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Inequalities for the maximal function relative to a metric

by
A, P. CALDERON* (Chicago, IIL)

Abstract, Weighted L?-norm inequalities for the maximal function relative
to a family of spheres defined by a pseudo-metric are obtained.

The purpose of this note is to obtain weighted I”-norm inequalities
for the maximal function defined by the spheres of a certain pseudo-metrie.
These inequalities generalize those known to hold in Euclidean space
with the ordinary metric (see [2]), and other metrics considered by D. Kurtz
[3] but they do not cover his results about maximal functions defined
by certain families of rectangles.

Let X Dbe a metric space with a measure x4 and assume that the spate
of continuous functions with bounded support is contained and is dense
in the space of integrable functions. Further, suppose that there is given
a real-valued function o (%, %) in X X X (it need not be the distance func-
tion) with the following properties

(i) e(@, ) = 0;

(i) e(@,y) = ely, ®) >0 if & #y;

(iii) there is a constant ¢ such that o(w, ) < cle(®, y)+o(y, 2)] for all
@, Y, and 2;

(iv) given a neighborhood N of a point x there is an &, & > 0, such that
the sphere B,(@) = {y| o(®,y) < s} with center at @ is contained m N;

(v) the spheres B,(x) = {y| o(m,y) <1} are measurable, the measure
1B,(1)| of B,(w) is a continuous function of v for each =, and there is a con-
stant o, ¢ > 1, such thot

1By ()] < 0| By(@)] < o0

for all r and . For convenience we shall assume that the constamt here coincides
with the one i (ili).
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Given a function which is integrable on all the sets B,(x), we define
the mawimal function Mf of f as

; _ 1
&) (@) = suppms [ F@)las

B(x)

On the other hand, we say that the weight funetion w (%),
longs to the class A, if

@] [ af

|fw du] ¢ |B|ess1nfw( )y

w(x) > 0, be-

<6, BIP, 1<p< oo,

(2)
p=1,

for all spheres B. Then the results of B. Muckénhoupt [2] for Buclidean
space with the ordinary metric hold, namely

THEOREM 1. If we A, p > 1, then
[ 1 f rd :Il/r%

— w G

1B| J Pl S G5

wz'.ih, > 1, and ¢, and r depend on p, the constant ¢, in (2) and the constant
¢ in (iii) and (v).

THEOREM 2. If we A, p > 1, then we A, for all v, 7 > p,, where P, < p
and po depends on p, ¢, and the constant ¢ in (ili) and (v).

' TreorEM 3. If we Ay, p>1, then for p< g< oo

[ (Mf) @)y < oy [If @)y, v

f’wd,u,

= w (o) du,

where ¢, depends on ¢, ¢, p and ¢. If p =1 and we Ay, the same result
holds for 1< q < oo, and for A>0

el (Mf)@) > 3, < 2 [ @)y, B = wio)ds,

where the left-hand side represents the v-measure of the set indicated.

]_*]xcept in the case of Theorem 1, the above statements can be proved
by slightly modifying the arguments which have been used in the Tucli-
dean case. Theorem 1, however, which is the key to the other two and
is considerably more difficult, requires a different treatment. In spite
of the close similarity of some of the following arguments to well-known.
ones, we give them in full detail for the sake of completeness.

icm°®
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Lmmma L. There is o constant y such that

|Bo ()| < cd” | B ()], az1,
where ¢ is the constant in (V).
Proof. Let 257! < a-< 2%, k>1. Then k< 1+log,a and from (v)
we obtain
1B ()] < By, ()] < 6 |By(w )l < o080 B, (2)] = cw"lB ()]

with y = log,o

LEmyuA 2. For each ©, |B,(x)| 18 @ continuous non-decreasing fumction
of 7, and |B, ()] > 0 for ¥ > 0, unless u vanishes identically.

Proof. We only have to show that |B.(x)| >0 for » > 0. Suppose
on the contrary that |B,(z)| = 0. Then from Lemma 1 it follows that
B, () = 0 for all 4, a > 1, and thi clearly implies that u vanishes jdenti-
cally.

