

The property of weak type (p,p) for the Hardy-Littlewood maximal operator and derivation of integrals

by

BALDOMERO RUBIO (Princeton, N.J.)

Abstract. Connections between differentiation of integrals of functions in L^p spaces and the property of weak type (p,p) for the Hardy-Littlewood maximal operator are established, being $1 \le p < \infty$.

- § 1. In this paper the two following properties of a differentiation basis \Re in \mathbb{R}^n are considered, being $1 \leq p < \infty$,
 - (a) \Re differentiates $\int f$ for every $f \in L^p(\mathbf{R}^n)$.
- (b) The Hardy-Littlewood maximal operator associated with \Re is of weak type (p, p).

We will prove that these properties are equivalent when \Re is a special basis invariant by translations, and when \Re is a general basis homothecy invariant.

The case p=1 and \Re homothecy invariant was proved by M. de Guzmán and G. V. Welland [3], using a lemma of A. P. Calderón, and they proposed the generalization. A. M. Bruckner [1] shows also the interest of the problem.

This result is contained in my doctoral thesis at Madrid University, being M. de Guzmán my thesis adviser, to whom I wish to thank for his help.

§ 2. A differentiation basis \Re for a subset A of \mathbb{R}^n is defined giving for every $x \in A$ a collection $\Re(x)$ of open bounded sets such that there is at least one sequence $\{R_k\}$ in $\Re(x)$ which verifies $R_k \to x$ (i.e., for every neighborhood U of x is $R_k \subset U$ for k greater than some k_0).

Given a locally Lebesgue integrable function $f: \mathbb{R}^n \to \mathbb{R}$ we define the upper derivative $\overline{D}(f, x)$ of f with respect to \Re at the point x by

$$ar{D}(\int f, x) = \sup \left\{ \limsup_{k \to \infty} \frac{1}{|R_k|} \int\limits_{R_k} f(y) \, dy \right\},$$

where the sup is taken over all the sequences $\{R_k\} \subset \Re(x)$ such that $R_k \to x$. In a similar way is defined the lower derivative $\underline{D}(\int f, x)$, setting

inf(liminf) above. We say that \Re differentiates $\int f$ if $\overline{D}(\int f, x) = \underline{D}(\int f, x) = f(x)$ almost everywhere.

A differentiation basis \Re in \mathbb{R}^n is homothecy invariant if, for every homothecy transformation h, $R \in \Re(x)$ implies that $hR \in \Re(hx)$. In a similar way is defined t at \Re is invariant by translations. Every translation will be considered as a special homothecy transformation.

The Hardy–Littlewood maximal operator M associated with \Re is defined by

$$Mf(x) = \sup_{R \in \mathfrak{R}(x)} \frac{1}{|R|} \int_{R} |f(y)| dy$$

for any f locally integrable. When \Re is invariant by translations, the set $\{x: Mf(x) > \lambda\}$ is open for every λ , and so Mf is measurable. In the following we will consider always bases which are invariant by translations.

The operator M is of weak type (p,p), $1 \le p < \infty$, if there exists c > 0 such that for every $f \in L^p(\mathbf{R}^n)$ and $\lambda > 0$ is verified

$$|\{x\colon Mf(x)>\lambda\}|\leqslant c\int\limits_{\mathbf{R}^n}\left|rac{f(y)}{\lambda}
ight|^pdy\,.$$

We will use the following Sawyer's version [2] of a theorem of E. M. Stein $\lceil 4 \rceil$:

Let (X, \mathcal{A}, m) be a space of finite measure, and $1 \leq p < \infty$. We consider a sequence $\{T_k\}$ of positive linear operators continuous in measure defined in $L^p(X)$, and suppose there exists a family F of transformations in X preserving the measure and commuting with every T_k such that, given $\varrho > 1$ and two subsets A, B of X with positive measure, there exists $t \in F$ which verifies

$$m(X) m(A \cap t^{-1}B) \leq \varrho m(A) m(B)$$
.

