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-défini par
T.f = D m(ed) H,f-
Supposons que T s'étende en un opérateur de LP(U|EK,) (2), et que la norme

-Lopérateur de T reste uniformément bornée quand & tend vers 0. Alors Dopé-
rateur

T: I (p)~>L2(pa),  f 5 If(a) = [m(&)f(&)ei @D as

s'étend en um opérateur borné de L?(py) dans lui-méme.

Ce théoréme s’applique en particulier aux fonctions radiales, puis-
que K* respecte le produit scalaire, et permet d’obtenir des résultats
négatifs pour la convergence des sommes de Riesz (cf. [2]).

Ajouté 4 la correction des épreuves: Les résultats de cet article ornt ét6 obtenus
de maniére indépendante par R. Stanton (Cornell University).
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(®) p est un nombré fixé, 1< p <+ oo.
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On A-hounded variation

by
DANIEL WATERMAN (Syracuse, N.Y.)

Ab?uncl. If 4= {/In.} is an increasing sequence of positive numbers such that
2 1/A, diverges, the functlom of A-bounded variation (ABV) are those J for which

o]
12]]”(1“)[//1” < oo for every sequence {I,} of noun-overlapping intervals. These were

intr(l»duced previously and various results on the summability and convergence of
the Fourier series of functions of this class were proven. Here equivalent definitions

are given and the point and interval variation functions are defined. The continuity
properties of the variation functions are established. An analogue of Helly’s theorem
is given and it is shown that ABV is a Banach Space with a suitable norm. Some open
questions are indicated.

The concept of bounded variation has been generalized in many
ways. In most instances, these new notions have been introduced because
of their applicability to the study of Fourier series. The present general-
ization, A-bounded variation, is no exception to this rule.

Let us suppose that f is a real function defined on an interval I.
Welet {I,} denote a sequence of non-overlapping intervals I, = [a,,, b,] = I
and write f(I,) = f(b,) —f(a,). Throughout this Ppaper, when we consider
a collection of intervals, they will be assumed to be non-overlapping
without further reference to that fact. Let A denote a non-decreasing
sequence {1,} of positive real numbers such that 3'1/4, diverges. The
following definition was introduced by us previously [9].

Dmprnrrion. A function f is said to. be of A-bounded variation (ABY)
if, for every {I,}, we have

DL 2 < oo

The special case A = {n} gives rise to the class of functions of har-
monic bounded variation (HHBV). The notion of HBYV hag its genesis in-
the work of Goffman and Waterman on everywhere ‘convergence of
Fourier series and everywhere convergence of Fourier series for every
change of variable [31-[5]. ; :

In our previous paper [9] we have shown that the functions of class”
HBYV satisfy the Lebesgue test for. convergence of their Fourier-series’
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and that if ABV > HBV properly, then there is a continuous function
in ABV whose Fourier series diverges at a point. In a.recent paper [10]
we have shown that the Fourier series of functions of class {nf*1}BV,
—1< <0, are (C, §) bounded and (C, ¢) summable for « > . If ABV
o {n*} BV properly, then there is a continuous function in ABV whose
Fourier series is not (C, §) bounded at some point. We also showed that
the results on convergence and summability can be obtained from a
theorem on the continuity of the variation.

In [9] we stated several results concerning functions of clags ABV
without proof. Here we intend to review the properties of functions of
this class and to supply the arguments to justify our previous assertions.
In §1 we shall give some equivalent definitions of ABV and discuss its
relabion to other generalizations of bounded variation. In §2 we discuss
the variation functions of an interval and a point and their continuity
properties. §3 contains proofs of an analogue of the Helly theorem and
of the completeness of ABV under a suitable norm. In §4 we note some
open questions.

1. Equivalent definitions, relations to other gemeralizations of BV.
It is easily seen that the functions of class ABV are bounded and have
discontinuities which are simple and, therefore, at most countable. The
first of our results gives some equivalent definitions of ABYV.
THEOREM 1. The following are.equivalent:
(i) f is a ABV function;
(ii) there is an M < oo such that, for every {I,},

oo

ST < 1

1

(iii) there is an M < oo suck that, for any finite collection {I,},m =1, ...
LN
) H

DA A < M.
We require the following lemma.

