90

 $C_{T}(T)$ has the DP property from Theorem 3 and Theorem 8 of [15]. If T is locally compact, let T^* be the one-point compactification of T with ∞ denoting the point at infinity. Then $C_0(T, X)$ is isometrically isomorphic to the closed subspace Γ of $C_{\nu}(T^*)$ consisting of those functions which vanish at ∞ . But Γ is complemented in $C_{\mathbb{Y}}(T^*)$ via the projection P: $f \rightarrow f - f(\infty)$ and $C_{x}(T^{*})$ has the DP property, so Γ , and hence $C_{0}(T, X)$, has the DP property ([10], 9.4.3).

Remark 5. Partial solutions to this problem were given in [8], [2], and [16]; for the scalar version see [9], VI, 7.4.

It also follows from Theorem 4 that if Z is a complemented subspace of a space C(S), then $Z \otimes_{\epsilon} X$ ([14], 7.1.1) has the DP property when X has the DP property for $Z \otimes_{\bullet} X$ is then a complemented subspace of $C(S) \otimes_{\varepsilon} X = C_{\mathcal{X}}(S)$. This suggests the conjecture that if X and Y have the DP property, then $X \otimes Y$ also has the DP property.

References

- [1] G. Alexander, Linear operators on the space of vector-valued continuous functions, thesis, New Mexico State University, 1972.
- G. Alexander and C. Swartz, Linear operators on cx, Czech. Math. Journ. 23 (1973), pp. 231-234.
- 131 J. Batt, Applications of the Orlicz-Pettis Theorem to operator-valued measures and compact and weakly compact transformations on spaces of continuous functions. Rev. Roum. Math. 14 (1969), pp. 907-935.
- [4] J. Batt and E. Berg, Linear bounded transformations on the space of continuous functions, Journ. Functional Anal. 4 (1969), pp. 215-239.
- [5] N. Dinculeanu, Vector Measures, Berlin 1966.
- [6] I. Dobrakov, A representation theorem for unconditionally converging linear operators on C(T, X), Studia Math. 38 (1970), pp. 460-461.
- On integration in Banach spaces I, Czech. Math. Journ. 20 (1970), pp. 511-536.
- On representation of linear operators on $C_0(T, X)$, ibid. 21 (1971), pp. 13-30.
- [9] N. Dunford and J. T. Schwartz, Linear Operators, New York 1966.
- [10] R. E. Edwards, Functional Analysis, New York 1965.
- [11] E. Hille and R. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. 1957.
- [12] C. McArthur, On relationships amongst certain spaces of sequences in an arbitrary Banach space, Canad. J. Math. 8 (1956), pp. 192-197.
- 1131 A. Pelczyński, On weakly compact polynomial operators on B-spaces with Dunford-Pettis property, Bull. Pol. Acad. Sci. 11 (1963), pp. 371-378.
- [14] A. Pietsch, Nucleare Localkonvexe Räume, Berlin 1965.
- [15] C. Swartz, Unconditionally converging operators on the space of continuous functions, Rev. Roum Math. 17 (1972), pp. 1695-1702.
- 1167 Linear operators on $C_X(\Omega)$ for Ω dispersed, preprint.
- [17] G. E. F. Thomas, The Lebesgue-Nikodym Theorem for Vector Valued Radon Measures, Amer. Math. Soc. Mem., 139, 1974.

Received February 3, 1975 (945)

STUDIA MATHEMATIĆA, T. LVII. (1976)

On the Vitali covering properties of a differentiation basis

by

ANTONIO CORDOBA (Princeton, N. J.)

Abstract. A functional analysis technique is introduced to relate differentiation and covering properties of a basis.

A. Let \mathscr{B} be a Busemann-Feller differentiation basis in \mathbb{R}^n . That is, for each $x \in \mathbb{R}^n$ we have a collection of bounded open sets $\mathscr{B}(x)$ containing x, such that there exists at least one sequence $\{R_n\} \subset \mathcal{B}(x)$ with diameter $(R_k) \to 0$, and if $x \in R \in \mathcal{B}$, then $R \in \mathcal{B}(x)$.