Then the following conditions are equivalent:

(a) For every $f \in L^p(X)$, $T^*f(x)$ is finite a.e. in x, being $T^*f(x) = \sup\{|T_k f(x)| : k = 1, 2, \ldots\}$.

(b) There exists c > 0 such that

$$m\{x\colon T^*f(x)>\lambda\}\leqslant c\int\limits_X\left|rac{f(y)}{\lambda}
ight|^pdy$$

for arbitrary $f \in L^p(X)$ and $\lambda > 0$.

§ 3. We can state now the following theorem.

THEOREM I. Let $\{R_k\}$ be a sequence of open bounded sets in \mathbb{R}^n with positive Lebesgue measure such that $R_k \to 0$ (the zero of \mathbb{R}^n). We consider the differentiation basis $\Re(x) = \{x + R_k \colon k = 1, 2, \ldots\}$ in \mathbb{R}^n , and the associ-

- (a) \Re differentiates $\int f$ for every $f \in L^p(\mathbf{R}^n)$.
- (b) M is of weak type (p, p).

Proof. It is necessary only to prove (a) \Rightarrow (b), because the proof of (b) \Rightarrow (a) is easy.

We can suppose diameter $R_k < 1$ for every k. Let X be the unit interval $[0,1]^n$. For every $j \in \mathbb{Z}^n$, j+X will be identified with X and so, if diameter E < 1, there is a natural bijection between E and a subset E' of X. For $x \in X$ and every k we write $T_k(x) = (x+R_k)'$, and consider the differentiation basis \mathfrak{F} in X defined by $\mathfrak{F}(x) = \{T_k(x) \colon k=1,2,\ldots\}$ and the operator T_k in $L^p(X)$ such that

$$T_k f(x) = \frac{1}{|R_k|} \int_{T_k(x)} f(y) dy.$$

It can be observed that the bases \Re and \Im have the same differentiation properties in the interior points of X, because in such an x we have $T_k(x) = x + R_k$ for large k. This means that $T^*f(x) < \infty$ a.e. in X, for every $f \in L^p(X)$, being $T^*f(x) = \sup\{|T_kf(x)|: k = 1, 2, \ldots\}$. Now the Stein theorem is used to obtain the existence of a number c > 0 such that

$$|\{x \in X \colon T^*f(x) > \lambda\}| \leqslant c \int_X \left| \frac{f(y)}{\lambda} \right|^p dy$$

for every $f \in L^p(X)$ and $\lambda > 0$. It is easy to prove that all the conditions to apply this theorem are satisfied. The required transformations in X are the translations of X considered as a torus. Every T_k is a positive linear operator which is continuous in $L^p(X)$ and commutes with the translations in X. Furthermore, given A, B in X with positive measure, if we suppose $|A \cap tB| > \varrho |A| |B|$ for every translation t, since $|A \cap tB| = (\chi_A * \chi_{-B})(t)$, we have

$$\int\limits_X \left(\chi_A * \chi_{-B}\right)(t) \, dt > \varrho \, |A| \, |B|$$

and so one obtains a contradiction, because by the Fubini theorem the first member above is |A||B|.

Now for each $u_i \in \{0, 1\}^n$ we consider the interval $X_i = u_i + X$, and put $X_{ij} = 2j + X_i$ for $j \in \mathbb{Z}^n$. It is possible to do in every X_{ij} the same that we did in X, and the corresponding operator is denoted by T_{ij}^* . The constant obtained to apply the Stein theorem does not depend on i, j.

Let f be a non-negative function in $L^p(\mathbf{R}^n)$; f_i and f_{ij} are the corresponding restrictions to $\bigcup_i X_{ij}$ and X_{ij} , respectively. It is easy to prove

254

that $Mf_{ij}(x) \leq T_{ij}^* f_{ij}(x)$ a.e. in X_{ij} , and so we have

$$\begin{split} |\{x \, \epsilon \, \boldsymbol{R}^n \colon \, M\!f(x) > \lambda\}| &\leqslant \sum_i \left| \left\{ x \, \epsilon \, \bigcup_j X_{ij} \colon \, M\!f_i(x) > \lambda 2^{-n} \right\} \right| \\ &\leqslant \sum_{i,j} \left| \left\{ x \, \epsilon \, X_{ij} \colon \, T_{ij}^* f_{ij}(x) > \lambda 2^{-n} \right\} \right| \\ &\leqslant 2^{np} \, c \, \int\limits_{\boldsymbol{R}^n} \left(\frac{f(y)}{\lambda} \right)^p dy \, . \end{split}$$

§ 4. For general homothecy invariant bases we have an analogous theorem.