Levma 1. If sup {3 1f(L,)/2: I, = I} = oo, then there emists a point
@oe I such that, for every interval J with z,eJ° (velative to I)

sup {2 Ll ot Iy = I} = oo

Proof of Lemma 1. If there were an M < oo such that 3 |f(Z,)|/4,
< M whenever all I,, were in the lower half of I or all were in the upper
half of I, then we would have sup{>If(I)l/4,: I, = I} < 2M. Hence
the set of such sums is unbounded in one half of the interval. Continuing

7

this process, we obtain & nested sequence of intervals J, converging to.
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a point @,. If w,¢ J°, then J o J, for large n, from which the conclusion
follows. m

Proof of Theorem 1. It is clear that (ii) < (iii) and (ii) = (i). Let
us now assume (i) and not (ii), Without loss of generality, we may assume
that 1, =1. Let B = supf—inff. There is a collection of intervals {J,}
such that

o

D T[> 1+2B

1

and, therefore, there is an N such that

N
D FT A, > 1+2B.

Omitting the at most two values of n for which #,¢J,, where #, is the
point obtained in Lemma 1, we have

w
DRI h, > 1,

where v, <v,.,, N>N'>N-2. Letting J, =1I, and N’ =n,, we
have

ny
DTN A > 1,
1
since A" .

Suppose we have shown that there exists a collection {I,}, n = 1, ...
.v.y My, none of the I, containing 2,, such that

g
DT Ay > .
1 .
Then there is an interval J such that zy< J® (velative to I) and JN(JI, = @.
In J there is a collection of intervals J,, » =1,..., W, silch that

¥
D (T hn > Bl +2) +1.

Thus N > n;,+2, since > |f(J,)|/4, < Br. Then
1

N
2 1fT)l /A > 2B+1,

N1


GUEST


36 D. Waterman

and if we eliminate the at most two terms for which z,¢ J,, we obtain J. vn?
no=1 ..., N, v, <9y, N—n,—2 <N <N—my, the », denoting the
indices of the remaining terms. Then

]\7
DTN A, > 1.

Setting I, ,; = Jy, and ;= n,+N', we have, since 4,1,
PRe+1

D AT > 1

apt+l

and, therefore,
Wt 1

D T 2> To+1.

1

Thus we may construct a collection {I,} such that

contrary to (i). m
Let us now suppose that & is a convex function, @(z) = o(2) as
x>0+, &(x)jz—oc0 a3 o0, and &(0) = 0. Let

() = sup{zy —D(y): y = 0}.
Then
wy < P(@)+¥(y),
which is Young’s inequality.
A function is said to be of @-BV if for some % > 0, the @-variation
of kf, i.e., the supremum over all partitions &, < 2, < ... <a, of I of

n-—1
D' O (1f (i) —F()),
1
is finite. This class has been thoroughly studied by Musielak and Orlicz [6].
By Young’s. inequality,
N

N N
B DI A < X B(kIF(L)) + 3 P (L/A,).

1
Thus >'W¥(1/4,) < oo and f of ®-BV implies that f is of ABV. For Ay =,
1 ' N
the condition > ¥(1/n) < co was shown by Salem [8] to imply that the
Fourier series of a continuous function in &-BV converges uniformly.

Goffman [3] showed that if continuity is not required, one obtains every-
where convergence. These results are contained in our results on HBV [9].
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The Banach indicatrix of f, n(y), is the cardinality of {@: f(2) = y}
if this set is finite and oo otherwise. Garsia and Sawyer [2] showed that
if fis continuous with range [0,1] and

1
flogn(y)dy < oo,
0

then the Fourier series of f converges uniformly. Goffman [3] showed
that if continuity is replaced by the existence of right and left-hand
limits and the notion of the Banach indicatrix is suitably extended, then
everywhere convergence is obtained. .
Using a lemma of Goffman, we showed [9] that if inff = 4 and
supf = B, f has only simple discontinuities, and I(«) is an inereasing

funetion such that L(n) ~ 31/4, as n—>oco, then
1

B
fL(n(y))tZy <
i

implies that f is in class ABV. Thus the results on convergence and uni-
form convergence of Fourier series of functions for which flogn(y)dy < oo
are contained in our results for functions of class HBV [91.

