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‘Cx(T) has the DP property from Theorem 3 and Theorem 8 of [15]. If 7'
is locally compact, let T be the one-point compactification of T with oo
.denoting the point at infinity. Then Oy (T, X) is isometrically isomorphic
t0 the closed subspace I' of Ox(T™) consisting of those functions which
vanish at oco. But I' is complemented in Oy(T*) via the projection P:
J=f~—f(c0) and Ox(T*) has the DP property, so I', and hence Cy(T, X),
has the DP property ([10], 9.4.3).

Remark 5. Partial solutions to this problem were given in [8], [2],
and [16]; for the sealar version see [9], VI, 7.4.

It also follows from Theorem 4 that if Z is a complemented subspace
of a gpace O(8), then Z&®,X ([14], 7.1.1) has the DP property when X
has the DP property for Z&,X is then a complemented subspace of

(8)&.X = Cx(8). This suggests the conjecture that if X and ¥ have

the DP property, then X&,Y also has the DP property.
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On the Vitali covering properties of
a differentiation basis

by
ANTONIO CORDOBA (Princoton, N, J.)

Abstract. A functional analysis fochnique is introduced to relate differentiation
and covoring proporties of a basis,

A. Liet # be a Busemann-Feller differentiation basis in R™. That is,
for each we R™ we have & collection of bounded open sets #(x) containing
@, such that there exists at least one sequence {R,} = & (%) with diameter
(R)=0, and if weRed, then Re B(w).

Given & mesurable sef X in R", we way that V < # is a #-Vitale
covering of B it for every we B there is a sequence {B,} = V such that
Bye d#(w) for each k and R,-»x as k->oo.

DrFINIrIoN 1. The differentiation basis 4 has the covering property V,
if there exists a constant ¢ such that for every measurable bounded set Z,
every #-Vitali covering V of # and any > 0, one can select a sequence
{R,} = V with the properties:

) [E=URy =0, |UR,—B| <5, )

(i) || X zylly < € 1B ‘

Given a locally integrable function f, we define the upper derivative
D(ff, ) with respect to # as follows:

D(ff, ) -

< gup limsup —

yda
e ]ﬁ,\ jf"/ Y,

A

whoere the “sup” is tnken over all the sequences {R,} = % («) such that
By>w a8 h-»o0o. The lower derivative D([f, ) is defined by setting
inflimind above, '

DumrNitIon 2. We say thuat # differentiates [f if
B(ff,a) = D([F, 0) = f(o)

The purpose of this paper is to relate the following two properties
of a ditferentiation basis:

at almost every point xe R™
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(1) # diffeventiates [f for all fe L, (R,

(2) '# has the covering property V,, 1/p+1jg =1.

For the particular case ¢ =1, p = oo the equivalence of (1) and (2)
is due to de Possel [7]. The implication (2) = (1) is well known, and
Hayes and Pauc [4] proved that if # differentiates [f for all fe Lf, (R"),
then % has the covering property V, for all ¢, <g. In Theorem 1, we
prove that for a basis # invariant by translations, the properties (1)
and (2) are equnivalent. For more detailed information about this problem.
see de Gunzman [2] and [3].

B. Suppose that #is a differentiation basis invariant by translations.(*)
That is, there exists a family #(0) of bounded open sets containing the
origin such that the fiber of # at the point = is given by #(x) = {z< R,
Re #(0)}. Then we have:

THEOREM 1. & differentiates [f for all fe Li,,(R") if and onlu if it
has the covering property V,, llg-+1/p =1, 1< ¢ < oo,

Proof. (1) = (2). Associated to the basis # we can consider the

maximal function M, (r > 0), defined on locdlly integrable functions f

by the formula

1
M. f(w) = sup — f If()idy
 meaw  |B|
diameter (R)<r i

The fact that # is translation invariant and differentiates [f for
fe LP(R™), allows us to apply the theorems of Stein [9] and Sawyer [1],
to conclude that there exists # > 0 such that the maximal function I,
is of weak type (p,p). Further generalizations of thiz argument have
been obtained by B. Rubio [9] and L. Peral [6].

Given a measurable bounded set # and given e > 0, we pick an open
set 2 s.t. 2> F and |2 —F| < e From now on, we shall consider only
the ‘elements of the Vitali covering of E which are contained in Q and
have diameter less than ». Obviously they constitute another Vitali
covering of I; we shall denote by V that covering.

