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Proof. We suppose P,(l,,1,) = Py(l,, l,). Then by the closed-graph
theorem there is a constant ¢ > 0 such that for every operator T'e Py(l,,1,)
the inequality

7,(T) < omy(T)

holds. Theorems 1 and 2 imply the relations
P L 1
Ar(Pyyu,0) === and  dy(Py, u’v)<247'

Therefore, similarly as in Theorem 4, we get a contradiction.
I want to thank Professor A. Pietsch for his suggestions.
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Neutrices and the product of distributions
by
B. FISHER (Leicoster)

Abstract. The product of two distributions f and ¢ is defined to be the neutrix
limit of the sequence {f, gy}, provided this limit exists, where

o =40, gn = g¥0n,

{6n} is a delta-sequence with support contained in the interval (—ay,, a,) and the
negligible functions of the neutrix N are linear sums of the functions a? with § < 0,
a}lnPay, with A< 0 and p = 1,2, ... and all functions f(ay) for which limf(a,) = 0.
It is proved that n—>0

(=1Yeq (=T A T(o-+14 A
ST(= NI (r+4)

(4 10Pw.) (227 M nts_) = ) B(r+4,p; — 4, q) 8 (z),
for ~k—-l<i< —% k=1,2,...,7—2, r=2,3,..., and p,¢q =0,1,2,...,
where

1
B(A,ps s, q) = fv‘—llnl”v(l—v)"—lln‘l(l——v)dv,
a

a, a(rﬁ-;i) (&) = 8) (),

(=L {r-+p)!
2p!
for r,p = 0,1,2,... and
80} () ) () = 0,
for r,p = 0,1, 2,...

1. Introduction. J. G. van der Corput developed his neutrix calculus
having noticed that, in his study of the asymptotic behaviour of integrals,
functions of a certain type could be neglected. This idea was also used by J.
Hadamard, see [4], when he defined the finite part of an integral by negle-
cting powers of @ —a.

A neutrix N iy defined, see [1], as a commutative additive group
of functions »(§) defined at each element £ of a domain N with values
in an additive group N'', where further if for some » in N, »(§) = y for
all ¢ in N7, then 9 = 0. The functions in N are called negligible functions.

Now let N’ be set contained in a topological space with a limit point
b which does not belong to N'. IE f(&) is a function defined on N’ with
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values in N'' and it is possible to find a constant g such that f(&) —
is negligible in N, then B is called the neutric limit or N-limit of f as
& tends to b, and we write

N-lim (&) = 8.
&b

This limit is of course unique if it exists.

As an example of how neutrices can be used to define distributions,
let us consider the distribution #%. When 2> —1, this is an ordinary
summable function defined by

o, for w@>0,
0, for <0.

For other values of 4, 4 % —1, —2,..., «% is defined inductively by the
equation

(A1) (2h, 9) = — (237, 9),

for arbitrary test function ¢ in the space K of infinitely differentiable
test functions with compact support. It follows that if —r—1 <1 < —v,

00 =1

(%, 9) =f w“[«;J(w)—Z qa(")(O)]dw.

0 . §=0

Now let us consider the integral
f o (w) dar, ;

where —r—1<i< —r, 0< a,,—>0 and ¢ is an arbitrary test function.
‘We can rewrite this integral as

00 0 r—1 Aatl '
2 wdm:fmz[m— (")O]dm—- I (o).
[ do@as = [ o[o@)— D' g0 58,1_,_8“)«7)()
an ay 8=0 8=0
We will now let N be the neutrix having domain N’ = {a1, ag, ...
..y @y, ...} and range N'' the real numbers. The negligible fumnctions
of N will be linear sums of the function o with 4 < 0 and all functions
fla,) for which lim f(a,) = 0. We will congider the N-limit of functions
Nn—»00
for N’ ag »n tends to infinity.
‘We notice that

lggf w“[w(w)—gf—:w“’(O)] dwf JmW‘[w(w)—Zf—: #9(0)| 20
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and that the function

r—1
gitre+l

\T__ %@
% sadstn ” O

ig megligible in N. It follows that

oo r—1 s
Nlim | otp(@)de = *[ - S (“)O]d
n«r::)o j (P @ J‘m (P() Z&!m () °

and §o for A % —1, —2, ..., W6 can write

=]
(o, @) = N-lim f ot (w)de.
N=>00 “n

More generally, if we increase the number of mnegligible functions
in N to also include linear sums of the functions e In’a, with 1< 0 and
p=1,2,... we can prove that if —r—1l<i< —randp=0,1,2,...

