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Unconditionally comverging and Dunford-Pettis operators om (y(S)

by
CHARLES SWARTZ (Las Cruces, N. Mex.)

Absteact. Lot § be a compact Hausdorff space and X, ¥ B-spacos. Wo give
characterizations of the unconditionally converging and Dunford-Pettis operators
T: Ox (8)—¥, where Ox(S) is the B-space of continuous X-valued funetions (\qqipped
with the sup-norm..These results are nsed to show that Ox(S) has the Dunford—Pottis
property if X has the Dunford-Pettis property.

In [6], I. Dobrakov posed the problem of characterizing the un-
conditionally converging operators on the B-space Cx(S) of X-valued
continous functions defined on a compact Hausdorff space S, where X
is a B-space. It ¥ is a B-space, Dobrakov obgerved that if 7': Cx(8)—X¥
is an unconditionally converging operator and Tf = [fdm, feCx(8),

S

where m: B(8)-L(X, ¥) iy an operator-valued measure on the Borel
sets of 8 ([4], §1), then (i) m(B): X—~Y iy an unconditionally converging
operator for each Borel set B and (ii) the operator semi-variation of m
is continuous at @ (see also [15], Th. 5). Dobrakov conjectured that (i)
and (ii) actually imply that T is an unconditionally converging operator.
In this note we show that thiv is indeed the case.

Our methods also allow us to solve another problem posed by Dobra-
kov in [8], §6, eoncerning the Dunford—Pettis property. Namely, X
has the Dunford-Pettis property (DP property), then does Cx(8) also
have the DI> property? (An operator from a B-space % into a B-space
Y is a Dunford—Pettis operator (DT operator) if it carries sequences
which converge weakly to 0 into sequences which converge to 0 in norm;
a B-space Z has the DL property it every weak compact operator on Z
into another B-space is a DI operator ([13], Prop 4; [10]).) By using
the same method of proof used to characterize unconditionally converging
operators, we give a characterization of DI operators on Cx(8) and this
characterization allows us to show COx(8) has the DI property itf X has
the DI property. .

1. Unconditionally converging operators. Throughout this note S will
depote a compact Wausdovtf space with Borel sets B(S), X, Y and Z
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will denote B-spaces, and Cx(8) will denote the B-space of all continuous

functions from § to X equipped with the sup-norm. If 7': Cx(8)—¥

is & bounded linear operator, then T has a representation Tf = [ fdm,
§

where m: B(S)~L(X, ¥") is a finitely additive operator-valued set
function with finite operator semi-variation ([4]; m has other properties
which we do not list). The set function m is called the representing “mcasme”
for the operator T.

It m: B(S)-»L(X Y) is fmxtely additive a.nd has bounded operator
semi-variation # ([5], I, 4.1), then # is continuous at @ if B, |0, B, B(S),
implies 7 (B,)— 0. This is equivalent to the existence of a finite positive
measure A on B(8) such that Lim @ (&) = 0 ([7]; see [3], Th. 6 for other

ME)->0
equivalent formulations). Sucl(l )a A is said to be a control measure for m.

Recall that a bounded linear operator T': Z—+XY is unconditionally con-
verging (w.c.) if it carries weak unconditional Cauchy series (w.u.c. series)
into unconditionally converging (u.c.) series. (A series Y} @, in X is w.wc.
it 3 |<&’, w,y| < oo for each @'<X’ and Y , is w.c. if every rearrangement
is convergent in X [12].)

THEOREM 1. 4 bounded linear operator T': Cx(8)—~Y is w.c. iff

(i) for each Borel set-B m(B): X —>Y is w.c. and

(ii) % is continuous at @.

Proof. For the necessity of (i) and (ii) see [8], Theorem 3 or [15],
Theorem 5.

Now suppose (i) and (ii) hold. We first make two simplifications.
First note that we may assume that X is separable; for it Y £, is w.ve.
in Cx(8), let X, be the closed linear span of {f,(t): n>1,te8}. Then
Jne Ox, (8) and if we define T';: Ox,(8)~Y by T\f = Tf, then the repre-
sentmg measure for 7T, still ha:tISfleS (i) and (i) and if T, is w.c., > T7,
is w.e. in Y.