2. The A-variation functions. Tn this section we shall consider the
behavior of the interval function ‘
V) = Vatf; I) = sup {3 If(L)] s T, = I},
which we call the A-variation of f on the interval I. On a given interval
I =[a, b] we also consider the A-variation Sunction of f
v(@) = v4(f; ®) = Val(f; [a, 2]).

We shall show that V is a subadditive interval function, that it possesses
an interesting continuity property, and that the continuity properties
of v are exactly those of the function from which it is derived.

THEOREM 2. If o < & < b, then
V(la, b]) < V([a, 21) 4+ V ([», b]).
CoroLLARY. If o <@ <y then

v(w) < o(y) < v (@) +V([z, y]).

Proof of Theorem 2. The corollary follows immediately from the
obvious monotonicity of v and the theorem.

Now let {I,} be a collection of intervals in I and let 4 = [a, 2],
B =[x, b]. Write :

{m} ={n: L,nA® %0}, {(m} = {n: I,nB° = @}
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with a7,y # . IE there exist &' and &' such that nge = my., denote the
common: value by #%. Then letting
I; =I;n4A, I =IznB,

we have, observing that m; > k and n; > k for all &,

DI A = D) 1T it F 1 (Tong) o+ (T 25

k#k’

< (I T+ ) If ) ) +H{1F(E) It ) 1F T
ke#k’ kel
< V(4)+V(B).

Since {I,} was arbitrary, we have
V(AUB) <

as was to be shown. m

The following theorem expresses a continuity property of V tham
we have found very useful in our study of Fourier series [10].

TeroREM 3. Let f be of class ABV on I = [a, b]. Then

(i) if f 4s right continuous at a,

V(4)+V(B)

V(f; la,s])>0 as oM @,
if f is left continuous at b,
V(f; (#,0)~0 as azxb,

I°, then

V(f; [»,y])->0
as w and vy together approach either a or b.
Proof of Theorem 3. It is clear that (i) implies (ii), for if we suppose

(i) i [@y]<

[#, y] = I’ and set g(2) = f(@)for z¢(a, b) and g(a) = f(a+), g(d) = g(b—),
then ¢ is right continuous at & and left continuous at b and
0KV (f; [my]) = Vig; [#,9y]) < V(g; [4,9])>0 as  yNa.

Similarly,
< V(fil=,y) < Vig; [w,0])>0 a8

Thus we need only prove (i). We consider only the case in which f is right
continuous at a.

There is a collection of intervals I,,,# =1, ..
I, < [a, b], f(I,) # 0 for each n, and

oxb.
.y Ny, such that (L)

Ny .
D LA > £V (5 [, BT).
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Since f is right continuous at a, we may assume that I, < (a, b] for each n.
Choose ¥, ¢ (a, b) such that :

. [a, ?/1]“(;)17; =0, y1 < (a+D)/2,

and I < (a, y,] implies
D) < minffZ): n =1,..., Ny}

Then there is a collection of intervals I,,, n = N, -+1,..., N,, such tha.t )
If(Z)™ we have I, = (a,y,] and f(Z,) ;é 0 for each n,. and

2 IF(L)] ,._N1> 1V 4S5 [ay 9a])-

N+l
Continuing in this manner we can choose, for k =1,2,.
choosing Yer < (a+9:)[2) and Iy ., ...,
[¥p41s 5] With

o YN a (by
Iy,,,» intervals contained in

Nit1
D T Ay, > 3V a5 [@, 921
Nk-l«l
and [f(L,)|~.
Let |f(L,)| = &, 1[4, =1,. Then a,\0, b, = O(1). Now »(f; [a, b])

> Ya,b, 1mp11es that given &> 0, there is an N such that

o
Za’nbn <e

N+1

and, therefore, since for j> 0, a,.;b, < a,b,

0
Za’n+jbn <e.

N+1

Now there is a J(¢) such that

N N
Z%an S G4 an <e if
1 T :

Writing j = N, we see that

n?

i> J(e).

o0
V(f; [a’) ?/]c]) < E a’n-f—Nkbn< 2¢
1
it & is sufficiently large. Hence
V(f; [a, 9 )—>0 as

F—> o0
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implying that
V(f; [a,91)>0 as
since V(f; [4, ¥]) i a monotone function of y. m
In order to prove that the continuity of » implies that of f, we require
a surprisingly difficult lemma.