<

@i, g) = [ oie[o Y‘ 00 as

[ 3“0

o
= N-lim [ o*In?op(c)ds.
N-+00 ap,
The ahove set of negligible functions arise naturally in the following
discussion of the product of distributions and so we will be using the
above neutrix thr oughout this paper.

2. Definition of the product. The product of two distributions f and g
was defined in [2] as the limit of the sequence {f,g,}, provided this se-
quence is regular, where

Jo = %00y gn = g¥n,

forn =1, 2, ... and {8,} is a sequence of infinitely ditterentiable functions
satisfying the Jfo]]owmg properties:

(1) Su(@) =0 for |o|> a0,
@) du(w) = 0,

(8) (@) = 8,(—m),

(4) fﬂ Sp(w)dm =

—ay
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Tt is obvious that the sequence {8,} converges to the Dirac delta-function
o(x).

Mikusiniski, see [5], had earlier used this definition for the particular
product @73 (z).

Tt was then proved that
(2.1)
for 150, -1, £2,... and

o o= = —fweosee(xd) & (w)

2.2) ol 67 (@) = }(—1)r! (),
(2.3) o 8% (e) = 3r!é(w)
for r =1,2,...

In [3] it was proved that in general, with the above definition, the

product #%«=""* did not exist but the product #7" ="' did exist -

and
1

24 arr-igmrn _ (T w0

2(2r)!
for r=10,1,2,...

We now give a definition of the product of two distributions for
which further products of distributions can be defined.

DzerFINITION. Let f and ¢ be arbitrary distributions and let

Ju =T*0,,

We will say that the product of f and g exists and is equal to the distribution
h provided that

In = g% 0.

N-Im(fygns @) = (hy @)
N—+00

for all test funections ¢ in K, where NV iy the particular neutrix given in
the introduction.

It is obvious that if the product fg exists by the former definition
then it will exist by the new definition and will define the same distribu-
tion.

Using this new definition of the product we have:

TueoREM. Let f and g be distributions and suppose the producis fg
and fg' ewist. Then the product f'g ewists and

J'g = (f9) —fo'-
Proof. Since f, and g, are infinitely differentiable functions, we have

f;tgn = (fng‘n)’_fnggz
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and so for arbitrary test function ¢ in K

(Fadnr @) = ((fngn)’ —fng;u (]9)-
It follows that

N-Hm (£, @) = N-Um((f,9,); ¢) — N-Lm(fugn, 9)
N> N0 N0
= ((foy, @) —(fg's o)
and the result follows.

3. The product (wﬁ,ln”w_,_)(m:"‘ln“w_). The following lemma holds,
see [3]:
LmMmA. If —oo <<t < oo, then

fan&”éif’(S)ds = — P8I (1) + P ST — o (1P Tipl TP ()
fotr r>p and
fans”ég)(s)ds
- B (1) 412 80 (0) = .. (L) P18, (8) + (—1) 7! [ — H, (5],

where H denotes Heaviside's function.

We now consider the product (ziln?z )(zZ'*In%_) for 2 0,
41, +2,... and p,¢ =0,1,2,... We will first of all suppose that
—1 < A< 0. We have '

f(m—~t)"lnp(w——t) 3, (t) dt

—dy,

(@} In”2,), =

and

[ \
fﬂi‘—ﬁ(w:’"“ln”m_)n ==f (8 — @)1 ""n?(s — @) 60~V (s) ds.
I'tl+42) ; J :

