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Generalizations of theorems of Fejér and Zygmund
on convergence and boundedness of conjugate series*

by
G. GOES (Chicago)

Abstract. This shown that the Fejér and Zygmund theorem on the convergence and
boundedness of conjugate series remains true for arbitrary translation invariant Banach
spaces of distributions on T. Analoga for weak convergence and for certain Banach
lattices are given.

1. Introduction. It is the purpose of this note to generalize the fol-
lowing theorem of Fejér and Zygmund ([14]; [13], p. 268) in various
directions.

TrrorREM A (Fejér and Zygmund). (i) If f and f are both contimuous
(d.e. in Cy,) and the Fourier series S[f] converges uniformly, so does the
conjugate series @[f]. If f and f are both bounded (i.e. in L) and S[f] has
bounded partial sums, so has 8 [f1. .

(ii) Suppose §[f] is @ Fourier series (i.e. in Lo). If [ |f —sald¢ tends

1]

ar 27 2
to zero, so. does [ |f—8,1dt; if [ lsy|dt is bounded, so is [ 18, di.
0 0 2

- Tt will be shown that this theorem remains true if the spaces Cap,
I, and L,, are replaced by an arbitrary translation invariant Banach
space in L, or even by a translation invariant Banach space of distribu-
-tions (Th. 3.1.). In:Section 4, Theorem 3.1 is reformulated as a statement
on homogeneous BE-spaces. Section 5 contains analoga for weak con-
vergence. For example: If S[f] converges weakly in L,, and if 8rf]is |
a Fourier series, then this series converges weakly in IL,, too. Theorem
6.1 shows, that if a Fourier series converges uniformly and the arithmetic
means of the partial sums of the conjugate series converge in some Banach

% Added March 11, 1975: The contents of this paper were presented by the
author March 10, 1975 in a lecture at the University of Chicago. It is gratefully ac-
knowledged that A. Zygmund brought to the author’s attention that L. Fejér [Uber
Konjugierte trigonometrische Reihen, J. reine und angew. Math. 144 (1913), pp. 48-56]*
proved Theorem A in the case 1 f :@‘h. Accordingly, the name of Fejér was added
in the title and after ““TmporEM A™ on this page.
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lattice B, then the conjugate series converges in K. Several examples not
covered by Zygmund’s Theorem will be presented.

For reasons of_greater uniformity and flexibility we work mostly
with spaces of sequences of Fourier coefficients of distributiens.or quite
arbitrary sequence spaces, rather than with spaces of functions in L,,.

2. Definitions, notations and preliminary remarks. Let Z be the
set of integers and £ the linear space of complex valued functions on Z
(ie. sequences on Z). For je Z let &/ denote the characteristic function

n
of the set {j}, ie. 6 =0if k2 jand 6] =1. If we @, then s, @ = 3 @,8"

ke=—n
is called the nth section of # = (z) and o,@ = 3 (L—|k}/(n-+1))a, 5" the
nth Cesaro-section of order one of w. fe=—n

Let B be a BK-space (see Zeller [11]), i.e. a Banach space of complex
valued sequences # on which the functionals -, are all continuous.
Let e 2 and s,xe B for allm = 0,1, ...; then x is said to have: sectional
convergence or AK (respectively Cesdro-sectional convergence or oK) in H,
if zeF and if ||s,—2]z—0 (n—00) (Tesp. [o,2—&|z—>0 (n—>00)); sec-
tional boundedness or AB (vesp. Oesdro-sectional boundedness or oB) in B
if sgp sy 2llz < oo (resp. supllo,zlz < o0); functional sectional convergence

n
or FAK (resp. FoK) in B, if for every pe B' — the space of linear continuous
functionals on E—lim ¢(s,z) (resp. limg(o,x)) exists; weak sectional
00 n-

. N> ~>00

convergence or SAK (resp. SoK) in B if #¢<H and if for every ge I,
lim g(s,2) = @(2) (resp. limg(o,2) = (x); sectional density or AD
n—>00

n~>00
in F if @, the space of we 2 with only finitely many nonzero z,'s, is dense
on F. If P is any one of the properties AR, oK, AB, ¢B, FAK, FoK, SAK,
SoK, AD, then #p denotes the subspace of @, consisting of those elements
which have the propgrty P in B. If P = AK, AB, FAK, SAK then, as
is well known, with K also By is a BK-space under the norm [jz]| = sup I8, 2l -

If B = oK, 0B, FoK, SoK, then Fp is a BK-space under the norm ||
= suplio,zlz.
n

. For any BK-space B let By = {we Q: Igpe B' such that @, = ()

if 6*< B} If 4, Bc Q, then (A—B) = (e Q: oy = (wyy) e B for every
ye A} is the space of multipliers from 4 into B. Of particular interest
are the cases when B is one of the spaces

lim an x, exists},

00 =7,

R - 1] .
’111_>n°1° kg (1 ey ) @ exxsts},

cs = {we Q:

g8 = {(EG Q:
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bs = {xe Q: supl Zﬂ" wkl < 00},
n p=—n

S k|
kgﬁ,(l” n+1)”’° < °°}’

Tf B = cs, bs, 08, ob, we use instead of (4—>B) the usual, shorter notations
AP, A?, A°, A%, respectively.