Next observe that we may assume § is metrizable. For let ' f, be

w..c. in Ox(8). Define an equivalence relation ~ on 8 by s~ if f,(s)
= fu(t) for all n. Let 8, be the set of equivalence classes nnder ~ and let

7: §—8, be the natural map from s onto its equivalence clasy § = 7(8)
with respect to ~. (The technique nused here is that of [97], VI, 7.6.) Define
a metric d on 8, by

8,9) Zlfn —falt)lf2"

and note that since each f, is continuous on §, = is continuous and there-
fore 8, is a compact metric space. Define a bounded linear operator T,:

COx(80)~Y by Typ = T(pomx). Then the representing measure m, for T,
is just the image of the measure m by the map = ([8], II1, 20.1) so that
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if m scatisties (i) and (ii), then m, likewiqe satisfies (i) and (ii). Now if T,
ig w.e. and if we define ¢, ¢ Ox(8S,) by ¢,(8) = f,.(s) (note ¢, is well-defined),
then 3¢, is w.u.c. ( 2, o = ”)J Jul| for any finite subset ¢ of the positive

integers N [12]) zmd thus > Torp,, = Y 1If, is w.e in Y.
Thus we may assume that X is separable and § is metrizable. Let
3£, be w.n.c. in Cx(8) with HZ[,LH < M for every finite ¢ = N. Let I}, (X)

denote the B-space of all X- valluefl sequences {z,} such that Y, is w.u.c.
equipped with the norm s{m,} = su'p[HZm,,H cc N [ml’ne} ([14], 1.2;

the norm defined here is equivalent to 1,}10 norm employed by Pietsch
[127). Define F: §->I5(X) by F(#) = {f(¢)}. We claim that F is strongly
measurable with respect to A where A is a control measure for m (recall
the remarks preceeding Theorem 1). For this let = be the topology of

o0

pointwise convergence on I},(X), i.e., the relative product topologyn]z X.
Now I (X) is separable with respect to = since X is separable, v is weaker
than the norm topology, and F is v-continuous and thus measurable.
Therefore, we may apply the remark on page B5 of [17] and. conclude
that F is strongly measurable with respect to A and the norm topology.

Let 6> 0. There is a (countable) partition {H,;: 1 <4< oo} of § by
Borel sots such that

{ 2 O’”i

(=)

}< 6 for all te 8,

where s; is a fixed point of X, and Uy denotes the cha;rac’nerlstlc function
of B ([11], Cor. 1 of 3.5.3 or[10], 8.15.2: actually this estimate only ‘holds
for A-almost all te S but for convenience we assume it holds throughout 8).
That is, we have

(PNEAUE }:% O (0f(5)

Tor o < N finibte and % any positive integer, we have ([7], Th. 3)

k .
@ Yrh= ) zm Bl + ) [ () — i;_,:Om,‘(t)]"n(ﬁ-t))d”’!’/(t)+

neo neo L nea It .\

U 2
,?A.l &

<8 for te 8 and o < N finite. ‘

- .
'+ L\J .J f n d"’ﬂ .
new oo
Jiy
Aol 1

To show 2]”[’[,, is w.c. it suffices to show that there is a finite oy = N zsuch
that | Y17, is small for onoy = @, ¢ < N finite. In view of (2), we can
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accomplish this by estimating each term on the right-hand side of (2).
For the last term in (2), we have '

P <Mm(,QHEi)
nes oo =it
i

and by (ii) there exists a % such this term is less than 8. Choose such a %
and fix it for the remainder of the proof. For the middle term in (2), we

have
I/

yon
igl v

I3
2 (1) = 3 Ox () fats0) am )] < o (8)
=1

neo

from (1). For the first term on the right-hand side of (2), note that for
each 4, || 3 £, (s:)[| < M50 Y f,(s;) is w.u.c: in X. By (1), with % fixed, there

new
exists a finite ¢, = N such that ono, =@, s = N finite, implies

I 2 D m(B)f, (s))

i=1 nec

< 0.

For such o, from (2), | 3 Tf,|| < 8(2 +@(8)), i.e., 3Tf, is w.c. in Y.

Remark 2. Partial results pertaining to this problem were given
in [2], [15], Theorem 6, and [16].

2. The Dunford-Pettis property. By using the ‘method of proof of
Theorem 1, we can also give a characterization of DP operators on Oy (8).
This characterization can then be used to show ¢ 'x(8) has the DP property
iff X has the DP property thus answering the question posed by Dobrakov
in [8], §6. .

. TEEOREM 3. A bounded linear operator T' Ox(8)->Y is a DP operator
if]
(i) for each Borel set B m(B): XY is 4 DP operator,

(ii) M is continuous at @.

N 1él_]?roof. If Tisa DP operator, it is shown in [1] or [16] that (i) and (i)
old. :

Suppose (i) and (ii) hold. As in Theorem 1 we may assume that X
is separable and § is metrizable. Let f,-0 weakly in Oy(S8); then {f,}
is norm bounded so there is an M such that | o (Bl << M for all m, ¢. Define
F: 8—+I1"(X), the B-space of all bounded X-valued sequences equipped
with _the sup-norm, by F(t) = {f,(t)}. Again we claim that # is gtrongly
measurable with respect to A, where 1 is a control measure for m. For
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let = be the topology of pointwise convergence on I™(X), ie., the relative
o0
product topology | [X. Since X is separable, I®(X) is separable with respect;
1
to 7, v is weaker than the norm topology and P is z-continuous. Hence,
by the remark on p. 55 of [17], ¥ is strongly measurable.
Let 6 > 0. There exists a partition {#,}?°, of § by Borel sefs such that:
(3) an(t) - 2’ Olgi(t)ﬁl(s.,)u <d for all te§, n>1, where s;cH,.
bt

(Again we assume (3) holds everywhere neglecting the A-null set,) Now
tor any positive integer k& ([7], Th. 3),

13 % :
@) Tfy = D@+ [ (falt) = 3 On(Ofulsd) dmi+ [ fudm..
ot ], o0

llj u =1
I U B
i=1 il

To show [ILf,li-0, we estimate each term on the right-hand side of (4)..