Given a mesurable set E in \mathbb{R}^n , we say that $V \subset \mathcal{B}$ is a \mathcal{B} -Vitali covering of E if for every $x \in E$ there is a sequence $\{R_k\} \subset V$ such that $R_k \in \mathcal{B}(x)$ for each k and $R_k \to x$ as $k \to \infty$.

DEFINITION 1. The differentiation basis \mathscr{B} has the covering property V_{α} if there exists a constant C such that for every measurable bounded set E, every \mathscr{B} -Vitali covering V of E and any $\varepsilon > 0$, one can select a sequence $\{R_{\nu}\}\subset V$ with the properties:

(i)
$$|E - \bigcup R_k| = 0$$
, $|\bigcup R_k - E| \leqslant \varepsilon$,

(ii) $\|\sum \chi_{R_k}\|_q \leqslant C |E|^{1/q}$.

Given a locally integrable function f, we define the upper derivative $\overline{D}(f,x)$ with respect to \mathscr{B} as follows:

$$\overline{D}(\int f, x) = \sup \limsup_{k \to \infty} \frac{1}{|R_k|} \int_{R_k} f(y) dy,$$

where the "sup" is taken over all the sequences $\{R_k\} \subset \mathcal{B}(x)$ such that $R_k \rightarrow x$ as $k \rightarrow \infty$. The lower derivative $D(\int f, x)$ is defined by setting infliminf above.

DEFINITION 2. We say that B differentiates If if

$$\overline{D}(f, x) = D(f, x) = f(x)$$
 at almost every point $x \in \mathbb{R}^n$.

The purpose of this paper is to relate the following two properties of a differentiation basis:

(1) \mathscr{B} differentiates $\int f$ for all $f \in L^p_{loc}(\mathbf{R}^n)$,

(2) \mathscr{B} has the covering property V_a , 1/p+1/q=1.

For the particular case q=1, $p=\infty$ the equivalence of (1) and (2) is due to de Possel [7]. The implication $(2)\Rightarrow (1)$ is well known, and Hayes and Pauc [4] proved that if $\mathscr B$ differentiates $\int f$ for all $f\in L^p_{loc}(\mathbb R^n)$, then $\mathscr B$ has the covering property V_{q_1} for all $q_1< q$. In Theorem 1, we prove that for a basis $\mathscr B$ invariant by translations, the properties (1) and (2) are equivalent. For more detailed information about this problem see de Guzman [2] and [3].

B. Suppose that \mathscr{B} is a differentiation basis invariant by translations. (1) That is, there exists a family $\mathscr{B}(0)$ of bounded open sets containing the origin such that the fiber of \mathscr{B} at the point x is given by $\mathscr{B}(x) = \{x \in R, R \in \mathscr{B}(0)\}$. Then we have:

THEOREM 1. B differentiates $\int f$ for all $f \in L^p_{loc}(\mathbf{R}^n)$ if and only if it has the covering property V_q , 1/q+1/p=1, $1 \leq q < \infty$.

Proof. (1) \Rightarrow (2). Associated to the basis $\mathscr B$ we can consider the maximal function M_r (r>0), defined on locally integrable functions f by the formula

$$M_r f(x) = \sup_{\substack{R \in \mathscr{B}(x) \ ext{diameter }(R) \leqslant r}} rac{1}{|R|} \int\limits_R |f(y)| \, dy$$

The fact that \mathscr{B} is translation invariant and differentiates $\int f$ for $f \in L^p(\mathbb{R}^n)$, allows us to apply the theorems of Stein [9] and Sawyer [1], to conclude that there exists r > 0 such that the maximal function M_r is of weak type (p, p). Further generalizations of this argument have been obtained by B. Rubio [9] and I. Peral [6].

Given a measurable bounded set E and given $\varepsilon > 0$, we pick an open set Ω s.t. $\Omega > E$ and $|\Omega - E| \leqslant \varepsilon$. From now on, we shall consider only the elements of the Vitali covering of E which are contained in Ω and have diameter less than r. Obviously they constitute another Vitali covering of E; we shall denote by V that covering.

