

STUDIA MATHEMATICA, L. LVII. (1976)

Unconditionally converging and Dunford-Pettis operators on $C_X(S)$

by

CHARLES SWARTZ (Las Cruces, N. Mex.)

Abstract. Let S be a compact Hausdorff space and X, Y B-spaces. We give characterizations of the unconditionally converging and Dunford-Pettis operators $T: C_X(S) \rightarrow Y$, where $C_X(S)$ is the B-space of continuous X-valued functions equipped with the sup-norm. These results are used to show that $C_X(S)$ has the Dunford-Pettis property if X has the Dunford-Pettis property.

In [6], I. Dobrakov posed the problem of characterizing the unconditionally converging operators on the B-space $C_X(S)$ of X-valued continous functions defined on a compact Hausdorff space S, where X is a B-space. If Y is a B-space, Dobrakov observed that if $T\colon C_X(S)\to Y$ is an unconditionally converging operator and $Tf=\int\limits_S fdm,\ f\in C_X(S),$ where $m\colon B(S)\to L(X,Y)$ is an operator-valued measure on the Borel sets of S ([4], §1.), then (i) $m(B)\colon X\to Y$ is an unconditionally converging operator for each Borel set B and (ii) the operator semi-variation of m is continuous at $\mathcal O$ (see also [15], Th. 5). Dobrakov conjectured that (i) and (ii) actually imply that T is an unconditionally converging operator. In this note we show that this is indeed the case.

Our methods also allow us to solve another problem posed by Dobrakov in [8], §6, concerning the Dunford-Pettis property. Namely, f X has the Dunford-Pettis property (DP property), then does $C_X(S)$ also have the DP property? (An operator from a B-space Z into a B-space Y is a Dunford-Pettis operator (DP operator) if it carries sequences which converge weakly to 0 into sequences which converge to 0 in norm; a B-space Z has the DP property if every weak compact operator on Z into another B-space is a DP operator ([13], Prop. 4; [10]).) By using the same method of proof used to characterize unconditionally converging operators, we give a characterization of DP operators on $C_X(S)$ and this characterization allows us to show $C_X(S)$ has the DP property iff X has the DP property.

1. Unconditionally converging operators. Throughout this note S will denote a compact Hausdorff space with Borel sets B(S), X, Y and Z

for the operator T.

will denote B-spaces, and $C_X(S)$ will denote the B-space of all continuous functions from S to X equipped with the sup-norm. If $T: C_X(S) \rightarrow Y$ is a bounded linear operator, then T has a representation $Tf = \int f dm$, where $m: B(S) \rightarrow L(X, Y'')$ is a finitely additive operator-valued set function with finite operator semi-variation ([4]; m has other properties which we do not list). The set function m is called the representing "measure"

If $m: B(S) \to L(X, Y)$ is finitely additive and has bounded operator semi-variation \tilde{m} ([5], I, 4.1), then \tilde{m} is continuous at \emptyset if $B_n \downarrow \emptyset$, $B_n \in B(S)$, implies $\tilde{m}(B_n) \to 0$. This is equivalent to the existence of a finite positive measure λ on B(S) such that $\lim_{\lambda(E)\to 0} \tilde{m}(E) = 0$ ([7]; see [3], Th. 6 for other equivalent formulations). Such a λ is said to be a control measure for m.

Recall that a bounded linear operator $T\colon Z\to Y$ is unconditionally converging (u.c.) if it carries weak unconditional Cauchy series (w.u.c. series) into unconditionally converging (u.c.) series. (A series $\sum x_n$ in X is w.u.c. if $\sum |\langle x', x_n \rangle| < \infty$ for each $x' \in X'$ and $\sum x_n$ is u.c. if every rearrangement is convergent in X [12].)

THEOREM 1. A bounded linear operator $T: C_X(S) \to Y$ is u.c. iff

- (i) for each Borel set B $m(B): X \rightarrow Y$ is u.c. and
- (ii) m is continuous at Ø.

Proof. For the necessity of (i) and (ii) see [8], Theorem 3 or [15], Theorem 5.

