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A weighted moxm. incquality for singular integrals

by
A, CORDOBA and ¢ FEFFERMAN (Princeton, N. J.)

Abstract. Lot 7' Do o singular integral in R?. Given s> 1, consider Ag(f)
= (((W”)*)”")*, whore g* denotes the Hardy-Littlewood maximal funetion of g.
The main result of this papor is the inequality

S 12/ @)Pg (@) dn < Opo [ 17@P dug @)dn, 1< p, s< o, g5 0.

This result is used in Proposition 2, to get an alternative proof of the theorem of Bene-
del, Calderén and Panzone about vector valued singular integrals.

) Lot f == Tf and let f* be the Hardy-Tittlewood maximal function
of f. Given any s > 1, we shall consider 4,(f) = (((1f])*)")*. The purpose
of this paper iy to prove the inequality

flf(w)v)w (w)dw~<\ Op,af lf(‘l’.)]p‘Aﬂ(w> (W)dw

where p > 1. and the constant 0, , depends only upon p and s. This esti-
mate iy, of course, o possible formulation of the general principle of the
Calderén-Zygmund decomposition, that is, that tlie maximal function
controls the Hilbert transform. It turns out that this and similar in-
equalities can be used in order to reduce the study of some multipliers
to the study of corresponding maximal functions (see [2], [3]). Proposition
2 gives us another application, namely an alternative proof of the results
of Benedek, (alderén and Panzone about vector-valued singular integrals
[1]. In this connection see also Ierz [67] and Herz and Riviere [7].

Throughout this paper ¢ will denote a constant, not necessarily
the same at each occurrence and |#| will denote the Lebesgue measure
of & wot .

Suppose that 7' is a singular integral in R", i.e. suppose that K is
a locally integrable function in R™ such that: R

(a) The Fourier transtorm of I iy essentially bounded: |K ()] < B.

(b) K i of clags ¢ outside of the origin and |VE(#)| < Blo|™"

Let;
CIf () == PV, f I(w—y)fly)dy for integrable functions f.
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PROPORITION 1. Given any p, § > 1 there exists a constant C, , depem'lmg
only wpon p, s and B such that

(1) [ 1Tf @)1 0 (@) 35 < Gy, [ 1f(@)|" 4s(w) (a)do
- for every locally integrable o >0 and every fe U LAR"M.
l<q<oo

Proof. (1) (a) Given a locally integrable function f et f* Dbe defined
by (Fetferman—Stein [5]):

[¥(@) = sup-ae flf ¥) —foldy

where @ is a cube and f, =

IQI J flerde.
We have that (Tf)* (2) < O,[(F™)* (&)]™ with C,, independent of f,
1 < Pj_ < 00,

To see this, let @ be a cube containing the point # and denote by Q*
the result of expanding @ by a factor of two. Let f = f;+f, where f, =f
in Q* and f, = 0 elsewhere; therefore, If = If, +If,. Now

‘Q[flel 'dy<(\m flTﬁ )“

<01y [irto ) " <310, (17 f'”)'md"’)

<20, L0 @)™

21

Thus

—j-.— _ i 1/331
7 Qf \Tf.(y) — Tfigldy < Cp, L(IF )

On the other hand,

Ifa(y) —Thy = iglj(sz(J — Tfu(2)) e

- W@fdz{ffg(t) [E(y—1) -zc(;—mcu}.

() In this proof we shall assume that Ag(f) is defined as before but using the
dyadic Hardy—Liftlewood-maximal function f*. By a cube @ we always mean a dyadic
one. The result for the ordinary maximal function follows immediately if we show
(1) for the dyadic cage.

icm

we get

(@) [1F (@) o @)dn <
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From this formula, using the fact that f, vanishes in @* and

K (y —1)—K(z—1)| < Bly—2l e~
|Tfa(y) — Tfo,] < 2Bf*(#) for yeQ.
Thus

1 %k
T, ! \Tf,(y) — Tfag|dy < 2Bf* (2)

Combining this with the inequality for f,, we get

(TF)*(@) < Oy [(IFI™* (@)™,
with 0, depending on p, and B.