Since the measures of the elements of V are bounded, we can choose an element R_1 such that $|R_1| \ge \frac{1}{2} \sup\{|R|, R \in V\}$.

Suppose that we have chosen R_1, \ldots, R_k . Then we divide the family V in two classes:

- 1) Elements R s.t. $|R \cap \bigcup R_j| \leqslant \frac{1}{2} |R|$;
- 2) Elements R s.t. $\left|R \cap \bigcup_{j \leq k}^{j \leq k} R_j\right| > \frac{1}{2}|R|$.

We eliminate the second class and observe that the first class constitutes a Vitali covering of $E-\bigcup_{i\in I}R_i$.

 $|R_{k+1}| \geqslant \frac{1}{2} \sup\{|R|; R \text{ is in the first class}\}.$

By induction we get a sequence $\{R_k\}$ such that

$$|E_k|\geqslant rac{1}{2}|R_k|$$
 where $E_k=R_k-igcup_{j< k}R_j$

and furthermore $|R_k|$ is of the order of the biggest possible. From this, and using the fact that \mathscr{B} differentiates integrals of functions in L^p , it is easy to see that $|E-\bigcup R_k|=0$. The relation $|\bigcup R_k-E|\leqslant \varepsilon$ is an immediate consequence of the fact that $R_k\subset \Omega$ for every k.

Next we consider the linear operator

$$Tf(x) = \sum \frac{1}{|R_k|} \int_{R_k} f(y) \, dy \cdot \chi_{E_k}(x)$$

and its formal adjoint

$$Sf(x) = \sum \frac{1}{|R_k|} \int_{E_k} f(y) \, dy \cdot \chi_{R_k}(x).$$

Observe that $|Tf(x)| \leq M_r f(x)$ and $S(\chi_{\bigcup R_k}) \geq \frac{1}{2} \sum \chi_{R_k}$.

Since M_r is of weak type (p,p), we have that the family of operators like T (corresponding to different sequences $\{R_k\}$) is a uniformly bounded family of linear operators from $L^p(\mathbb{R}^n)$ to the Lorentz space $L(p,\infty)$. Therefore their duals T^* are uniformly bounded operators from $(L(p,\infty))^*$ to L^q . But since $L(p,\infty)$ is the dual Banach space of L(q,1) (1/p+1/q=1), it follows that the operators S are uniformly bounded from the Lorentz space L(q,1) to L^q . That is, there exists a constant C independent of E, ε and the sequence $\{R_k\}$, such that

$$\left\|\sum \chi_{R_k}\right\|_q \leqslant \frac{1}{2} C \left\|\chi_{\bigcup R_k}\right\|_{q,1}^* \leqslant C |E|^{1/q}.$$

(This is true because $\|\chi_L\|_{q,r}^{k} = |F|^{1/q}$ for every measurable set F, and every r, $1 \le r < \infty$, see [5].)

The implication $(2) \Rightarrow (1)$ is straightforward. Q.E.D.

Remark. The same linearization technique also allows us to prove the following two results:

1º If $\mathscr B$ differentiates integrals of functions in L^1 then it has a covering property of exponential type, i.e. there exists a constant C>0 such that given a $\mathscr B$ -Vitali covering of the set E, we can find a subcovering $\{R_k\}$ satisfying

$$\left\|\exp\left(C\sum\chi_{R_k}(x)\right)\right\|_1\leqslant |E|$$

⁽¹⁾ A Busemann-Feller lifferentation basis.

2º If \mathscr{B} differentiates integrals of functions in $L\log L$ (for example the basis of intervals in R^2), then there exists C>0 such that, under the same conditions of 1º, we have

$$\left\|\exp\left(C\sum\chi_{R_k}(x)\right)^{1/2}\right\|_1\leqslant |E|$$
 .

However, these two covering properties are far from being the best possible for the corresponding situations.