It follows that (mﬁhl‘n"m,l_),.(m:"‘ln“w_),, has its support contained in the

interval (—a,, a,) and

2y o e .
I“((ﬂ_ﬂz ~-{L (@} 0P @), (02" 0., 0™ deo
o, u, 8 )
= _f" 8, (1) fn 8= (s) f @™ (@ — 1) 1In? (@ — ) (s —a) ™"~ Inif (8 — w)dew dsdt
—~dy ] [ ,

p 1
(& [ o) [IE(L—0) + o]0 n? [0 (s — £)] (L — )~ " %
i 0

X In?[ (s —1) (1 —v)] dvds dt,

]
'H
&
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where @ = t(1—v)-+sv. It follows that this integral is a linear sum of
functions of the form

"T"’m“lnia
which are negligible in N, for m = 0,1, .. .., r—2. Hence

Oy

Nlim [ (@hIne,), (@2 n%_),a"do = 0

n—c0
n

for m =0,1,...,7—2.
In the partmular cage m = r—1 it follows that the above integral
is a linear sum of functions of the form

In*a,
fori=1,2,..., p+¢ which are negligible in %, plus the intergal
ay, ay 1
[ 8 [ 8570(s) [ — o)+ 0] 0 P o (1 — v) " A In? (1 — v) dvdsds
—Oq ¢ 0

% ay 1

[ au(0) f s 80 (s f VNP o (1 —0) " 20t (1 —v) dodsdt,
—p, i
all other integrals in the sum, on expanding [t(1—w)+ s»]"', being zero.
‘We therefore have i

s I'(W'—F}» p —r—A q -1
N"Ew 1+25 f (o In?a “Intg_), 0" do
= —3(=1)Hr =) B(A+x, p; —4, ),
where
N 1
B, p;p,q) = f«:“lln”fu(l — )" (1 —v)dv.
0

When m = r, it i3 easily seen that

n
lim f [(#h In?x, ), (@2 " *In%_),a"| do = 0.
N0 g,

Henge if ¢ is an arbitrary test function in K we have \

N oo
Nlim LU+ f (@ InPa, ), (=" n%%_), ¢ (¢) do

oo D(144)
= — (=1 " V(O BA+r, p; —4, Q).
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Thus the product (whInPa ) (@ "*In%w_) exists and

I(1+2)B(A+r,p; —2,9)
2T (r+4)

(@ Ina,) (0= *In®w_) = 809 ()
for —l<Ai<Oandr =1,2,...

We will now suppose that k—1 < A< k. Then

[ (@—1)"n? (@ —1) é,,(t) dt

~en

(@A InPw,), =
and

I'(r+2) "

ot In? = — p\e=1=M (e — (et 1)
TE =g I (8= @)=~ (s —a) o+ ~(5)ds .

It follows that (). 1no
interval ( — ay,, a,) and

(@27 In%_), has its support contained in the

I(r+2) - 290 Ny - "
M]’(lmk%—wﬂ j (@hIn?w ), (02" *In%_), a™ do

f 8, (%) j Beekr=1) f @™ (o ——t)’lln”( —1) (8 — &)~ *1n% (s — &) dewdsdi
o

1
f EO) f 8r=s) [ [H(L — ) +s0]™ (8 — ) 0P [v(s — )} (1 —0)* 7 x
-ty t 0
‘ X In?[(s —t) (1L ~—v)] dv ds @t
which is negligible in N for m = 0,1, ..., —2.
When m = r—1 the integral is a linear sum of megligible functions.
in N plus the in‘negra,l

fa f)f =1 s)f[t(l v) + 80T (s —

-ty

)Ic "]l’lp (1 _’,v)k—:L-A %
X In?(1 —v)dv ds @t

" [ 1
= [ 8, [ sttt atrN(e) [t n Py (1 — o) A nt (1 — o) do ds dt ,
[ 1]

Ol

all other integrals in the sum being zero. We therefore have

j (m In?w,

= -%( 1+ o+ *1)‘B(l+f+70710,70 4, 9)-

N-lim, -

(@=" Mtz _), 0"t de
N-vo0 1"(1 )

=)
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When m = r we again have

a

lim f |# In%x_ ), (@2 0?0 ), & | do = 0.
N—0Q __an

Hence for arbitrary test function ¢
I(r+2)

im ——————— A In? o="~*Int i
1\{.»& TA—k+4) f(“”+1’”” Jn(@Z hffh)nfp(w) @

L (—F(r-)! _ -
- 2(r—1)! B(A+r+k,p; k=2, ¢ (0).