Limvma 3. Let § be a fam'bly of spheres with bounded radii. Then there
ewists a dountable subfamily of disjoint spheres B, (w;) such that each sphere
in § is contained in one of the spheres By, (%;), where b = 3¢ and ¢ is the
constant in (iii).

Proof. Let M be a bound for the radii of the spheres in &, and let

a <1 be such that
1
3¢t = 02(1+ —)+—G~'-
a a

Since ¢ > 1, such « exists. Now for each integer k, k> 0, we construct
inductively a family of spheres with the following properties:

1. B,m v ) e E, oM <1y < o2

2. the B, ., (%) are disjoint for b < k;

3. for eaoh T the family is mazimal mth respect to properties 1 and 2.

Tvidently such afamily exists. Let now B, (a) ¢ §. It oM < 7 < oM,
then B,(») intersects one of the spheres Br” (@y,); b < Jo. But then 7, > ar
and therefore, if z¢B,.(w) and ye Brc h(wt.h)”B (»), on account of (ii)
we have

0(2, @) < or +og(®@, Bp) < o +-o0er oe(y, ;)]
<or(rtrg) <o ;" +o ( o -Hn,h)
=3¢ Ton = Dins

that is, ze By, , (%4,2)-
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LeMMA 4. Let we A,, 1 < p < oo, and let B be a subset of the.sphere B.

Then

LIFp LAY
1Bl, 1Bl

Proof. If p > 1, then on account of (2) we have

|B| = f’w”"w"”’d,u < I-j‘wd’u]lll”[fw—ll(T?—l)dl“](p-l)/p
E L B

dy = wdu.

= |BYr [fw—-ll(p—l)d‘d](ﬁ’-l)/p < ol B IBI[fwdm]'"l/”
B B ;

= )°|B| B | BT

which is the desired inequality.
If p =1, then since

: 1 |1,
essinfw () < — | w(n)du =
ssinfu (@) < IEIEf (@) = 5

2

the second inequality in (2) gives

1B,
B, < 64 |B] ~—
|B] |B] == T

Leywvia 5. Suppose B < B and |B| < 6|B|. Then

1B, < [1—c! (1~ 8)7]B],.
Proof. Applying the preceding lemma to B = B—E we obtain
E !
|1, —1_ B,
|B]v ) IBlv

< 1—opt(1—8)P.

Leyra 6. Let we 4y, 1< p < oo, and w'fe I?, 1> 0; then

\

@) (Mf)(@)> B, <<% [IfPds, b = wiw)dy,

where ¢, depends on ¢, ¢, and p.
Proof. For each n, n> 0, we define

1
M) (a) = $Up T foff(y)ldm

and-we shall show that the inequality above holds with J replaced by M,
with ¢, independent of n. Once this is established, the lemma will follow
by lettmg n tend to 1n:f1n1ty

Im Inequalilies for the mawimal function 301

Let B = B,(x) be a sphere such. that » < n and
(3) , 1Bl < Bf Ifldu.
Then, according to (2), if p > 1 we have
1Bl < Jifian = [ifwroeaun<] f i) o™ s
< [ J lfl"dw]””c”" \BI 1B,

whence it follows that ‘ '
(4) 2B, <e, [IflPdy,
B

and for p =1
2Bl < [Ifldp< [essintw(@)]™ [1flwdp < o, BI[ [ 1flwdp][ [wdu]™
B xeB B . B B

= o, |B||B;” f \flan,

§0 that (4) also holds in this case.

Let now § be the family of spheres satistying (3). As we have just:
shown, they also satisty (4). Evidently, the union of all spheres in § con-
tains the set

{e| (M.f)(w) > 2}

According to Lemma 3, there exists a disjoint family of spheres B, (w;)
in § such that

U By (w;) = BU%B > {z] (M.f)(2) > 4}
By Lemmas 1 and 4 we have

[ By, (@)1, ( 1By, ()] )b
< Cy

< 6. cPHP
B, (@, B, (@l )] S°

so that
|Bbrl(m£)|v ("wcpby2 IB ( )1

Thus since the B, (w;) are disjoint and satisfy (4), we obtain

ol (M,f)(@) > 2}, < Z [Bun (@], < 0,00 D] |B,,(m4)|,

——c c’“b"pz fmf’dw 3f1f1”dvk

B,. (mi)
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LmvMA 7. Let f be integrable on every sphere. T'hen

[ 10 = @)

lim
e | Bl

1
1B, (@)
almost everywhere. In particular, [f| < Mf almost everywhere,

.Proof. In view of (iv) our assertion holds for f continuous: Since
continnous functiony with bounded support are assumed 1o be denge
in I/, for integrable f our lemma follows from Lemma 6 in the well-known

fashion and clearly, if the lemma holds for f integrable, then it holds in
general.