C. The halo problem. Let $\mathscr B$ be a differentiation basis in $\mathbf R^n$ (not necessarily invariant by translations) and let $\varphi(u)$ be its halo function, that is

$$arphi(u)=\sup\Big\{rac{1}{|A|}\,|\{x\colon\, M\chi_A(x)>u^{-1}\}|\,,\quad A ext{ bounded and with}$$
 positive measures $\Big\},\ u\geqslant 1\,.$

We can extend φ to $[0, \infty)$ by setting $\varphi(u) = u$ for $u \in [0, 1]$ (see [2]). Theorem 2 gives us an alternative proof of some results of Hayes and de Guzman.

THEOREM 2. Suppose that $\varphi(u) = O(u^p)$ as $u \to \infty$ for some $1 , then <math>\mathscr B$ differentiates integrals of functions in $L_{\text{loc}}(p, 1)$.

Proof. We shall show that $\mathscr B$ has the Vitali covering property $V_q(\text{weak}), \ 1/p+1/q=1$. That is, there exists C>0 such that given a bounded measurable set $E,\ \varepsilon>0$, and a $\mathscr B$ -Vitali covering of E, we can select a sequence $\{R_k\}$ satisfying $|\bigcup R_k \Delta E| \leqslant \varepsilon$ and

$$\left|\left\{x\colon \sum \chi_{R_k}(x)>\lambda\right\}\right|\leqslant C\frac{|E|}{\lambda^q} \text{for every }\lambda>0\,.$$

To see this we select a sequence $\{R_k\}$ as in Theorem 1 and we consider the linear operators T and T^* .

Then

$$\begin{split} |E_{\lambda}| &= \left|\left\{x\colon \sum \chi_{R_k}(x) > \lambda\right\}\right| \\ &\leqslant \frac{2}{\lambda} \int\limits_{E_{\lambda}} T^* \chi_E(x) dx = \frac{2}{\lambda} \int T \chi_{E_{\lambda}}(x) \chi_E(x) dx \\ &\leqslant \frac{2}{\lambda} \left\|\chi_E\right\|_{q,1} \|T \chi_{E_{\lambda}}\|_{p,\infty} \leqslant \frac{C^{1/a}}{\lambda} \left|E\right|^{1/a} |E_{\lambda}|^{1/p} \end{split}$$

and therefore $|E_{\lambda}| \leqslant C \frac{|E|}{\lambda^q}$.

(The same argument shows that T^* is a bounded linear operator from L(q, 1) to $L(q, \infty)$.)

The proof of the fact that V_q (weak) implies differentiation of integrals of functions in $L_{loc}(p,1)$ is straightforward. Q.E.D.

Corollary. If $\varphi(u) = O(u^1)$ then \mathscr{B} differentiates integrals of functions in $L(1 + \log^+ L)^1$.

Acknowledgment. I wish to thank B. Rubio for having brought these problems to my attention and C. Fefferman for his helpful remarks while I was writing this paper.

References

- [1] A. M. Garsia, Topics in Almost Everywhere Convergence, Chicago, 1970.
- [2] M. de Guzman, Differentiation of integrals in Rⁿ, Serie I, Cursos No. 6, Universidad de Madrid.
- [3] On the derivation and covering properties of a differentiation basis, Studia Math. 44 (1972), pp. 359-364.
- [4] C. Hayes and C. Y. Pauc, Full individual and class differentiation theorem in their relations to halo and Vitali properties, Canad. J. Math. 7 (1955), pp. 221-274.
- [5] R. Hunt, On L(p,q) spaces, L'Ens. Mathematique 12 (1966), pp. 249-276.
- [6] I. Peral, Nuevos Métodos en Diferenciacion, Tesis, Universidad de Madrid.
- [7] R. do Possel, Sur la derivation abstraite des fonctions d'ensemble, J. Math. Pures Appl. 15 (1936), pp. 391-409.
- [8] B. Rubio, Propiedades de derivatión y el operador maximal de Hardy-Littlewood, Tesis. Universidad de Madrid.
- [9] E. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), pp. 140-170.

PRINCETON UNIVERSITY

Received March 10, 1975 (972)