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A remark on p-integral and p-absolutely summing operators from 1, into l;,

by
B. CARL (Jena, DDR)

Abstract. Let I, and Py, be the ideals of p-integral and p-absolutely summing
operators, respectively. It is shown that, if p # 2 and 1< p < oo, there exist Banach
spaces I, and 1, such that Ly (y, Iy) # Pp(lus ly). :

In this note we shall show that for each exponent p > 1, with p 2,
the spaces I,(l,, I,) and Py(l,,l,) are distinet provided that 1 <p* <w
<2<v<pand 1<p<ov<2<u<p respectively.

Thus we have a negative decision over a problem of A. Pietsch [4]
and D. J. H. Garling [1]. Furthermore, we get a simple proof for I, #P,
(cf. A. Pelezyhski [2]). Finally, we can disprove the conjecture of A.
Pietsch [5] (problem 16.1.3) that P,(B,1,) = Py (&, 1) for arbitrary B
and 2 <v<p<g

1. Basic notations. Let I, denote the Banach space of all wu-absolutely
summable sequences provided with the norm

], = (2 |5«;iu)1lu it 1<<u<< oo,
and . )
lole = sup|&il it = oo,

respectively.

Analogously, I denotes the Banach space of all n-dimensional vectors
(&4, .-+, &) With the corresponding norm. We refer to A. Perrson/ A.
Pietsch [3] or to A. Pietsch [5] for definitions and fundamental properties
of the normed ideals [T, ¢,] and [Py, m,] of p-integral and p-absolutely
summing operators, respectively.

2. Limit order of operator ideals. In the sequel, I, is the identity
operater from 1% into I} . We define the limit order A7(A, u,v) of a complete
quasi-normed ideal [4, a] as follows (cf. [4]): i

A7 (A, u, v) :=inf{1> 0: o> 0 Ve aN(I,: 1200 < en'}.
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The limit orders have been calculated by A. Pietsch [4] for the p-integral

and p-absolutely summing operators.
We have, in detail, the following statement for p-integral operators:

THEOREM 1. Let 2 < p < oo; then

1 1 1 .

Wty F o isusiisess,

1 ,

- if 1<u<pr, 2<0v< oo,

1 .

w i pr<u<?, 2<0<ur,
Az (L, %y 0) = 1

- if pr<u<2,2<u<<v<p,

1 ,

= if 2<u< oo, 1oL,

1

—p— if p*<Ku oo, pLog oo

(r* is the conjugate exponent of v, 1/r*+1/r = 1).

The results of this theorem are expressed diagrammatically. In what
follows we shall illustrate our results by pairs of diagrams in the wunit
square with coordinates 1/u and 1/v. In the left-hand diagram we plot

=

¥
/: L

Tig. 2

Fig. 1

the level eurves of Ay(L,, u,v). In the right-hand diagram we indicate
the algebraic expression for A(L,, u, v). .

. '.Phe hmit‘ orders of p-integral and p-absolutely summing operators
coincide outside the square @ = {(1/u,1/0): 1< p*<u <2< v< p}.
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In order to give an estimate for the limit order of p-absolutely summing
operators in the unknown square @, we need the following lemma.
LeMmMA. Ay (P, u,v) 48 a conver function of 1][v.
Proof. The definition of z, and the relation

1—-6 (7]
+—and 0< <1
V1 Va

llelly, < llolly, *wlly,  with  —
imply
wp(Ly: s l?) < my " (L U0 mp (L2 Tl
Hence, m,(I,: I;—1y) is a logarithmic convex function of 1/v. Finally,
we get
AI(P:p) U, ’I)) < (1_ 0) AI(Pp; Uy Ul)"' QAI(PJJI U, 7’2)‘
A consequence of the convexity lemma is
THEOREM 2. Let 1 <p*<u<2<v<p. Then

101

fr.1 .1 1 x _u_*l(_l._i

maxlp, < 7)~21<AI(PP’M’1J)<M*+ T 3 )
2 P

Proof. Using the ideal property and Theorem 1 we have

1 1 1
7 =A1<Pp’27”)< AI(Z)2:“)+AI(Pp7“;'U)<;; “'2—+AI(P1”“,U)

or

1 1 1
u—_*+~17——5< APy, u, 0),

and, similarly,

1
—_ = AI(Pp,u,p) < AI(Pm uy'v)‘{"AI(Z"U:p) < AI(P_m U,y 'D)

(Z is the class of bounded operators with the operator norm).
By the convexity lemma and Theorem 1 we get
Ar(Pp, u, ) < (1— 6y A7 (Py, u, 2) + 6 A7 (Py, u,p)
1—46 ] 1—6
S L
K » P

1
for — =
v

Combining these relations we obtain the theorem.
A consequence of Theorems 1 and 2 is
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TEEOREM 3. Let 1<p*<u<2<v<p Thne

ALy, y v)— A(Pp,y %, v) 2 gp(u, v)