Now suppose (i) and (ii) hold. We first make two simplifications. First note that we may assume that X is separable; for if $\sum f_n$ is w.u.c. in $C_X(S)$, let X_0 be the closed linear span of $\{f_n(t)\colon n\geqslant 1,\, t\in S\}$. Then $f_n\in C_{X_0}(S)$ and if we define $T_0\colon C_{X_0}(S)\to Y$ by $T_0f=Tf$, then the representing measure for T_0 still satisfies (i) and (ii) and if T_0 is u.c., $\sum Tf_n$ is u.c. in Y.

Next observe that we may assume S is metrizable. For let $\sum f_n$ be w.u.c. in $C_X(S)$. Define an equivalence relation \sim on S by $s \sim t$ if $f_n(s) = f_n(t)$ for all n. Let S_0 be the set of equivalence classes under \sim and let $\pi\colon S\to S_0$ be the natural map from s onto its equivalence class $\hat{s}=\pi(s)$ with respect to \sim . (The technique used here is that of [9], VI, 7.6.) Define a metric d on S_0 by

$$d(\hat{s}, \hat{t}) = \sum_{1}^{\infty} |f_n(s) - f_n(t)|/2^n$$

and note that since each f_n is continuous on S, π is continuous and therefore S_0 is a compact metric space. Define a bounded linear operator T_0 : $C_X(S_0) \rightarrow Y$ by $T_0 \varphi = T(\varphi \circ \pi)$. Then the representing measure m_0 for T_0 is just the image of the measure m by the map π ([5], III, 20.1) so that

if m satisfies (i) and (ii), then m_0 likewise satisfies (i) and (ii). Now if T_0 is u.c. and if we define $\varphi_n \in C_X(S_0)$ by $\varphi_n(\hat{s}) = f_n(s)$ (note φ_n is well-defined), then $\sum \varphi_n$ is w.u.c. ($\|\sum_{\sigma} \varphi_n\| = \|\sum_{\sigma} f_n\|$ for any finite subset σ of the positive integers N [12]) and thus $\sum T_0 \varphi_n = \sum T f_n$ is u.c. in Y.

Thus we may assume that X is separable and S is metrizable. Let $\sum f_n$ be w.u.e. in $C_X(S)$ with $\|\sum_{\sigma} f_n\| \le M$ for every finite $\sigma \subseteq N$. Let $l_{\omega}^1(X)$ denote the B-space of all X-valued sequences $\{x_n\}$ such that $\sum x_n$ is w.u.e. equipped with the norm $\varepsilon\{x_n\} = \sup\{\|\sum_{\sigma} x_n\|: \sigma \subseteq N \text{ finite}\}$ ([14], 1.2; the norm defined here is equivalent to the norm employed by Pietsch [12]). Define $F: S \to l_{\omega}^1(X)$ by $F(t) = \{f_n(t)\}$. We claim that F is strongly measurable with respect to λ where λ is a control measure for m (recall the remarks preceding Theorem 1). For this let τ be the topology of pointwise convergence on $l_{\omega}^1(X)$, i.e., the relative product topology $\sum_{n=1}^{\infty} X$. Now $l_{\omega}^1(X)$ is separable with respect to τ since X is separable, τ is weaker than the norm topology, and F is τ -continuous and thus measurable. Therefore, we may apply the remark on page 55 of [17] and conclude that F is strongly measurable with respect to λ and the norm topology.

Let $\delta > 0$. There is a (countable) partition $\{E_i \colon 1 \leqslant i < \infty\}$ of S by Borel sets such that

$$\varepsilon \left\{ F(t) - \sum_{i=1}^{\infty} C_{E_i}(t) F(s_i) \right\} < \delta \quad \text{ for all } t \in S,$$

where s_i is a fixed point of E_i and C_E denotes the characteristic function of E ([11], Cor. 1 of 3.5.3 or [10], 8.15.2: actually this estimate only holds for λ -almost all $t \in S$ but for convenience we assume it holds throughout S). That is, we have

$$(1) \quad \Big\| \sum_{n \in \sigma} \Big(f_n(t) - \sum_{i=1}^{\infty} C_{R_i}(t) f_n(s_i) \Big) \Big\| < \delta \quad \text{ for } t \in S \text{ and } \sigma \subseteq N \text{ finite.}$$