Thus the product (¢’ Inz, ) {(#Z"*In%w_) exists and
(gh Inx, ) (a="*In%w_)

(=PI =k A)(k+r—1)!
oI (r+a)(r—1)!

B(A+r+k,p;k—1,q) 8 ()
for k—1<i<k,k=0,1,2,...and »r =1,2,...
By replacing ¢ by —o we have

(et In?z_) (2 "”‘lnq +)

(=1 I —F -+ 4) (kr —I)!
2I(r 4+ 2) (r —1)!

BA+r+k, p;k—2,9) 6 )

for k—1<A<k k=0,1,2,... and r =1,2,..., or equivalently

(@} 0”2, ) (6= *In%a_)
(=1 P —F—r — 2) (k+r—1)! .
- oI (—2)(r —1)! B(A+r+k, p;k—4i, @) 0¢ ) (w)

for —k—r<i< —k—r+1,%k=0,1,2

yoeeandr =1,2,...

Finally, let us suppose that —%k—1 < i< —k, fork =1,2,...,r—2.

We then have

—1 (=2 4
pre= R [ e C
and
T(r+A
R o e f (5 — o)== (3 — 0) 8 (s)

T

H ©
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It follows that (2%1nPw.),(@-"*In%_), has ity support contained in

the interval (— a,, a,) and

(-~ 1)’°1‘( ~)I'(r+4) f .
TS e 2} In?

T(—k=2T (o +1 4 ) (@

ay

- f o (1 f 80=k=1 (5) f 2™ (@ —1)EHIn? (0 — §) (s — @) TFI R

ity 3

(7t _), 6™ de

X Inf(s —x)deds dt

i, «, 1

[ o[ 80 [ 11 —0)+ oo e e 1) x

) [ 0
X (L —)"*"1=*In[ (s — ) (1 —v) ] dvds dt
which is negligible in N for m =0,1,...,r—2.

‘When. m == #—1 integral is a linear sum of negligible funetions in &
plus the integral

f 80 (1) f 3= (5) %
—a
X j [4(L —) - 0T~ Lo* 1?0 (1 — 0) ¥~ 4In?(1 — v) dvds .
0
Expanding [#(1--v)+sv]"" and using the lemma (changing the order of

integration if necessary), it is seen that all the integrals in the sum are
zero except the integral

f tfré(lc)(tf gr—h— —1 50— k—).)(6 fv”““ln”v(l——v —1 Ry

~a” X In? (1L —v)dvdsdt.
Now
an o
f i 65{:)“) f gl a(r-k-—l)(s) dedt
iy, & }
s
f” 18 ) ()] 7= BRI (1) e (=L — o —1) 148, () —
ity

e (2R (=T —1) [ — H (8) ]} 8
— (A eyt [ A0 L 0

the other intograls in the sum being zero. It was proved in [3] that

fn " g 800 (4) [ — I, ()] &t = $( —1)"F!

—~tip,

§ — Studia Mathematica LVIL3
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272 B. Fisher
so that
A )
a0 [ 0P [0 () dsdt = F(—1) N (r ~1) 1.
—ay, i

We therefore have

A =LED(=A T4
N-li 4 Ip? 7= -
e T(—h— AT (h+1+7) _af (o a0 o), o

= —4(=1)(r=1)! B(r+1, p; —1, g).
When m =7 we have

%n
lim [ |(@}In?a,), (0= " In%_),’|do = 0.

N~->00
—ay,

Hence for arbitrary test function ¢

(=1*I(=)Tr+2 ™
~k—2)I(k+142) _uf (@i 107w, ), (22" 0% _), (@) dw

= —3(=1)YB(r+4, p; —4, ¢)p"(0).