THEOREM II. Let \Re be a homothecy invariant differentiation basis in \mathbb{R}^n , and M the associated Hardy-Littlewood maximal operator. The two following conditions are equivalent, being $1 \leq p < \infty$,

- (a) \Re differentiates $\int f$ for every $f \in L^p(\mathbb{R}^n)$.
- (b) M is of weak type (p, p).

Proof. As before we only have to prove (a) \Rightarrow (b). Because \Re is homothecy invariant, it is easy to prove that, M_{δ} being the maximal operator associated with the basis $\Re_{\delta}(x) = \{R \in \Re(x): \text{ diameter } R < \delta\}$, M is of weak type (p, p) if and only if M_{δ} is so for some $\delta > 0$.

In order to prove (a) \Rightarrow (b) we will prove that otherwise we obtain a contradiction with Theorem I. We suppose that (a) and not (b) are true. Then the maximal operator M_k associated with $\Re_{1/k}$ is not of weak type (p,p) for every k, and we can choose one sequence $\{f_k\}$ of non-negative functions in $L^p(\mathbf{R}^n)$ and one sequence $\{\lambda_k\}$ of positive numbers such that, being $E_k = \{x \in \mathbf{R}^n \colon M_k f_k(x) > \lambda_k\}$,

$$|E_k| > k\lambda_k^{-p} ||f_k||_p^p$$

holds. If g_k verifies $\lambda_k g_k = kf_k$, we have $E_k = \{x \colon M_k g_k(x) > k\}$ and $|E_k| > k^{1-p} ||g_k||_p^p$. We take a compact $F_k \subset E_k$ such that $|F_k|$ is also greater than $k^{1-p} ||g_k||_p^p$. Given $x \in F_k$, there exists $R \in \Re(0)$ such that the diameter $R < k^{-1}$ and

$$\frac{1}{|R|} \int_{x+R} g_k(y) \, dy > k.$$

There is also a sphere B(x) with center in x such that for every z in B(X)

$$\frac{1}{|R|} \int\limits_{z+R} g_k(y) \, dy > k$$

holds, with the same R as before. We select a finite number of such spheres to cover F_k . Let $R_{k1}, R_{k2}, \ldots, R_{kh_k}$ be the members of $\mathfrak{R}_{1/k}(0)$ associated with them.

Now we consider the sequence R_i defined by

$$R_{11}, \ldots, R_{1h_1}, R_{21}, \ldots, R_{2h_2}, R_{31}, \ldots$$

It is clear that $R_j \to 0$, and so we can define a differentiation basis \Re' in \mathbb{R}^n setting $\Re'(x) = \{x + R_j \colon j = 1, 2, \ldots\}$. By Theorem I the maximal operator M' associated with \Re' is of weak type (p, p). But this is impossible, because given c > 0 we have for k > c

$$|\{x \in \mathbf{R}^n \colon \ M' g_k(x) > k\}| \geqslant |F_k| > ck^{-p} \, ||g_k||_p^p.$$

References

- [1] A. M. Bruckner, Differentiation of integrals, Amer. Math. Monthly 78 (1971) (Slaught Memorial Papers, no. 12).
- [2] A. M. Garsia, Topics in almost everywhere convergence, Chicago, Markham Pv.
- [3] M. de Guzmán and G. V. Welland, On the differentiation of integrals, Revista de la Unión Mathemática Argentina 25 (1971), pp. 253-276.
- [4] E. M. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), pp. 140-170.

Received February 21, 1975 (959)