LeMMA 2. Let f be of class ABV on I. If [m, y]l < I and |f(2)
= 0> 0, then

Yy™Na

v(y) —v (@) = d/iy,

where

ky = inf {70: Z’j 1/h, > 2@@)/5}.

Proof of Lemma 2. Given 7> 0, there exist I,, n =1,.
in [a, 2], such that |f(I,)|™ and

< 2 F (I A+ 7.

N17

o (@)

Let m = inf({n: |f(1,)] < 6/2}U{N +1}). We shall show that

(%) @(y)—'u(w 8/22,, —
Put |f(L,) =a,, T = Zan/l Let § denote the sum obtained by -adjoin-

ing ¢ to the collection {a,} and forming a sum of N +1 terms as indicated
below:

10 If a,>6/2, n =1,..., k, bub a,,, < 8/2, set

= [A+ o+ @yl + 0 Aps s s+ Oy [y
then
=T = (8 — 1) doss + (Bp1 — gy ) [Apn oo +anlAngr > 822, .
20, If a, > 4/2 for all n, set

8 = /2y te.. Ayl + 8Ay s ¢
then ‘

8—T = 8[hyy1.
30, If /2 > a, for all n, set

= 0[htayfhy+.. Fayliyiy;

then

8 =T =(8—a;)[dy+ (0 —as) 2y +... +an/Ayy > 6/24;.

—f()!
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Now o(y) = 8. Hence
o(y) —v(@) >v(y)—T—q> 8 —T—
and 80
820 —n i @, =082 for n<h, ag,, < 0/2,
v(y)—v(@) =4 0/20y—n i a,=98[2 for all n,
822, —n if a,<é/2 for all n,

which is (*).
Now ko=

() if m =1, k=1

= m since

(b) if m = N +1, then v(z) >
> N+1;

g [FII 2 = (6/2)§1/ln and, therefore,

m—1
(¢) i#1l<m< N-+1, thenv(w)>(8/2) Y 1/, and, therefore, ko> m—1.
1

From (x) we then have
v(y) —v(w) =

which implies the desired result since %, is independent of #. m

Our principal result on the continuity of the variation is the following.

TuoREM 4. Let f be of class ABV on I. Then v is right (left) continu-
ous at any point of I if and only if f is right (left) continuous at that point.

Proof. We shall consider only the behavior at the right of a point.
The arguments for the left are analogous.

Suppose I = [a,b], a<®<b, and f is right continuous at x. If
& < y< b, then from the corolla,ly to Theorem 2 we have

0oy —v(@) < V([x,y]).

From Theorem 3 we have that V ([, y])—>0 as ¥y~ and, therefore, v is
continuous on the right at a.

Suppose f is not right continuous at 2. Then there is a 6> 0 such
that for y > @ but sufficiently close to @, |f(®)—Ff(¥)i= d. Applying
Lemma 2, we see then that

v(y) —v(@) > 0[2A,

for such.  and, therefore, v is discontinuous on the right at . m

8124, —

3. The space ABV. The functions of class ABV on an interval I
form a Banach space if we define the norm of a function f as

171 = If(@)+V(f; 1),
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where @ is an arbitrary but fixed poi.nf of I. To see that the space with
‘bhis norm is complete, let {f,} be a Cauchy sequence. Then

]fn fm I'an(a fm(a)’"(fn(m)_fm(w))“ll =0(1)

uniformly in « as %, m->oo, implying that {f,} converges wuniformly.
Denote the pointwise limit function by f. Now

V(o) =Vl S V(fu—Fm)s

jmpiying that Hm V(f,) exists. For any finite collection of intervals I,
k =1,..., K, we have

k ,
Z PN < ) fulT) g +0(1) < V(f) +0(21)

a8 n—>oco, implying that f is in ABV and

V(H) <HmV(f,).

Now given &> 0, there is an N such that for m, n > N

D 1Falli) = ol T e < &

for any collection of intervals I in I. Letting m— oo and taking the sup-
remum over all such collectiony, we have

V(f-fa<e

Hence [|f —f,ll-—+0 as n—oco.