For $\sigma \subseteq N$ finite and k any positive integer, we have ([7], Th. 3)

$$(2) \qquad \sum_{n \in \sigma} Tf_n = \sum_{n \in \sigma} \sum_{i=1}^k m(B_i) f_n(s_i) + \sum_{n \in \sigma} \int_{\substack{i \\ i=1}}^k \left(f_n(t) - \sum_{i=1}^k C_{E_i}(t) f_n(s_i) \right) dm(t) + \\ + \sum_{n \in \sigma} \int_{\substack{i \\ i=k+1}}^\infty f_n dm.$$

To show $\sum Tf_n$ is u.c. it suffices to show that there is a finite $\sigma_0 \subseteq N$ such that $\|\sum Tf_n\|$ is small for $\sigma \cap \sigma_0 = \emptyset$, $\sigma \subseteq N$ finite. In view of (2), we can

accomplish this by estimating each term on the right-hand side of (2). For the last term in (2), we have

$$\Big\| \sum_{n \in \sigma} \int_{\substack{\bigcup \\ i=k+1}}^{\infty} f_n dm \, \Big\| \leqslant M \tilde{m} \big(\bigcup_{i=k+1}^{\infty} E_i \big)$$

and by (ii) there exists a k such this term is less than δ . Choose such a k and fix it for the remainder of the proof. For the middle term in (2), we have

$$\left\| \int\limits_{\substack{i \\ i=1}}^{k} \sum\limits_{n \in \sigma} \left(f_n(t) - \sum\limits_{i=1}^{k} C_{E_i}(t) f_n(s_i) \right) dm(t) \right\| < \delta \tilde{m}(S)$$

from (1). For the first term on the right-hand side of (2), note that for each i, $\left\|\sum_{n \in \sigma} f_n(s_i)\right\| \leq M$ so $\sum_n f_n(s_i)$ is w.u.c. in X. By (i), with k fixed, there exists a finite $\sigma_0 \subseteq N$ such that $\sigma \cap \sigma_0 = \emptyset$, $\sigma \subseteq N$ finite, implies

$$\Big\| \sum_{i=1}^k \sum_{n \in \sigma} m(E_i) f_n(s_i) \Big\| < \delta.$$

For such σ , from (2), $\left\|\sum_{n\in\sigma}Tf_{n}\right\|<\delta(2+\tilde{m}(S))$, i.e., $\sum Tf_{n}$ is u.c. in Y.

Remark 2. Partial results pertaining to this problem were given in [2], [15], Theorem 6, and [16].

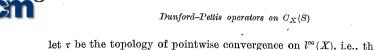
2. The Dunford-Pettis property. By using the method of proof of Theorem 1, we can also give a characterization of DP operators on $C_X(S)$. This characterization can then be used to show $C_X(S)$ has the DP property iff X has the DP property thus answering the question posed by Dobrakov in [8], § 6.

Theorem 3. A bounded linear operator $T \colon C_X(S) {\rightarrow} Y$ is a DP operator iff

- (i) for each Borel set B $m(B): X \rightarrow Y$ is a DP operator,
- (ii) m̃ is continuous at Ø.

Proof. If T is a DP operator, it is shown in [1] or [16] that (i) and (ii) hold.

Suppose (i) and (ii) hold. As in Theorem 1 we may assume that X is separable and S is metrizable. Let $f_n \to 0$ weakly in $C_X(S)$; then $\{f_n\}$ is norm bounded so there is an M such that $\|f_n(t)\| \leq M$ for all n, t. Define $F \colon S \to l^\infty(X)$, the B-space of all bounded X-valued sequences equipped with the sup-norm, by $F(t) = \{f_n(t)\}$. Again we claim that F is strongly measurable with respect to λ , where λ is a control measure for m. For



let τ be the topology of pointwise convergence on $l^{\infty}(X)$, i.e., the relative product topology $\prod_{1}^{\infty} X$. Since X is separable, $l^{\infty}(X)$ is separable with respect to τ , τ is weaker than the norm topology and F is τ -continuous. Hence by the remark on p. 55 of [17], F is strongly measurable.