For the last term in (4), ’

| [ am
o

iy
el

< win( U By

Fuafpjel

and by (ii) there existy a k such that this term is less than 4. Fix such a k..
For the middle term in (4), from (3) the norm of this term is less than
o (8). To treat the first term on the right-hand side of (4) note that,
for each ¢ the linear map f—f(s;kfrom Ox(8) to X is norm-continuous
and therefore weak-continuous ([9], V, 3.158) so limf,(s;) = 0 (weak

"
limit). Thus by (i), for 1 < ¢ < &, limm (B,)f,(s;) = 0 (norm limit); from (4).
il

0
.and this fact, there exists an N such that # > N implies |1, < 6(2 47 (8)).

We may now treat the problem poged by Dobrakov in [8], §6.

Trmorem 4. Let T be locally compact, Hausdorff, and let Co(T, X)
be the X-valwed continuous functions on T which vanish at co equipped
with the sup-norm. Then Cy(T, X) has the DY property iff X has the DP
property.

Proof. Assame that ¢ (7, X) has the DT property. Fix teT and
pick geCy(T) such that ¢(t) =1 and |jpll = L. Define U: Cy(T, X)X
by Uf = f(1). Suppose ¥ is an arbitrary B-space and V: X-¥ is a weakly
compact operator. Then VU iy weakly compact and therefore DP. But
if @, >0 woakly in X, giz,, >0 weakly in ¢y (7', X) ([8], Th. 9) so that VU (qu,)
= Vi, —0 innorm. That is, ¥ is o DI operator and X has the DP property.

Assume that X has tho D property. First note that if 7 iy compact, .
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‘Cx(T) has the DP property from Theorem 3 and Theorem 8 of [15]. If 7'
is locally compact, let T be the one-point compactification of T with oo
.denoting the point at infinity. Then Oy (T, X) is isometrically isomorphic
t0 the closed subspace I' of Ox(T™) consisting of those functions which
vanish at oco. But I' is complemented in Oy(T*) via the projection P:
J=f~—f(c0) and Ox(T*) has the DP property, so I', and hence Cy(T, X),
has the DP property ([10], 9.4.3).

Remark 5. Partial solutions to this problem were given in [8], [2],
and [16]; for the sealar version see [9], VI, 7.4.

It also follows from Theorem 4 that if Z is a complemented subspace
of a gpace O(8), then Z&®,X ([14], 7.1.1) has the DP property when X
has the DP property for Z&,X is then a complemented subspace of

(8)&.X = Cx(8). This suggests the conjecture that if X and ¥ have

the DP property, then X&,Y also has the DP property.
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On the Vitali covering properties of
a differentiation basis

by
ANTONIO CORDOBA (Princoton, N, J.)

Abstract. A functional analysis fochnique is introduced to relate differentiation
and covoring proporties of a basis,

A. Liet # be a Busemann-Feller differentiation basis in R™. That is,
for each we R™ we have & collection of bounded open sets #(x) containing
@, such that there exists at least one sequence {R,} = & (%) with diameter
(R)=0, and if weRed, then Re B(w).

Given & mesurable sef X in R", we way that V < # is a #-Vitale
covering of B it for every we B there is a sequence {B,} = V such that
Bye d#(w) for each k and R,-»x as k->oo.

DrFINIrIoN 1. The differentiation basis 4 has the covering property V,
if there exists a constant ¢ such that for every measurable bounded set Z,
every #-Vitali covering V of # and any > 0, one can select a sequence
{R,} = V with the properties:

) [E=URy =0, |UR,—B| <5, )

(i) || X zylly < € 1B ‘

Given a locally integrable function f, we define the upper derivative
D(ff, ) with respect to # as follows:

D(ff, ) -

< gup limsup —

yda
e ]ﬁ,\ jf"/ Y,

A

whoere the “sup” is tnken over all the sequences {R,} = % («) such that
By>w a8 h-»o0o. The lower derivative D([f, ) is defined by setting
inflimind above, '

DumrNitIon 2. We say thuat # differentiates [f if
B(ff,a) = D([F, 0) = f(o)

The purpose of this paper is to relate the following two properties
of a ditferentiation basis:

at almost every point xe R™
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