. By (4.8) and (4.9)

(o]
D laug™l,
n=K-+1

@10) [0pr~ D ang?], <
n=0

+

< D expl(o—A)Vn]llexp[AVnle"], < s.
n=K+1
Since (4.10) is valid for all fe U, it follows that C,(U) is totally bounded
and hence has compact closure since H” is complete.

It 0 <p<1, then by the Corollary to Theorem 4, C,: F+—»HL
Therefore, there exists a meighborhood U of 0 in F* such :hat 0.(T)
has compact closure in H?. Since the identity map of H* into HZ is 2011—
tinuous, C,(U) has compact closure in H”. -

TeEOREM 6. Let X be a Banach space and let I' be any continuous
linear map from F* or N* to X. Then I is compact.

Proof. Suppose that I': F*—»X is continuous. As in the proof of
Theorem 4 (d), there exists 1> 0 such that exp[AVn]I'(¢")—0 in X.
Using the method of proof of Theorem 5, one can show that there exists
an open neighborhood U of 0 in F* such that I'(U) is totally bounded
in X and hence has compact closure.

Suppose I': N*—X is continuous. Then as in the proof of Theorem 3
I+ (the second adjoint of I') is a continuous linear map of F* into X o
(the second dual space of X) and hence compact. Therefore there exists
a neighborhood U of 0 in X such that I'**(T)is totally bounded in X**,
Let V = UnNN*. Since the topology in F* defined by the family of semi-
norms (1.4) is weaker than the topology in N*t.defined by the metric

icm
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(1.1) ([7], Theorem 4), V is open in N¥+. Since ng =T, I'(V) is totally
bounded in X. Therefore, I' is compact. o

We conclude by giving necessary and sufficient conditions for a com-
position operator C, of F'* into F'* to be compact.

TEROREM 7. C,: F*—F* is compact if and only if there ewisis 1> 0
such that exp [Zi/;tjtp‘”—>0 in Ft.

Proof. Suppose O,: F+—F¥ iy compact. Then there exists ¢> 0
such that if B = {fe F+: |fl, <1} then C,(E) has compact closure in F+.
Consider the sequence f,(2) = exp[e Vnle®e B. Then C,(f,) = exp [eValg®
¢ 0,(B). Since C,(¥) is compact it is bounded in every norm on F+ given
by (1.4). Thus if a,—0, a,0,(f,)—0 in F*. Choose 0 < < ¢ and let a,
— exp[ —(¢—A)Vn]. Since a,~0, a,C,(f,) = exp[W¥n]¢g"~>0 in F*.

Conversely, suppose there exists A>0 such that exp[Z VE]qJ”—»o
in F*. Since the topology of F* is determined by countably many of the
norms || |, given by (1.4), F* is metrizable. Hence to show that C, is
compact, it suffices to show that there exists a neighborhood U of 0 in F'*
such that € (U) is totally bounded for each norm { .

Choose A, 0 < A’ < A, and let

U = {fe F*: |fly < 1}.

Then if f(2) = Y a,2"¢ U, |a,} < exp[4’ Val.
Tet ¢>0 and ¢> 0 be arbitrary..Since 1|exp[m/ﬁ]qo"||c—>0 and
Zexp[—(/l—l')l/'n] < oo, there exists an integer K such that

(£.11)] exp[AVn]fl¢"ll. <1

for all n> K and

> exp[ —(A—A)Vn] < e.
n=K+1

Therefore, for any f(z) = > a,2"< U,

S (el 6"
n=K-+1

413)  [lop(n)— 2%?’"“5

= 3 (a,lexpl—2V/n])(exp V] Ig"ll)
n=K-+1

= > exp[—(A—A)Vn] <.
" n=K-+1
By inequality (4.13) it follows that C,(U) is totally bounded with respect
to | |,- But ¢> 0 was arbitrary. Hence 0,(U) is totally bounded for all
¢> 0 and therefore has compact closure.
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On power series in the operators s**

; by
M. SKENDZIG and B: STANKOVIC (Novi Sad, Yugoslavia)

Abstract. Necessary and sufficient conditions for convergence, in the field of

o0
Mikusitiski operators, of the series § = } y,,5°" and the uniqueness of this representa-
n=0 . )
tion are given. Here a is real positive, y, are complex and s is the differentiation oper-
ator.
This extends a result of T. K. Boehme when a = 1. It is also shown that J. Wlo-
ka’s sufficient condition for convergence is also a necessary one.

1. Introduction. In the field of Mikusiiiski operators M the conver-
gence class is defined. But nobody has investigated the conditions for
convergence or divergence of series in operators in general case.

The special class of power series in the operator s*

2“' ?" san }.ﬂ’

n=0

where 7, and A are complex numbers, o real and positive, s the differen-
tiation operator, has an important role in the operational calculus and
its applications. :

In the case a = 1 we know one sufficient condition for the conver-
gence of the series (1.1) and one for its divergence [4]. We know also
generalization of these results to the case a> 0 [6]. J. Wloka [8] found
a sufficient condition for the convergence of the series (1.1), in case a =1,
too. In the mentioned paper he asked the question: ‘“Is this condition
also a necessary condition?’’. Recently, T. K. Boehme [1] gave a neces-
sary and sufficient condition for the convergence of the series (1.1) in
the case a = 1. Our aim is to enlarge the result of Boehme to the case
a > 0. We prove two propositions, both containing sufficient and necessary
conditions for the convergence of the series (1.1). We give also the answer
to the question of J. Wloka and a proposition about the uniqueness of the
development of an element of M in a series of the form (1.1) for a fixed
a> 0. :
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