Since the measures of the elements of ¥ are bounded, we can choose
an element R, such that |R,| > jsup{|R|, ReV}.

Suppose that we have chosen Ry, ..., B,. Then we divide the family 7
in two classes:

1) Blements R s.5. [RnU R| < }IR|;

2) Blements R s.t. ]Rm U R > 1|R.

We eliminate the second clasq and observe that the first class consti-
tutes a Vitali covering of B — L<Jk R;.
FAS
(*) A Busemann-TFeller lifferentation basis.
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Now we choose ¥, 0 be an element of the first class such that
|Rppal = gsup{|R}; R is in the first class}.
By induction we get a sequence

Bl = 3Ry

{R;} such that

wheve W, = I,

-U R
J<le
and furthermore |RB,| is of the order of the biggest possible. From thig,
and using the fact that @ differentiates integraly of functions in L7, it
i easy to see that |B-—J Ryl == 0. The relation [\JR,-—-B| < ¢ ig an im-
mediate consequence of the fact that R, = Q for every F.
Next we consider the linear operator

2f(a) = D j F) iy 1, (@)
and ity formal adjoint

fay = 3-

) = X - ffy @y 2, ()

Observe that |Zf (@) < M,f(e) and S(xyn,) > 32 1n,-

Since M, is of wewk tiype (p, p), we have that the family of operators
like T (corresponding to different sequences {&y}) is a uniformly bounded
family of linear operators from .LP(R™) to the Lorentz space L(p, co).
Therefore their duals I'* are uniformly bounded operators from (L(p, oo))"‘
to L% But since Ii(p, oo) is the dual Banach space of L(g, 1) (1/p +1/q = 1),
it follows that the operators § are uniformly bounded from the Lorentz
space L(g,1) to 14 That is, there exists a constant ¢ independent of
B, ¢ and the sequence {R,}, such that

HZ chk”,l % 30 ”Xun,rﬂq < 011,

(Thix is true because [yl , = [ for every measurable set F, and
every ¢, 1= < oo, voo [B.) )

The implication (2) = (1) is straightforward. Q.1.D.

Remark. The same linearvization technique also allows us to prove
the following two vesultis: .

10 If @ differemtintos integrals of funetions in L' then it has a
covering property of exponential type, i.o. there exists a constant ¢ > 0
such that given a #-Vitali covering of the set , we can find a subcovering
{R;} satisfying

loxp (¢ ) 2 (@) < 121
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.!..
20 If # differentiates integrals of functions in ZlogL (for example
the basis of intervals in R?), then there exists O > 0 such that, under
the same conditions of 1°, we have

lexp (0.3 1, @)) ", < 1B

However, these two covering properties are far from being the best possible
for the corresponding situations.

C. The halo problem. Let # be a differentiation basis in R® (not

necessarily invariant by translations) and let (u) be its halo function,
that is

¢ (u) = sup {———l{w My (m)>u'}, A bounded and with

4]
positive measures), w=1.

We can extend ¢ to [0, co) by setting ¢(u) = u for ue [0,1] (see [2]).
Theorem 2. gives us 'an alternative proof of some results of Hayes and
de Guzman.

THEOREM 2. Suppose that ¢ (u) = O (uP) as u—oo for some 1 < p < oo,
then & differentiates integrals of functions in Ly, (p, 1).

Proof. We shall show that # has the Vitali covering ‘property
Vy(weak), 1/p+1/g =1. That is, there exists ¢ > 0 such that given
a bounded measurable set B, ¢> 0, and a #-Vitali covering of H, we
can gselect a sequence {R,} saﬁisfying UE,4E| < ¢ and

o: 3 tny (o) > e

—for every 1> 0.
To see this we select a sequence {R;} as in Theorem 1 and we consider
the linear operators 7' and T*.
Then

g o

2 2
<7 [T am(@)de = = [ T, (0) 15(0) do

&

oYe
Il VTl o < 5 1B ;2

1B

and therefore |H,| << -
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(The same argument shows that 1™ is & bounded linear operator
from L(g, 1) to (g, oo).)
"~ The proof of the fact that V, (weak) implies differentiation of integrals.
of functions in Ly (p, 1) is straightforward. Q.E.D.

JOROTLLARY. If ¢ (u) = O(ut) then @ differentiates integrals of f@mmons‘
in L(Ll-+logh Lyt

Acknowledgment. I wish to thank B. Rubio for having brought.
these problems to my attention and ¢\, Fefforman for his helptul remarks
while T was writing this paper.
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