© For teT = R/(2=Z) (real numbers modulo 27) let e(t) denote the se-
quence x, where , = ¢ (ke Z). A BK-space B is called translation in-
variant if ze B implies x-e(t) = (#,6™) e B for every teT and if in addi-
tion for every ze< E and for every teT, |lz-¢(d)lly = l%lz- A BK-space B
is called a homogeneous BK-space (compare [6], p. 14) if it is a translation
invariant BK-space and if translation is continuous in F, i.e. for all z¢ B
and toe T, lim|z-e(t) —a-e(fy)|p = 0. A translation invariant BK-space

t-t

b = {me £: sup
n

E is said to i)mwe weakly continwous tramslation if for all e B’ and all
tyeT, limqn(:o-e(t)—w-a(to)) = 0. We observe here (see Corollary 4.4)
that txf;g]sla;tion is weakly continuous if and only if it is continuous.

I Bc Q then B ={fecQ: &= {—ilsignk)n}, ve E}. Hence if B
is a space of sequences of Fourier coefficients, then F denotes the associated
space of sequences of coefficients in the conjugate series.

T Ly, Csny LS and M, ave the classical Banach spaces of 2n-periodie,
complex: valued functions f on T which are respectively Lebesgue inte-
grable, continuous, essentially bounded, respect/izely bounded (Borel)
measures on T, then the associated spaces fJ, 0, L® and M of sequences
of Fourier coefficients (respectively Fourier-Stieltjes coefficients) & = f
are tranglation invariant BK-spaces under the norm |zl = ||ffl. Further-

A~ AN . .
more I = Ly, 0 =0ox, L® = L%, M = Mz ([14], pp. 144, 136,
134, 137). The reader is reminded on the following facts on multipliers:

AN . AN e s
(L®=0) = L** = L = Ly.x-

For the first equation see [14], p. 177; for the second equation see [14],
p. 158. The third equation follows from the second and the fact that for
any BK-space F containing &,

R A~
Bpx = (By)° and (L) = L.
AN - N ~
(L°—>0,x) = (Lw)ﬁ = LIpsx- .
For the first equation see [5] and [3], p. 379. The second equation is
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A R
parallel to' the equation (L*)’ = Lg,. Furthermore, we have

. . " %
Ogoe = M° = {‘me 0Q: B_)It k; (1_ n]—i—ll)m’“eﬂct exists boundedly pn T},

Opaxe = WP = {gpe Q: lim Z z,6™ exists boundedly on T}.

N0 By
The first equations follow from d, = M and the second equations are
proven in [3], pp. 374 and 375. We have also (M~C,x) = Oux (se0 [2]).

3. The generalization of Zygmund’s Theorem. With the mnotations
introduced in Section 2, Zygmund’s Theorem (Th. A) can be written
also in the following form:

TEEoREM A’. (i) OuxnC < Cag; LENI® < LTp.

(i) _LAAKmi < ﬁAK; fAan c ﬁAB.

‘With respect to the last inclusion we note that L,p & L ([9] and [6])

but LysnL = L by the F. and M. Riesz Theorem on the absolute con-
tinuity of analytic measures ([14], p. 285).

Evidently the following statement generalizes Theorem A’ and hence
Zygmund’s Theorem:

3.1. TexoreM. Let B be a translation invariant BK-space. Then

() BaxnBug c Byx; (i) BugnBpc Bip.

The main argument for the proot is contained in the following lemama:
3.2 Levma. Let E be a translation invariant BK-space, then

(i) Bax © Bip = {we Q: 1im fjo,(8) — s, (&)llz = 0},

7—+00

(il) Byg = Byp = {we Q: suplio, (&) —s,()lg < oo}

Proof. The first half of the proof is used for both, (i) and (ii): Let
F be a translation invariant BK-space and let X be E,x or B 5. Let
e X. Then (s,)-¢(t) = s,(v-6(t))e X for every » =0,1,... and for
every teT. Let ¢ (f) = (ik ¢™) be the “differentiated sequence” of o().
Then for T, (1) = s,(-¢(1)) and T (f) = s, (¢’ (1)) the following equation
holds for every #'=0,1,... and every teT:

n 2

) S YR , )
@ T = Zwkm““ o= Z @, f I sinmy K, (u) du 6

k=—n =—n [

2w
e Of T,,(t+1a)smnu1fn_f1(u) du
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([14], p: 118). Here K, _, denotes the (n—1)th Fejér-kernel and the last
integral has to be considered as a vector valued Riemann—Stieltjes integ-
ral with sinwuXK,_,(w) dw as integrator ([4], p. 62). Evidently, (1) implies
the generalized Bernstein inequalify