(b) By the above result (with p, < p) it is obvious that in order to
prove the proposition, it is enough to show the estimate

Cp,e [ 1F# (@) P[(°)* (@)1 des

because then N
[1Tf(@)7 0 (@)do < O, [ 1T (@) [P [(0°)* (@)]Fdo
< Oppge [ [ @)1 (o) (0) o do
< Oy [ 1F(@)17 4y (@) (2)do |

by using Lemma 1 of Fefferman—Stein [4].

To prove (2) We need first to show that the measure du = V (x)dw
where V(@) = [(%)*]"*(») satisfies Muckenhoupt’s condition A,. That
is, for every &> 0 we can find 6 > 0 such that if 7 = @ and |E[/|Q| < 4,
then u(B)/u(@) <

Let l<r<s a,nd suppose that the following estimate is true:

{8) (.‘I%‘I“J‘ ‘V’(w)dw) r».t Gj,, <|¢12| Qf V(m)dw) for every cube @,
Then

IQI [ "’“(’i@T)]’W(lm f 7@ d”)

|\ L 1 1
— | V(z)d — e = L
a) iQ‘IQf @) da, =t

< 0(
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Therefore
w(E) ( 12| )”"
w@ <% )

That is x satisfies the condition A.

Now, to show (3), let @ be a cube and modlty the funetion V in the
following way: Let Vl( ) = ((0*)* (@))"". Where g* is the dyadic maximal
function of ¢ but with respect to dyadic subeubes of @.

Then

i sl = e

f s 8\ -+ 1/e
<0(i j o' (@) < 0, it [(0*)* (@)

1
< G,rysméf Vl(w)dw
‘With this estimate (3) follows direeﬂy from the fact that
E 9
Le.

(¢) We are now in position to use the technique of [5], Part III, to
obtain an inequality of the form:

V(x) =sup(V,(®), constant) for

plo: ¥ (@) > ap<u {m (@) > —}+ Z /z{m f* (@) > 2.:“}

with C independent of 4. (In fact, [5] proves the result when y = Lebesgue
meagtre, and the only property of Lebesgue measure used there is (A).)
. This inequality implies Proposition 1. Q.E.D.

Let {K;};_1,,... be a collection of kernels like the one in Proposition 1
with common bounds. That is:

K, (#)| < B, |VE;(@)] <Bla|™" for every j.

Given p, r > 1, consider the space
2@y = {1 ={ [ (D1
R

ProrostTIoN 2. The operator T:LP(I)—L*(I") defined by T(f)) =
P.V.(E;xf;) is bounded (1 <p < o0, 1 <7 < o0).

Proof. (a) Consider first the case p > r. Since the result for p =~
is immediate, we can assume p > r. Let ¢ be defined by the formula 1/¢+

D" o)’ < oo}.

icm°®
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+7[p =1; then:

f(Z 1T5(f;) (w)‘r).??/f dw = sup
RY

lolg=1 ‘4

[ [( 3128 @) o (@) @]

< C,, sup [fZl]”](m WA ()

(w) dar |
llellg=

< O’Mf(zp |f¢(w)l')p/rdml]:ﬁ£1 [fAs((u)“(m)]”/m'..
But taking s < ¢ we have that
[ 4y(w)(@de = [ () *)1/8* ()|2dw
<0, [ [(e*) ]""’dcn < Oge [ 0%(@)dn < Oy,

as we wished to ghow.

(b) In the case p <r we can use a duality argument because the
dual of 7' is essentially equal to T, and if p < rthen p’ > ' where 1/p 4
41/p =1, Lr+4+1/r =1. QRB.D.

Added in proof: R. Coifman has kindly pointed out to us that V(z) = [(w®)*s(a)
also satisfies the condition A;. This fact can be used toimprove Proposition 1.
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