1 1
2 o (1 1\ .
(a2 ysceav s
2 p

I |
2 w1 1\ .
EREE) (E-——?) if 2<ur<<o<yp.
P ‘

. Tustrating the preceding results in-the following diagram, the func-
1;101.1s Ar(Iy, w,v) and dy(P,,u,v) are plottered in dependence on 1/v
Wh%le % and p arve constant. The bold line shows the graph of A;(L,, %, ),
which coincides with A;(P,,u,v) in the intervaly 1< v <2 and p <v
< oo. The graph of 4;(P,, u, v) for 2 < v < p is contained in the indi-

cated region of the parallelogram, generated by the vertices (—1, -1—),

1 1) /1 1 11 1 1
(mﬂﬂ%?;ﬂwq—ﬁ+;+?;-

Fig. 3

11

L 1'1‘he function g¢,(u, v) takes its maximum at
1 U wr
"2-(? +—1-)-) At this point we get the following estimate for the

distance of these two limit orders:

[
Ar(Iy, v*, v) — A7 (Py, v*, /”)}}‘(i —E‘ .
. 4 \2 [

e ©
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The 1/v-coordinate of the top left-hand vertex and the bottom right-hand
vertex of the parallelogram are the same. We conjecture that even the
identity

1
Ap(Iy, v*, v) — Az (Py, v*, v) = Y (*‘ “—'—)

holds.
- Ag a corollary of Theorem 3 we get
TumoREM 4. Let l<p<v<2<u<p*orl<pr<u<2<v<p.
Then

Ll 1) S Pyl 1)

Proof. By using the duality theorem of A. Perrson/A. Pietsch (cf.
[31]) the first part of this theorem can be deduced from the second one.

Now, let 1< p*<u<2<o<p. We suppose Pyl 1) = I, L)
Then by the closed-graph theorem there exists a constant ¢ > 0 such
that for every operator TeP,(l,,1,) the inequality

(T) < omy (1)
is valid.
Using Theorem 3 we obtain
Ag(L,, w, 0) > dr(Py, 1, v).
Define the operator P,: I,~1, by

Po(&1yeeny bny bngry o) 1= (£1s-ev5 €ry 0,04 w)s
then

T,

o (Pyt ly—=ly) = 7y (Ly: It and t,(Py: L+l = t,(IL,: m13).

Consequently, there does not exist such a constant c.
From the above proof it follows that a conjecture of D. J. H. Garling
[17 is false. We have

Tymormm 5. Let L<p<v<2<u<prorl<pr<u<2<o<p.
Then there ewist diagonal operators D from 1, into 1, such that

DePyly,ly)  and  DéL(l, ).

Finally, we may disprove the conjectures 16.1.3 and 16.1.4 of [6].
Actually, as a further corollary of Theorems 1 and 2 we get
TazoreM 6. Let 2 < v < p < u* <g Then

Pyl 1) G Pollus L)-
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Proof. We suppose P,(l,,1,) = Py(l,, l,). Then by the closed-graph
theorem there is a constant ¢ > 0 such that for every operator T'e Py(l,,1,)
the inequality

7,(T) < omy(T)

holds. Theorems 1 and 2 imply the relations
P L 1
Ar(Pyyu,0) === and  dy(Py, u’v)<247'

Therefore, similarly as in Theorem 4, we get a contradiction.
I want to thank Professor A. Pietsch for his suggestions.
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Neutrices and the product of distributions
by
B. FISHER (Leicoster)

Abstract. The product of two distributions f and ¢ is defined to be the neutrix
limit of the sequence {f, gy}, provided this limit exists, where

o =40, gn = g¥0n,

{6n} is a delta-sequence with support contained in the interval (—ay,, a,) and the
negligible functions of the neutrix N are linear sums of the functions a? with § < 0,
a}lnPay, with A< 0 and p = 1,2, ... and all functions f(ay) for which limf(a,) = 0.
It is proved that n—>0

(=1Yeq (=T A T(o-+14 A
ST(= NI (r+4)

(4 10Pw.) (227 M nts_) = ) B(r+4,p; — 4, q) 8 (z),
for ~k—-l<i< —% k=1,2,...,7—2, r=2,3,..., and p,¢q =0,1,2,...,
where

1
B(A,ps s, q) = fv‘—llnl”v(l—v)"—lln‘l(l——v)dv,
a

a, a(rﬁ-;i) (&) = 8) (),

(=L {r-+p)!
2p!
for r,p = 0,1,2,... and
80} () ) () = 0,
for r,p = 0,1, 2,...

1. Introduction. J. G. van der Corput developed his neutrix calculus
having noticed that, in his study of the asymptotic behaviour of integrals,
functions of a certain type could be neglected. This idea was also used by J.
Hadamard, see [4], when he defined the finite part of an integral by negle-
cting powers of @ —a.

A neutrix N iy defined, see [1], as a commutative additive group
of functions »(§) defined at each element £ of a domain N with values
in an additive group N'', where further if for some » in N, »(§) = y for
all ¢ in N7, then 9 = 0. The functions in N are called negligible functions.

Now let N’ be set contained in a topological space with a limit point
b which does not belong to N'. IE f(&) is a function defined on N’ with
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