It is interesting to note that, since convergence in morm implies
uniform convergence, the continuous functions of class ABV are a closed
subspace of ABYV. )

If we suppose that 1, oo, then BV is a proper subspace of ABV.
With this condition on {4,}, 8. J. Perlman [7] has proven the following
remarkable theorem. -

BY ds the intersection of all ABV spaces, but not the intersection of
-any countable collection. The space of functions with only simple disconti-
-nuities is the union of all ABV spaces, but not the union of any cozmtable
-collection.

The next result is the analogue of the Helly theorem for /ABY.

THEOREM 5. If {f.} is a sequence in ABV with ||f,|| < M, then there
-emists a subsequence {f,} converging pointwise to a function f in ABV with
Ifll < ML

Proof of Theorem 5. Let v,(#) =v(f,; #). Then v, (@) < M for
every # and n, and by applying the Helly Selecmon Principle we obtain
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{v,,} converging pointwise to an increasing function ». By the diagonal

method we may find {n,cj} such that { fﬂkj(w)} converges at the endpoints

of I, at a, and at each rational x. Let f’ f,,k]_, ,u = Uy -

For ¢ > 0, set m(e) = inf{m: )Y 14, > 2M/e}. Suppose now that v
1

is continuous at an irrational e I°. There is a rational y > @, such that
0<<o(y)—v(®) <79 = /6450
There is an integer J such that for j> o,
W —o@)l<u, [v(@)—v(@)l < 7.
Then for j> J,

0

N

¥(y) — (@) < 8y = &[22 (e

By Lemma 2 we have, for j > J,

i) —Flag)] < o

Since {f/(y)} converges, there is an integer J* such that, for j, k¥ > J’,

we have
Ify) —f(¥)
Thus, for j, k> max(J, J'), we have
I (@) —F* (@) < 3¢,

implying that {f/(z,)} converges.

‘Thus {f/(#)} converges except perhaps on an at most countable set,
the pointy of discontinuity of v, but, by the diagonal method, we can
choose from {f’} a subsequence convergent on this set and, therefore,
on all of I to a function f.

Denote this subsequence by {f} and the corresponding subsequence
of {v'} by {v(y}. Given &> 0, for a fixed & there is an integer J such that
i>J implies v(®) > vy(x)—e Let I, n=1,.. , NV, be intervals in
I to the left of #. Choose % > J so large that

LN N
| > 1Tl A= X 1f Tl 2| < &

)< &

Then

N N .
0(2) > vgg(@) =52 ) fpTa)l[tn—e > ) IF(T)l[An—2e.
1 1 )
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Hence f is in 4BV and
o(@) = v(f; x).
M —|fy(a)] for each wel and each i, we have
M —f(a) = v(z) = v(f; 2)
for each » in I and, therefore, )

¢ CMflom

Since vy (@) <

4. Some open questions. In our paper on the summability of Fourier
series [10] we infroduced the notion of continuity in A-variation. Let
A" = {A, b m =1,2,... A function f in ABV on I iy said to be con-
tinuous in A-variation if '

Vm(f3 1)—0

Clearly, if ABV = BV, this implies that f is constant. Thus we consider
only A, ~ oo. : C

Q1. How camw we characterize the fumctions which are continuous in
A-variation ?

In two papers with Goffman ([4], [5]), we characterized GW, the
class of functions f such that the Fourier series of fok is everywhere con-
vergent for each homeomorphism. k of [0, 2x] with itself. With Baernstein
[1], we characterized UGW, the class of continuous functions for which
uniform convergence is preserved by such compositions. Let (reg) denote
a restriction to regulated functions, those with only simple discontinuities,
and (cont) denote a restriction to continuous.functions. Then we have,
clearly, )

a8 m—oo.,

GWieqy 2 HBY
and
UGW =2 HBYV (cony)-
Q2. Are these inclusions proper?
Proceeding as in the class BV, we can define positive and negative
A-variations by setting
oi(f; ) =sup{ 3 f(L) /20 I, < [a, 0], £(T) > 0},

va(f3 ) = sup { PUF(L)/An: I, < [a, @], f(I,) < 0},
when f is of class ABV on I = [a, b].
This leads at once to the following question.

Q.3. To what extent do the positive and negative A-variations of @ fune-
tion characterize the function?
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