Thus the product («}InPw,)(2="~*In%_) exists and

N-lim
nsoo: L (

(2% In?5, ) (4= Inz_)
= SOk (41 4-2)
- 2T (=) D(r+2) B(r+2,p; —4, ¢) 8"V ()

for —k—1<i< -k %k=1,2,. vy r—2 and r = 2,3, .
In the particular case p = ¢ = 0 we have the sunphfled result

oo — _ meogec (wl) (r—1)
+ 2(r—1)1 @
fgrl)l #0, £1, £2,... and r=1,2,... , which generalizes equation

4. The product a7,6"+?)(z). The support of (
contained in the interval (—a,, a,). and

e,

This integral is a linear sum of functions of the form

(@780 ) () is obviously

s @amas = [ o, o=ty 89 ) dwat.
i

—ap,

y—P+m
an
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which are negligible in W, for m =0,1,...,p—1. Hence

on
N-lim [ (), 60+ (@)a™dw = 0.
Nn—00 B
for m =0,1,...,p—1.
When m = p we have

—ay,

a

f"( ) 80D (@) 0P diy = f 8, f o® (0 — 1) 30+ () dow dlt
_aﬂ —dn
j 8, (8) f &P 8P (o) dw it
o

all other integrals in the sum being zero. On using the lemma we now
have

[ @t @)@ = (<172 400! | o
—Yn Y
— H—1 ().

‘When m = p-1 we obviously have

1) [1—H,, (t)]dt

a,

(2
lim (), 04+ () | dp = 0.
00 g
Tt follaws that if ¢ is an arbitrary test function in K
1y (r !
N-lim f 5(* Ha)( @) p(w)ds = .(___.)__EIT(‘_L?LV,@)(O)'
N0 .

—ay,

Thus the product af, 6"+ (x) exists and

—1)" (r+p)! 49 ()

, (
), 87 () = — 51

(4.1)

for r,p =0,1,2,
It is obvmus lea.ﬁ equation (2.2) is a particular case of this equation.

Since

P!

&8 0) = [, (1] 80 49() = L EEDD s

for »,p =0,1,2,..., it follows that

"" |‘_’P) 6(1’))( )

at o) (@) = p Py

for r,»p =0,1,2,...
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5. The product 6 (z) 6™ (»). When 7 = 0 in equation (5.1) we have
H(2) 0" (2) = } 6% (a)
for p = 0,1,2,... On using the theorem it follows that
8 () 6P (@) = § 0PV (@) — H (0) 6@+ () = 0
for p =0,1,2,...
We will now assume that
5(r)($) 5(11)(93) =0
for some r and p = 0,1, 2, ... Then using the theorem we have
8 () 69 () = 0 — 60 () 6PV () =0
or p=0,1,2,... It follows by induction that
5(7)(90‘) 5(10)(90) =0

orr,p=0,1,2,...
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An inequality for integrals
by
A. P. CALDERON* (Chicago, IIL)

Abstract. An inequality for n-fold integrals of products of functions of less than
n variables is obtained and applied to obtain a Sobolev fype inequaliy.

Consider the following identity

(1) f[ﬁfi(”i)]dw = ”[ 1] f,(wj)dm,-],
nn J=1 =1 =00

where R" is the n-dimensional Euclidean space and dw = dw,dz, ... do, .
This identity can be generalized to an inequality for integrals of products
of functions of less than n variables. For example, if fy(a;, #;) > 0 then

ffm(“'la @) fra (@1 @y) oz (B, @5) Ay Ao dizy
rs

< [ijZZ (@, @) dwldwz]m[ fﬁs(”u ma)d%dms]m[ ffgs(mz; it3) 4y d-’”a]llz-
n? r?

R

In order to describe the general result of which this is a special case,
‘consider subsets o of the set of indices {1,2, ..., n} and denote by fo}
the number of their elements. Let , denote the set of variables
{@iy, Wigy ..., Dig}, Where {iy, Gy, ..., 4} = o, and let f., denote a function
depending only on #,. Then the inequality
[ i of o ~ i " T
) I [T totwaw < JT][ 7@ do]”

el |w|=lt i
holds, where r iy the binomial coefficient (Z:}) and the products extend
over all subsets o of {L, 2,...,n} with o] = k.
© For k =1, (2) is actually an equality, namely (1), and for b =n
the two sides of (2) become the same. Thus in order to prove our assertion
we may assume that 2 < & < n, and argue by induction on n.
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