Proof of Theorem 1. Let B = B, (w) and

1
A=— i
B jfwd,u

We §hall construct ‘a sequence By > Wy, > ... = B, > ... of subsets of

B(H?)ro(mﬂ) such that | B, =0, w< la™ almost evers'rwhere in B and
outside H,,, and ! ;

(8) Bmgily < 81Byl,,  6<1,

wherff @ and ¢ Q.epend only on ¢,, ¢ and p. Once these sets have been
constiucted, taking ¢ so that a®8 < 1 we will have .

Joras forae

1 1

W' dy
(=B )~ B

<(od)" [wda+ Y (@2 [wiu
B . 1 Ej
< (ad)’|Bl,+ 2 |By, D] (a/+) 872,
1

But B, = By 1oy, (@) and therefore, .acgording to'Lemmas 1 and 4, we

have |H,|,< ¢,[6(b-+0)P|B],. Furthermo i = -1
- stituting a,bov: we obtain ‘ e Eae A= LB,

Lo
7 | o< BB,

which is the desired regult.

To construct the sets B, we i i
_ proceed as follows, G
in B congider the ratio " . Given v pelit o

B, (2)],
1B, ()]

icm
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This iy a continuous function of r for # > 0. Furthermore, as we shall
see, if 4, @ > 1, is sufficiently large as compared with ¢, and ¢, then
1By, (@)l
IB,, (2)|
50 that for each m, m = 1, there is & largest value of r, r < 7, such that
B@)y _ i
1B, ()]

or else, (M, w)(w) < a2 Let us denote these spheres by B™ and by B9
the spheres in a subfamily as in Lemma 3. Let B9 be the spheres con-
centric with the B™? and b times their radii. Then if

Em = U E(m,i)’
?

(6)

< ah,

according to Lemma 3, H,, constains all spheres B™ and therefore

(Mw)(z) < a™Ain B and outside H,, and, by Lemma 7, w < a™4 almost

everywhere in B and outside H,. .

Tet us prove (6) before proceeding to show that the sets B,, have
the properties stated above. As is rveadily verified we have

B, (2) = By (@), B, (2) = Bzoru(“)a
and therefore from Lemmas 1 and 4 we obtain
1B, (0)| < 1Baory (#)] < €(20)” By (@),
that is,
1B, (m0)] < 276"+ B, (@)1,
and ‘
B [Baorg (£0)| TP
1By (#)]s < [ Bary (0)ly < 0w | Bry (20)1, "‘m

< (276" 0 | By, (@)
and from these inequalities it follows that

]Bro(w)‘v IBrU(wO)lu
— < QY NP,
B =&

—_ (21'01'+1)p+10 2.
¥ |B,, (@)] v

Returning to the sets H,,, let us show next thatb B,, = B,,,. Consider
one of the spheres B™+4). Let us denote this sphere by B,(w). Then
B0 = B, (x) is contained in a sphere B™ = B,(x) and

m

1B,(@)l, _

B,(@),
¢ B, (@)]

1B, (@)] ’

8 — Studia Mathematica LVIL3
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and therefore, according to Lemma 1,

< By2)l, _ ., |B, (w)l ( )

a
B(@)], [B(2)
or s = ra'”¢™", 5o that if ¢~ > b we will have s > br, and therefore
B, > B = Be<w) 2 Bbr(w) = B’('m—{-l,j)’

and this clearly implies that &, o B,.,.
There remains only to prove (5), which clearly implies that ]ﬂ]Jm[
= 0. To prove this we shall show that

(7 [ B g1 NB™I| < 8,|B™Y,

where d; <1, provided & is sufficiently large. Once this is established
from Lemma 5, it will follow that

Wy VBT, < [1— 657 (1~ 89)7] B,
and, since the B™? are disjoin,
(8) B (U B9, < [L— 65 (1~ 8, U B9,
On the other hand, on account of Lemmas 1 and 4 we have
B9, < 6, BT, (b7,
whence it follows that
(9) ), = U B™9), < o, (cb?) | B™),.