Let $\delta > 0$. There exists a partition $\{E_i\}_{1}^{\infty}$, of S by Borel sets such that

$$(3) \quad \left\| f_n(t) - \sum_{i=1}^{\infty} C_{E_i}(t) f_n(s_i) \right\| < \delta \quad \text{ for all } t \in S, \ n \geqslant 1, \text{ where } s_i \in E_i.$$

(Again we assume (3) holds everywhere neglecting the λ -null set.) Now for any positive integer k ([7], Th. 3),

$$(4) Tf_n = \sum_{i=1}^k m(E_i) f_n(s_i) + \int_{\substack{k \\ i=1}}^k \left(f_n(t) - \sum_{i=1}^k C_{E_i}(t) f_n(s_i) \right) dm(t) + \int_{\substack{k \\ i=k+1}}^\infty f_n dm.$$

To show $||Tf_n|| \to 0$, we estimate each term on the right-hand side of (4). For the last term in (4),

$$\left\| \int\limits_{\stackrel{\circ}{\underset{i=k+1}{\bigcup}} E_i} f_n dm \right\| \leqslant M \tilde{m} \left(\bigcup\limits_{i=k+1}^{\infty} E_i \right)$$

and by (ii) there exists a k such that this term is less than δ . Fix such a k. For the middle term in (4), from (3) the norm of this term is less than $\delta \tilde{m}(S)$. To treat the first term on the right-hand side of (4) note that for each i the linear map $f \rightarrow f(s_i)$ from $C_X(S)$ to X is norm-continuous and therefore weak-continuous ([9], V, 3.15) so $\lim_n f_n(s_i) = 0$ (weak limit). Thus by (i), for $1 \leq i \leq k$, $\lim_n m(E_i)f_n(s_i) = 0$ (norm limit); from (4) and this fact, there exists an N such that $n \geq N$ implies $||Tf_n|| < \delta(2 + \tilde{m}(S))$. We may now treat the problem posed by Dobrakov in [8], § 6.

THEOREM 4. Let T be locally compact, Hausdorff, and let $C_0(T,X)$ be the X-valued continuous functions on T which vanish at ∞ equipped with the sup-norm. Then $C_0(T,X)$ has the DP property iff X has the DP property.

Proof. Assume that $C_0(T,X)$ has the DP property. Fix $t \in T$ and pick $\varphi \in C_0(T)$ such that $\varphi(t) = 1$ and $\|\varphi\| = 1$. Define $U \colon C_0(T,X) \to X$ by Uf = f(t). Suppose Y is an arbitrary B-space and $V \colon X \to Y$ is a weakly compact operator. Then VU is weakly compact and therefore DP. But if $x_n \to 0$ weakly in $X, \varphi x_n \to 0$ weakly in $C_0(T,X)$ ([8], Th. 9) so that $VU(\varphi x_n) = Vx_n \to 0$ in norm. That is, V is a DP operator and X has the DP property.

Assume that X has the DP property. First note that if T is compact,

-90

 $C_{T}(T)$ has the DP property from Theorem 3 and Theorem 8 of [15]. If T is locally compact, let T^* be the one-point compactification of T with ∞ denoting the point at infinity. Then $C_0(T, X)$ is isometrically isomorphic to the closed subspace Γ of $C_{\nu}(T^*)$ consisting of those functions which vanish at ∞ . But Γ is complemented in $C_{\mathbb{Y}}(T^*)$ via the projection P: $f \rightarrow f - f(\infty)$ and $C_{x}(T^{*})$ has the DP property, so Γ , and hence $C_{0}(T, X)$, has the DP property ([10], 9.4.3).

Remark 5. Partial solutions to this problem were given in [8], [2], and [16]; for the scalar version see [9], VI, 7.4.

It also follows from Theorem 4 that if Z is a complemented subspace of a space C(S), then $Z \otimes_{\epsilon} X$ ([14], 7.1.1) has the DP property when X has the DP property for $Z \otimes_{\bullet} X$ is then a complemented subspace of $C(S) \otimes_{\varepsilon} X = C_{\mathcal{X}}(S)$. This suggests the conjecture that if X and Y have the DP property, then $X \otimes Y$ also has the DP property.