@ IOl < 2 [ VT (Ol Eoa () = 201T D)l

observing the translation invariance of the norm in #, the positivity
of the Fejér-kernel and | K|, = = for every # =0,1,...
Now let n > ny = 0 and 7, = I,,—T, . Then

) ) ) () | Ta(®
8) o (B-€(1)) — 8, (8- €()) = nil = :»+1 v

(i) Let @ e B, and & > 0 be given. Then there ‘exists an 7, such that
[, (8)llz < &2 for all n > n,. This implies by (2) (if T, (?) in (2) is replaced
by z,(f)) that also .

7 (1)

<e for all nz= .
n-+1

B

Since for some n' > %, and for all n > n' > n, also ||T;Lo(t)/(n +Dzg < &
it follows by (3) that for n>n' > m,

”O"n(ﬁ'e(t)) —sn(é‘e(t))”j;< 2¢.

This implies by the translation invariance of the norm in B that se .

(i) This can be proved correspondingly as (i) using now that e Eap
implies sup [z, (f)llg < oo.
n

Proof of Theorem 3.1. Let B be a translation invariant BK-space
Evidently, B x = Ex0HB, and B ax = EaKC\E s+, Since ~loy Lemma 3.2,
Bax By, it follows that FyxnEx < BgunBix = Hax, hence ()
is proved.

Correspondingly we have B = Hp NE sz Since by Lemma 3.2,
Eup < Bup, we obtain BygnBy c BpnBep = Eip.

4. Homogeneous BK-spaces. G. B. Bilov [8] introduced the concept
of a homogeneous space of functions. Homogeneous Banach spaces of
functions on T are considered in Katznelson [7], p. 14. We gave the
definition of a homogeneous BK-space in Section 2.- The following
simple proposition allows another formulation of Theorem 3.1.

41. Prorostrion. (1) If B is a translation invariant BEK-space, then
B By
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(i) B is a translation invariant BK-space and B = Hx if and only
iof B is a homogeneous BEK-space.

Proof. (i) Let B be a translation invariant BK-space, K, the nth
Fejér-kernel, z¢ E and » = 0,1, ... Then

1 brd !1 27
ozl = ”1 of Kn(t)w(—t)dtHEs e Uf E,(dtlo-o( 1)z = lols-

Hence H < Egp.

(ii) Let B be a translation invariant BE-space and B = F,x, ¢ H
and &> 0. Then there exists a positive integer #; such that for all n > n,
and for all ¢, {,e T . .

flo-e(t) —z-e(t)lz = lo-e(t—1) —2lz
< |lm'5(i—to) - Un(w:e(t”‘to))”_g‘l‘ ”0'11(97 e(t_to)) — 0 (@) lg + |60 & — |z

- n
<etmaxfotly 3 loglle™ 0 —1].
lkl<n F=—n

Evidently, the last expression converges to zero if {—>%,. Hence ¥ is a homo-
geneous BK-space. .

Conversely: Let F be a homogeneous BK-space and @e E. Then g,
where ¢(t) = z-e(t), is a continuous H-valued function on 7. Further-
more,

27
1
o == [ E,(g(—1)dt.
0

. “As in [7], p. 10, one shows that lim 0,4 = 2 in H. Thus ¥ = ¥ 4.

The last proposition and 3.1 together imply:
4.2. THEOREM. (i) If E is a homogeneous BK-space, then Byx N B c B, .
(i) If B is a translation invariant BK-space, then BipnH < B,5.
4.3. PROPOSITION. Let F be a translation invariant BK-space. Then
Te E has weakly continuous tramslation if and only if # has oK.

Proof. Let F be a translation invariant BK-space and let # have
weakly continuous translation. Then for every gpe B’ by Fejér’s Theorem

i

2m .
1
9(0,9) = — [ glo-o(—) K, () dt->p(0) (n-rc0).
[}
Thus # has SoK. Since B has ¢B (Prop. 4.1), it follows that # has oK.
In fact: Hg,x has AD since pe B and ¢(c®) = 0 for every ke Z implies
9(Bgx) =0 ([10], p. 109). Thus Fg,x = (Bu)ap = Box, where the last

icm
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equation can be proved as in the case (Bap)ap = Bax ([12], p. 59 Satz
3.3 and p. 70).

Conversely, if # has oK then by 4.1 (ii) # has continuous and hence
also weak continuous translation.

4.4, COROLLARY. In a translation invariant BK-: pace weak continuity
of tramslation is the same as continuity of tramslation.

5. Extensions to classes of multipliers. In this section simple exten-
sions of Theorem 3.1 to classes of multipliers are considered.

5.1. ProposITION. Let S < 2 and let B be a translation invartant
BK-space. Then (S—>Bux) (8—H.x) = (8—Hyx).

Proof. Evidently, (§->B,x) N(8—>Hz) = (8B g nB.x). Hence the
statement follows by 3.1.

A A
5.2. Bxampre. If § = L® and F = C, then by 5.1
VAP N\ x N\ =
(L2 —0,2) N(I">C ) = (I°—>Csx)-

This implies by the facts on multipliers listed at the end of Section 2,
that :

—
N =z AN\

(L=PnL = (T, _
or in words: If S[f]is a Fourier series which is weakly convergent in L.
and if §[f]is a Fourier series (by the F. and M. Riesz Theorem it is actually
enough to assume that §[f]is a Fourier-Stieltjes series), then this series
is weakly convergent in L,, too.

5.3. ProposTioN. Let B <  be a BK-space containing P and

n
1
= : lim —— = 0f.
B {fb‘e 02 }.l_ri p L;:kak }
Then (F;—B)N By = Brax-
Proot. cs = ssnB. Thus (B;+B) NEpx = (B,~B) N (B>08) = Brix-
5.4, COROLLARY. Let B < Q be a BK-space containing ®; then

(EfQéAK) ”EF.:K < EFAK'

n
1 2 kwkeikt —= 0}‘
n-+1
k=—n

55 Bxawerm, Let B —0. Then (6>Cix) = (M—~0ux) = Cux
[2]; furthermore, Upg = M® and Opax = M? (see end of Section 2).
Thus, by 5.4, 6‘AKmM” = MP. Tn words: It S[f]is a uniformly convergent

Proof. By 3.2,

(:'AK = 5'40 = {we 0: lim sup

n—+oo teT


GUEST


248 G. Goes

Fourier series and [8f] has boundedly convergent Cesiro-partial sums,
then S[f] is boundedly convergent. ‘

6. Conjugate series in some Banach lattices.

6.1. THEOREM. Leét B <= L,, be a Banach space which is also a Banach
lattice under the partial ordering & defined by: f, g< B f & g < f(1) = g(t)
for every teT'. Let the associated space B of sequences ffof Fourier coefficients
of fe B be a translation invariant BEK-space under the norm ||f||ﬁ = ||flg-
Then

(1) CAKmEUK = EAK; (i) dABnEaB < E_AB-

Proof. (i) Let B fulfil the hypotheses and let B,z o4 {0} (without loss

of generality). Let us assume also first that the constant functions belong
to H. Then by formula (1) in the proof of Lemma 3.2

2
, 2n .
T = — f T, (4 4 ) sinnu, _, (1) du
; ,

2n r .
= == [ Ty (wsinn(t—w) K, (i—w)iu
0

and

O Tl = H i’ ih 6%

k=-n

B

21 n *
2n —
= ?Hof k‘z @y, 6™ smn(t—u)Kn_l(i-u)duHE

2% n B ) 27
— l 203,50" me [sinm(t —u)| K,_, (t —u) du|
k=—n 0 =
. X ik ' .
< 2%’,}-4 2™, 192 = 01T, M,
o= —n
where M =|&"p.

‘Hence if we GAKHE,K then for given & > 0 there existy an =, such that
if n>n,>0 and 7, = T,—T,, we have |lv,]| ~ < /2. Hence (1) implies
LOO

tor n > m, that |z, /(n +1)[z < e As in the proof of Lemma 3.2 it follows

that [0, (8) — s, (&)ll5 < 2¢ if 0 > n,. Thus weBuz. Tt the constant fune-
tions do not belong to ¥, then by adjoining the constant functions to ¥
we obtain the space H, = H+[A], where [1] is the linear space of all
constant functions. Then with B also E, fulfils the hypotheses of the

e ©

icm
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theorem if we define the norm in B; by lfllg, = If — Allz+ 2], where fe H,,
1 a constant fanction and (f—A)e B. Then the theorem holds for H, and

hence, since EGK = (EA)UK’ E"AK = (E‘,I)AK, also for &.

(i) This can be proved correspondingly.

6.2. Remark. The theorem coincides with a special case of theorem
31 = . In view of Theorem 3.1 it is of no {additiona.l interest if § < .

=N
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