Thus, from (8) and (9), since B,.1 < B, we obtain

Hsily < | By 0 U B™9)|, + | B, — U B™D)|,
%

A

| U B, a2 (1 — 8,7 U B, + |8, — U B,

By, — o5 (1= 8,)°| U B™D)|,
< Wl — 0" (L — 6, (") | By, = 8|1,

where
0 =1—c;?(1—6;)c?p",
which is the inequality (5).

To prove (7) let us consider a sphere B9 Tt ug et B — B, (x),

Ben+ld) — B (@), If B+ ingersects B9 hut is not entirely contained
in it, and ye  BOmd) - Gim1,9) and ze BULY) wo have

e(y, ?) < 20rq, o(w, ?) < er++20°r, =,

- ©

icm
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and therefore B™+9) < B, (#) © By, (2,), and

B0, Bn(@)l, B, B,

_ IB(m+l,i)|
B 7 B, (@) T [B,@) ~ B, (@) Bacr, (@)

a" A =
Now this and Lemma 1 yield

7y
[Baory ()| = @[ B™ )| = a|B, 4 (2;)] > ac™ (20,” ) [Baory (#4)[,

whence it follows that
< 207V (r 4 20ry)
Consequently, if 4a™"7¢Y"3p < 1/2, we will have
7, < 4o g2y,

Thus, as is readily verified, if a is sufficiently large and B™*+%9 containg
points outside B™? = B,(x), then B™*+' does not intersect By, (®).

Next, let us consider the spheres B+ which are intirely contained
in B™%, For such spheres, we have

2 |Bim+1d)| cb”z [BOWHD)| = gp? g1 31 2 |BmLA)
< b a " 1,1—1 jB(m 'L)I = cb’a —~1 IB(’m 1)[
= ob"a™ |B, (0)] < 277 b0 1Brjae ()]

so that if, again, « is sufficiently large, then

Z ]3(“7H'1’j)| < ,}]B,/u(m)l’

where the sum is extended over all spheres B™+%) entirely contained
in B™%Y = B (x). Since the other gpheres B™™) do not intersect .
B,3(®), we find that

| By VBT = | f;(m+1.ﬂ>'nB(m,¢)l
7
< IB™ — B,y (@) 4§ By (@)] = IBI| —§|B,yao ()]
< [1._(20)—‘v~1]|B(m 4)|.

Thus (7) holds with 8, = 1—(2¢)~*"" provided a is sufficiently large
a8 compared with ¢. This completes the proof of the theorem.

Proof of Theorem 2. X wed,, p > 1, then, as is readily verified,
wHe=De 4 (g—-1)(p—1) =1, and therefore according to Theorem 1

we have
1 r—1 1 -1
= fw‘”(’"”d,u <o [__,_~ fw‘l/w*”dﬂ]
1Bl 4 1Bl 3
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for some 7 < p and ¢, < oo, and by Holder’s inequality,

1 —1/(r—1) - < [__L =1/(p~1) ]pm
[ﬁ[ﬁf w dul < B] f'w ap

for all 7, 7> p. Thus substituting in the first inequality in (2) we find
that we A, for some » < p, and all r> p. Thus the interval of values
of r for which we 4, is an open half-line containing p, as we wished to
show.

Proof of Theorem 3. If we A,, p > 1, then we 4, for some r < p,
and according to Lemma 6, the maximal operator M: f-»(Mf)is of weak
type (r,r) with respect to the measure dy = wdu. Since M iy obviously
also of type (oo, o), by the Marcinkiewicz interpolation theorem, it
follows that M is of strong type (»,p) with respect to the measure »,
which is the desired result. Since the case p ==1 is covered by Lemma 6,
this establishes Theorem 3. .

1
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