References

- [1] G. Alexander, Linear operators on the space of vector-valued continuous functions, thesis, New Mexico State University, 1972.
- G. Alexander and C. Swartz, Linear operators on cx, Czech. Math. Journ. 23 (1973), pp. 231-234.
- 131 J. Batt, Applications of the Orlicz-Pettis Theorem to operator-valued measures and compact and weakly compact transformations on spaces of continuous functions. Rev. Roum. Math. 14 (1969), pp. 907-935.
- [4] J. Batt and E. Berg, Linear bounded transformations on the space of continuous functions, Journ. Functional Anal. 4 (1969), pp. 215-239.
- [5] N. Dinculeanu, Vector Measures, Berlin 1966.
- [6] I. Dobrakov, A representation theorem for unconditionally converging linear operators on C(T, X), Studia Math. 38 (1970), pp. 460-461.
- On integration in Banach spaces I, Czech. Math. Journ. 20 (1970), pp. 511-536.
- On representation of linear operators on $C_0(T, X)$, ibid. 21 (1971), pp. 13-30.
- [9] N. Dunford and J. T. Schwartz, Linear Operators, New York 1966.
- [10] R. E. Edwards, Functional Analysis, New York 1965.
- [11] E. Hille and R. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. 1957.
- [12] C. McArthur, On relationships amongst certain spaces of sequences in an arbitrary Banach space, Canad. J. Math. 8 (1956), pp. 192-197.
- 1131 A. Pelczyński, On weakly compact polynomial operators on B-spaces with Dunford-Pettis property, Bull. Pol. Acad. Sci. 11 (1963), pp. 371-378.
- [14] A. Pietsch, Nucleare Localkonvexe Räume, Berlin 1965.
- [15] C. Swartz, Unconditionally converging operators on the space of continuous functions, Rev. Roum Math. 17 (1972), pp. 1695-1702.
- 1167 Linear operators on $C_X(\Omega)$ for Ω dispersed, preprint.
- [17] G. E. F. Thomas, The Lebesgue-Nikodym Theorem for Vector Valued Radon Measures, Amer. Math. Soc. Mem., 139, 1974.

Received February 3, 1975 (945)

STUDIA MATHEMATIĆA, T. LVII. (1976)

On the Vitali covering properties of a differentiation basis

by

ANTONIO CORDOBA (Princeton, N. J.)

Abstract. A functional analysis technique is introduced to relate differentiation and covering properties of a basis.

A. Let \mathscr{B} be a Busemann-Feller differentiation basis in \mathbb{R}^n . That is, for each $x \in \mathbb{R}^n$ we have a collection of bounded open sets $\mathscr{B}(x)$ containing x, such that there exists at least one sequence $\{R_n\} \subset \mathcal{B}(x)$ with diameter $(R_k) \to 0$, and if $x \in R \in \mathcal{B}$, then $R \in \mathcal{B}(x)$.

Given a mesurable set E in \mathbb{R}^n , we say that $V \subset \mathcal{B}$ is a \mathcal{B} -Vitali covering of E if for every $x \in E$ there is a sequence $\{R_k\} \subset V$ such that $R_k \in \mathcal{B}(x)$ for each k and $R_k \to x$ as $k \to \infty$.

DEFINITION 1. The differentiation basis \mathscr{B} has the covering property V_{α} if there exists a constant C such that for every measurable bounded set E, every \mathscr{B} -Vitali covering V of E and any $\varepsilon > 0$, one can select a sequence $\{R_{\nu}\}\subset V$ with the properties:

(i)
$$|E - \bigcup R_k| = 0$$
, $|\bigcup R_k - E| \leqslant \varepsilon$,

(ii) $\|\sum \chi_{R_k}\|_q \leqslant C |E|^{1/q}$.

Given a locally integrable function f, we define the upper derivative $\overline{D}(f,x)$ with respect to \mathscr{B} as follows:

$$\overline{D}(\int f, x) = \sup \limsup_{k \to \infty} \frac{1}{|R_k|} \int_{R_k} f(y) dy,$$

where the "sup" is taken over all the sequences $\{R_k\} \subset \mathcal{B}(x)$ such that $R_k \rightarrow x$ as $k \rightarrow \infty$. The lower derivative $D(\int f, x)$ is defined by setting infliminf above.

DEFINITION 2. We say that B differentiates If if

$$\overline{D}(f, x) = D(f, x) = f(x)$$
 at almost every point $x \in \mathbb{R}^n$.

The purpose of this paper is to relate the following two properties of a differentiation basis: