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Theorems on lacunary sets,
especially »-Sidon sets

by
G. W. JOHNSON (Lincoln, Nebraska)

Abstract..Let @ be a compact abelian group with dual group I' and suppose that
E = I. Several known results say that certain types of lacunary sets B can contain
only a restricted part of certain kinds of sets. (An early example of such a theorem
says that if I' = Z and B is a A(p) set, then E cannot contain arbitrarily long arith-
metic progressions.) We give a general theorem from which these results as well as
some new results follow as corollaries. A corollary of particular interest gives new
information on p-Sidon sets and is related to the problem of distinguishing the various
p-Sidon classes.

1. Introduction and terminology. Let G be a compact abelian group

" with diserete dual group I'. M(G) denotes as usual the measure algebra

on G ([18], p. 265). It B < I', My (@) will consist of those 4 in M(G) such
that z is supported by E. Similar notation will be used for other spaces.
In particular, T' denotes the class of complex-valued trigonometric poly-
nomials on G and 7'z denotes those f in 7' with f supported by E.

E < I'is called p-Sidon (1 <'p < 2) if there is a constant B = B(X, p)
such that for each f in 7'y ]

(11) . Nl < Blif o

We denote the class of p-Sidon sets by &,. Clearly if 1 <p, < p,< 2,
&py & Fpy- p-Sidon sebs have recently been extensively studied by Edwards
and Ross [5]; see also [1], [9], [11]. When p is definitely 1, we follow
the usual terminology and call ¥ a Sidon set rather than a 1-Sidon set.
Sidon sets have been extensively studied for many years.

Let 0 <p < oo. F is called a A(p) set if there exists ¢ in (0, p) and
a constant B = B(H, p, ¢) such that for each f in T'p

(1.2) I 1l < Bllfllge

A(p) sets were introduced and studied by Rudin [14] in the case I' = Z.
Later results on A(p) sets particularly relevant to us are in [4] and [5].
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There are several theorems in the literature saying that Sidon sets
or A(p) sets or p-Sidon sets can contain only a restricted part of certain
kinds of sets. We establish a general theorem out of which these results
as well as some new results of the same nature can be obtained as corol-
laries. The development shows quite clearly what these results have
in common and what separate congsiderations are necessary in the dif-
ferent cases. It also indicates some circumstances sufficient for proving
further theorems of the same type. '

Next we describe three of the known results which come from our
general theorem. Throughout this paper »(E) will denote the cardinality
of a subset B of I'. .

Let M >1 be a real number. A family § of non-void finite subsets
of I" will be called a test family of order M ([4], p. 790) if

(1.3) Sup {3 (B + 0 — B)[y(®): Pef) < M.

If I' = Z, the family of all finite arithmetic progressions is an example
of a test family of order 3. For any abelian group I, the family of all
finite subgroups is a test family of order 1. For more examples and some
discussion of test families, see [4], pp. 790-792.

"One of the known results ([4], p. 790) that we obtain says that if
EcIis a A(p) set (p>2) with associated constant B = B(E, p, 2)
and if § is a test family of order M, then for every @ in §,~

(1.4) v(Bo D) < B2 My (D)2,

Another known result ([5], 2.6 Corollary) that we obtain says that
if B is a p-Sidon set and § is as above, then for every @ inr §, ..

x5 (B0 0) < BU " (logy (D))",

where B, &' are fixed constants to be described later. When p =1, we
will see that @ = 2 and the result just given includes the result known
for Sidon sets ([4], p. 791). i

The other known result that we mention here is the following: Let
n > 2 be a positive integer. Suppose E < I' is p-Sidon for some 1< p
< 2n/(n+1). Then there exists a positive integer K such that if 4, ..., 4,
are n sets satisfying
(1) vy =%k, d=1,...,n,

() A;+...+4,cH,
then & < K. For n = 2, this result is in [5], 2.7 Corollary; for general n, .
see [11], Lemma 1.

‘We finish this introduction by stating the new result obtainable from »
our theorem which seems most interesting to us and then discussing very
briefly its relationship to the theorem on sums of sets immediately .above -
and to the problem of distinguishing the p-Sidon classes; the lagt section .

(1.6)
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of this paper contains a more detailed discussion of these relationships
and some related combinatorial questions.

TaroREM. Let B be in &, and let 0 < 8<1. Suppose that we have
 positive inieger n =2 and 1< s < n such that 1 < p < 2s/(s+1). Under
these hypotheses there exisis a positive integer K such that if Ay, .o, 4
are n sets satisfying

B »(4) =k, i=1,...,a,
(i) »[(As+ ... +4,) " E]> 65,
(L7) (i) A;nd; =g, 57, '

n

3 nk -
(iv) 2 87 = 0 with §;e{—1, 0,1} and 4 U ... UA, = {y,, ...
=1

woes Yniy Implies 8; = ... = 8, =0,
then k< K. [This result will appear as part (1) of Corollary 6 in Section 2.]
Tt is shown in [11] that there exist » infinite sets 4, yeaey A, such -

that 4.+ ... + 4, snjtne1r On the other hand, by the theorem on
sums of n sets discussed above (circa (1.6)), 4, + ... +A4,¢F, for 1< p
<2n/(n+1)..It follows that if 1< p;< 2n/(n+1) < pp< 2 for some n
in {2, 3, 4, ...}, then Fpy & Lp,- It seems likely that py § &5, Whenever
1< P <Py<2, but this has not been shown. For example, if 1< p,
< P2 < 4/3, no examples are known of p,-Sidon sets that are not p,-Sidon.
However, sets of the type suggested by our new result above seem like
reasonable possibilities for members of &p, N ¥ p, 5ince the theorem involves
the numbers 2s/(s+1) for any s > 1 and not just the values {2,3,4,...}
encountered in the earlier theorem [11] on sums of n- sets.

2. The general theorem and its corollaries. Let T+ denote the trig-
onometric polynomials with non-negative coefficients. Given a number
1> 1,1 and U will always be related by the equation l+1/1 = 1.

TaBoREM. Let B be a subset of I' and suppose that there ewist numbers
2<r< o0, 1<li< oo and 0 =C(H,r,1)>0 such that if g = Dy s
a finite sum of characters from B, then ’

(2.1) lgth < Clg1l; ‘
Then given @, a finite subset of I'yy >0 and f in T+ satisfying (a) f'> 7
on @ and (b) |fll, < 1, we have ‘

(2:2) V(BN @) < (Cfy) IF 5.

Proof. Let B < I' satisfy the hypothesis. Let appropriate D, n
and f be given. Let g = 3. Then :

Eng ‘.

(23) pEN®)< Y f= YFi=YFi=(fxq)0) <Ifllgh,

En® Ene iy
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where the last inequality follows from Hélder’s inequality. Now 1 < r' < 2
and so we apply an interpolation inequality ([10], Theorem 13.19) to ||l

obtaining
11l < IF I F 187 < IF I
Combining this with (2.3) and the hypothesis of the theorem, we obtain
w(EAG) < If 37 O (p(BAB)H.

(2.2) now follows.

Remark. To obtain useful corollaries from the general theorem above,
one of course needs a hypothesis on B which insures an inequality of th’e
form (2.1), but also one must have appropriate @, # and f such that | T

< y(P).
The first corollary we give is Rudin’s result [14], pp- 213-214, on
‘ A(p) sets and arithmetic progressions. This result is a special case of
Corollary 2 below as is known ([4], p. 791). We include it because it gives
a good illustration of how to apply the general theorem in a concrete
case.
COROLLARY 1. Let I' = Z, the group of integers, and suppose that B = Z
. 45 ‘o A(p) set for some p>2 with appropriate constant B = B(H,p,2)
- s in (1.2). Then for any N-term arithmetic progression @, we have

»END) < 4B NP,

Proof. Let & = {a-+b,a+2b,...,a-+Nb} be any N-term arith-
metic progression. To apply the theorem, take r = p, | =2, 0 = B and f ()
= exp (im@) K (be), where m equals bN [2 +a if ¥ is even and b (:N—l—ll)/Z +
4a it N is odd and where Ky(#) = 2 (L—|n|/N)exp (inx) is the

Inj<N
Fejér kernel. Note that when I =2 the right-hand side of (2.1) equals

Cliglla- : .
) Now |fll, =1 and F3>1/2 on @ and so, applying (2.2),

»(BOB) < (2BPIfISP = 4B* | K yl”
= 4BY[(2N?41)[3N TP < 4 B* NP
The next corollary is a result due to Edwards, Hewitt and Ross [4]
Pp. 790-791.
COROLLARY 2. Let B < I' be o A(p) set for some p > 2 with appro-

_priate constant B = B(H, p, 2) as in (1.2). Let § be a test family of order M.
Then for every @ in & we have .

(2.4) »(EOP) < BM (D))

icm
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Proof. Let @ be in § Take r =p, | =2 and ¢ = B. In this case f
is obtained by applying a theorem from Rudin [13], p. 48, on local units
in the transform space. Interpreted in the present setting it insures the
existence of f, in T such that 0 < f, <1,f, =1 on &, f, = 0 off O+ S— &
and [folly < [#(® — @) J»(P)]2 < M*2. Take f = M~'2f,. Using the assump-
tion that @ is in § and applying the theorem we obtain

W(BND) < (BMWR|FIHP = BM (M2 |47
< B MM (v(D+ & — D)?
< BMM™PY2 ()P = B M(v(®))*».

For the remaining corollaries, it will be convenient to introduce a class
of sets which we will denote by 7. Given 1< p < 2, let a = 2p/(3p—2).
Note that as p varies from 1 to 2, a varies from 2 to 1. Also1/p+1/a = 3/2.
Now let p in [1,2) be fixed. # < I'is said to be in 7, if there exists a con-
stant B = B(E, p) such that if g = 3y is a finite sum of characters from H,
then for all 2<7 < oo,

(2.5) lgll, < Br* 1§l

The class 7, may be worthy of study in itself but we use it essentially
just as a notational convenience. However, the following lemma will
be useful.

LeMMA 1. 7, is closed under finite unions.

Proof. It suffices to show that E, F in 7, implies FUF is in 7.
Further, since subsets of sets in 7, are clearly in 77, we may consider
the case where F and F are disjoint. Let By and By be appropriate constants
for B and F respectively and let B, = max(Byg, By). Now all the [,-norms
are equivalent on R* and so there exists a constant D such that [f,]+
+Ita] < DI+ [ta[*]* for all (4,1,) in R2 ‘

. Now let g = 3% be a finite sum of characters from EuF, We may
write g = ¢,-+¢,, where g, is a finite sum of characters from ¥ and g,
is a finite sum of characters from F. Then for any 2 <r < oo '

llglte = llgs + galle < gl + 9all, <Bar™® 1G4l -+ B 1Falla < Bor™* [lla + 1G21la]
< DB,r'# [lg.le+ ”52”311/(1 = DB,r'* (1§ _[_52”2]1/«1 = DBy g, -

The next lemma will also be useful; it identifies some types of sets
that are contained in J7,,. Parts (1) and (3) of the lemma are essentially
contained in Edwards and Ross [5]; part (2) follows from Lemma 1.

LeMMA 2. Let B < I'. (1) If E is a p-Sidon set, then E is in . (2)
If B is a finite union of p-Sidon sets, then T isin I ,. (3) Suppose that B
is a A(q) set for all 1< q<< co. For ¢> 2, let A(q) = A(E, q,2) denote
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the smallest number A(q) such that ||flly< A lf |l for all f in Ty. Suppose
funther that A (g) = 0 (¢*?) for some positive number d, where max (1, 2d/(d+1))
<p<2 Then Bisin T,.

Proof. (1) Theorem 2.4 (i) of [5] assures us that there exists a con-
stant B such that if 4 is in Mz(¢) with z in 1% then g is in L"(G) and
(2.6) lally < Br® |l
Hence &, = 7,

(2) follows immediately from (1) and Lemma 1.
(3) In the first part of the proof of Theorem 3.3 (i) [6] Edwards and

Ross show that (2.6) holds under the hypotheses of (3). It follows that B

is in T

Remark. In Corollaries 3, 5, 7, 9 below results will be- established
for 7,. In each case Lemma 2 will tell us that the conclusions of these
corollaries hold for the three types of sets described in Lemma. 2. When
p =1, (2) of Lemma 2 is already contained in (1) since Drury’s theorem
[3] insures that &, is closed under finite unions. However, for 1 < p < 2,
it is not known if &, is closed under finite unions.

COROLLARY 3. Suppose that B is in T, and that § is a test family- of
order M. Then if ® is an element of § with »(P) > 3, we have

2.7) »(BOD) < (26 B M) (log» (D))",

Proof. Let ® be in § with »(®)>3. Take r = 2logy(®), | = a,
O = Br'”® and choose f just as in the proof of Corollary 2: Applying the
theorem we obtain

»(BO®B) < (Broaf ) | fl3e

< ( )a[21,a le-a/r( (D + D— qj))a‘/r
<( )alv a/zM—a/rMn/r( ( ))a'/r
( “’22“I2(logv(¢))“/2 a’f2

= (26 B*M)*" (logy(®))*".

Corollary 3 and Lemma 2 yield immediately the following corollary.

Parts (1) and (3) are due to Edwards and Ross [5]; Corollary 2.6, Theorem
3 (i) (the last assertion).

COROLLARY 4. Let B < I'. Suppose that the hypotheses of either (1) or
(2) or (3) of Lemma 2 holds. Then if § is a test family of order M and if ®
8 an element of § with »(D) = 3, we have (2.7) holding..

Next we give a corollary from which the theorem stated-formally
in the introduction will follow as one part of a further corollary.

COROLLARY b. Let E be in T, and let 0 < 6 < 1. Suppose that we have
a positive integer n =2 and 1 < s << n such that 1 < p < 2s/(s-+1). Under

icm
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these hypotheses, there em’sts a positive integer K such that if A4, ...
are n sets satisfying (1)—(iv) of (1.7), then k< K.

Proof. Suppose there is no bound on the k’s that can appear in
(i)—(iv) of (1.7). Let one such % be fixed for now and let 4,,..., 4, be
appropriate sets. Let @ be a subset of (4,4 ... +4,)NE such that ok°
< »(P) < 6k°+1. To apply the general theorem taker = #; 1 = a, ¢ = BE"?
and take f to be the following Riesz polynomial:

7'An

nk

= [ +1/2(r:(@) + 7:(@))-

i=1
(iii) and (iv) of (1.7) and standard arghments with Riesz polynomials
yield the following {ae’cs: =0, Ifl —f 0) =1, [I]f[lz< fllee = 2"",
and f is in 7% with f>2" on 4,4+ ... +4, > ®. Now we apply the
general theorem obtaining

8k < (@) < (_Bkllz2n)a’(2nk)2a’/k A (zanB)u,'ka’/z

Since this mequahty holds for unboundedly large k’s we must have s < a’ /2.
But ¢ =2p/(2—p) and so we get 2s/(s+1) < p which contradicts our
assumption.

Corollary 5 and Lemma 2 now yield immediately the following corol-

(2.8) f(@)

lary. .
COoROLLARY 6. Let .E. = I'.. Suppose thet the hypotheses of either (1)
or (2) or (3) of Lemma 2 hold. Let 0 < 6 < 1. Suppose that we have a positive
integer n=2 and 1 <s<m such that 1<<p<2s/(s+1). Under these
hypotheses, there ewists o positive integer K such that if Ay, ..., A, are n
sets satisfying (i)—(iv) of (1.7), then kb < K.

Remark. In the case where I' = Z, one can alternately prove Corol-
lary 6 (1) by applying Kahane’s powerful theorem [12], Theorem 4,.p. 57.
One first uses Kahane’s Theorem 4 to prove a p-Sidon version of [12],
Theorem 5, p. 58, and then applies this result to Corollary 6 (1). Similar
remarks hold for Corollaries 8 (1) and 10 (1) further on.

COROLLARY 7. Let B be in ,. Let n =2 be a positive inleger such
that 1 < p < 2n/(n+1). Under these hypotheses, there exists a positive inte-
ger K such that if. A4, ..., A, are n sets satisfying (1.6), then &k < K.

Proof. Taking s =n and 6 =1 we apply Corollary 5 to obtain
a positive integer K, such that if €, ..., C, are n sets satisfying: (i)—(iv)
of (1.7) (except that, for notational convenience, use %, here instead of k)
then &, < K, We claim that K = 3%~ is such that if 4,,..., 4,876 n
sets satistying (1.6), then %< K. Suppose, on the contrary, that there
exist n sets Ay, ..., 4, satisfying (1.6) with &> K. We. finish the proof
by constructing sets Cy, ..., C, satistying (i)—~(iv) of (1.7) with »(C,) = ...

L=9(0,) =K, ’
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Let y; 50 be in 4,. We inductively pick K, elements each from
A,...,4, as follows. Suppose 1 <t < Kyn and vy, ..., y; satisfy

(2.9) yied; it (-1E,<I<jE, (je{l,...,n})
and
-1
(210)  yéDuy ={ D0yt (81,40, G)e{—1, 0, 1)
i=1

Then there is a y,, satistying (2.9) and (2.10) since »(D;) < 8' < »(4,)
I<ji<n). Let 0; ={y;: (-1 E,<I<jK}. It follows from (2.10)
that for (8;,..., dys) in {—1,0, 1},

Kon

Zaﬂ’i =0

i=1

(2.11) if and only if 6, =... = 6K0n = 0.

In particular note that if ¢ # j, then y; is not in {0, y;, —y,}. To complete
the proof we just need to show that (ii) of (1.7) is satisfied (with 1, » and K,
playing the roles of d, s and %, respectively). Since C;+ ... +0, < 4,+ ...
... +4, = B, we only need to show that »(Cy+ ... +0,) = Kp If not,

there must be elements (a,,..., a,) = (by,...,b,) in O;X ... x0O, such
that
n n Egn
0= ﬁ“j_zb:/ =Z ;s
1 1 1

for some (8y, ..., dgy) 0 in {—1,0, 175", which is impossible.

The following corollary is an immediate consequence of Corollary 7
and Lemma 2. Part (1) is in BEdwards and Ross ([5], Corollary 2.7) for
n = 2 and in Johnson and Woodward ([11], Lemma 1) for n > 2. Part (3)
is in Edwards and Ross ([5], Theorem 3.3 (ii)) for n = 2.

CorOLLARY 8. Let B = I Suppose that the hypotheses of either (1)
or (2) or (3) of Lemma 2 hold. Let n = 2 be a positive integer such that 1 < p
< 2nf(n+1). Under these hypotheses, there exists o positive integer K such
that if Ay, ..., A, are n sets satisfying (1.6), then k < K.

As discussed briefly in the introduction, (1) of Corollary 6 provides
candidates for members of Fpy L pyy Where 1< p; <p, < 2. In fact,
as we will discuss in Section 3, (1) of Corollary 6 provides candidates for

.S’m\ U & The following is a related question. Suppose 1< p, < 2
I<p<vy

is fixed. Certainly &p, = () &y Is the containment proper? Part (1)

P1<p<2
of the second corollary to follow provides reasonable candidates for mem-
bers of () F\Fp,.
pr<p<2

COROLLARY 9. Let B bein T, and let 0 < 6 < 1. Suppose that we have

icm
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a positive integer n =2 and 1< s < n such that 1< p < 2s/(s+1). Under
these hypotheses, there emists a positive integer K such that if Ay, ..., A,
are n sets satisfying (i), (iil), and (iv) of (1.7) along with

(2.12) (i)’ v[(dy+ ... +4,)nE]> skflogk,
then k< K.

Proof. The proof proceeds just like the proof of Corollary 5 except
that the extra logk factor in (i)’ allows one to conclude that s < a’/2 (rather
than s < a’/2) and hence 2s/(s+1) < p, but this contradicts our present
assumption.

Corollary 9 and Lemma 2 yield immediately the following cor#llary.

COROLLARY 10. Let E < I'. Suppose that the hypotheses of either (1)
or (2) or (3) of Lemma 2 hold. Let 0 < & < 1. Suppose that we have a positive
integer n=>2 and 1< s<mn such that 1< p<<2s/(s+1). Under these
LA, are n
sels satisfying (i), (iii) and (iv) of (1.7) along with (i)’ of (2.12), then k < K.

3. Corollary 6 (1) and the problem of distinguishing p-Sidon classes.
As we observed earlier, if 1< p; < p,< 2, &y, & &p,- A basic problem
is to determine whether this containment is proper. For 1 < s < oo, let
(3.1) Ry = FLasfs 1\ U p-

1<p<2s{(s+1)

Corollary 8 (1) suggests candidates for members of Z%,, where 7 > 2,
is a positive integer. Specifically, if ome can find a set B in Fyup,,q
such that for unboundedly large % there are sets 4, ..., 4, satisfying (i)
and (ii) of (1.6), then, by Corollary 8 (1), F is in %, . Indeed, for each
n 2= 2, such sets have been found ([5] and [11]).

In similar fashion; Corollary 6 (1) suggests candidates for members
of Z; (1 <s< oo). If one could find a set B in %y, such that for
unboundedly large % there are sets 4,,...,.4,, saﬁisfyingv(i)-(iv) of (1.7),
then it would follow frem Corollary 6 (1) that ¥ is in %,. We describe
below a construction which for # = 2 ‘and s = 3/2 produces a class of
sets among which the desired set F in #,, may possibly be found, perhaps
after some modification of the construction. The author has not yet been
able to prove that any such set F is‘actually in &g;s. We also indicate
briefly below how the construction may be modified for some other choices
of n and s. The question of which # and s are possible in the construc-
tion reduces to an essentially combinatorial question. While the dis-
cussion to follow raises more questions than it answers, the questions
and a few of the facts brought out seem quite interesting.

‘We need the conecept of a “dissociate” set. A < I'is said to be disso-

N
ciate if 3 6;7; = 0 with 6;in {—2, —1,0,1,2}andy;in 4 (4 =1, ..., N)

=l
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implies 6, = ... 0. The set {8':j=1,2,...} is an example
of a dissociate subset of Z.

Let A be a countably infinite dissociate subset of I' and partition 4
into two infinite subséts 4, and 4,. B will turn out to be a subset of A; +4,.
(We remark that 4, A, itself is known to be in &, ([6] and [10]).) The
map o: Ay X A,—>A;+A, defined by g((ay, as)) = a,+a, is onto and,
since 4,u .4, is dissociate, it is also one-to-one. For convenience we index
each of A; and A, using the positive integers. Let .4, consist of the.first
k(1) = 22 4+2+1 elements of 4, and let A,, consist of the first &(1)
elements of 4,. Having picked k(j) = (2/)2+27+1 elements for A,
and #,; out of A, and A4,, respectively, let 4, ,,; and 4, ., consist of
the next k(j+1) = (2124277 1 elements from A, and A4,, respecti-
vely. In this manner A, ; and A, ; are inductively defined forj =1,2,...
Note that since g is one-to-one, v(Alfl—A.2 2 =v(Ayx Ay ;) = [k({f)T

B will turn out to be a subset of U 4,;+4,;). Now by OOrolla,ry 6 (1)

=6N::

and the properties of the constructlon so far, if ¥ is chosen so that »[(4; ;-

44, )N E] > k(51" we will have B¢ U &p. Since o: Ay;X 4y~
C1<p<6/s
- A, j+ A, ; is one-to-one, instead of thinking of choosing at least [%(j)]*?

elements for E from 4, ;4 4, ;, we may think of choosing elements from
4, ;% 4,;. There is of course no problem in choosing that many elements
from A4, ;% 4,;. However, if ¥ is to have any chance of being in g4,
we must make sure that the subsets D; of 4, ;X 4,; are chosen so that

“squares” D’ x.D" from
F=1

A, XA, (D'x D" is a “square” from A4; x4, if D' <« 4,, D" < 4, and
v(Dy) = »(Dy)); for, if D did contain arbitrarily large squares from 4, x 4,,
then Corollary 8 (1) would imply that ¥ is in #, and, in particular, E is
not in &g;. It is possible to choose D; so that »(D;) > [k(§)1*® but D
does not contain arbitrarily large squares; in fact, it can be done so that .D
containg no 2 by 2 squares. However, this fact and related facts and
questions appear to lie deeper than one might at first think.

The key to the choice of the D/’s is the following combinatorial the-
orem guaranteeing the existence of finite projective planes of unboundedly
large orders ([15], Theorem 4.2, p. 93):.

Let m = ¢% where ¢ is a prime and o is a positive mteﬂcr Then
there exists a finite projective plane I7 of order m. (We will use the case
¢ =2)

It is known ([15], Theorem 3.2, p. 91) that the projective plane of

-
D =) D; does not contain arbitrarily large

icm

order m has m®+4-m <41 points and m?--m +1 lines and that each line con- .

taing exactly m <1 points. One may associate an m2+-m -+ 1 square inci-
dence matrix (0y) with such a projective plane by letting 0y =1 or 0
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according as the jth point is on the ith line or not. (m2+m+1)(m+1)
1’s will appear in the incidence matrix. Further one of the axioms for
projective planes ([15], p. 89) insures that any two distinet points are
on exactly one line. Translating.this in terms of our incidence matrix,
we see that the incidence matrix contains no 2 by 2 submatrix (or “square”)
consisting entirely of 1’s.

Now A4;j;%x4,; is in oneto-one correspondence with the incidence
matrix of the projective plane of order 2/. We choose for D; the members
of A;;x A,; which are associated via this correspondence with the 1’s
of the incidence -matrix. This completes the construction.

In summary, we formed ¥ by choosing [2/4+1][(2)?++2/4-1]
> [k(j)]*® elements out. of each of 4;;+4,; (1<j< o). The choice
of elements was made using the incidence matrix of the projective plane
of order 27 and the fact that this incidence matrix is in one-to-one corres-
pondence with A, ; X 4, ; which, in turn, is in one-to-one correspondence
with A,;+A4,;.

Remarks. 1. The above construction was doneforn = 2 and s = 3 /2.
For 1 < s<<3/2 one may simply use-the same constriction but pick
fewer points.

2. What about the case n =2 and 3/2 < s < 2? Results of W. G.
Brown [2] imply that for unboundedly large %k there are finite graphs
with %. vertices and with greater than or equal to }%*® edges which con-
tain no “Thomsen subgraph”. The incidence matrix of a graph with %
vertices is a k by % 0-1 matrix. It is easy to show that if a graph contains
no Thomsen subgraph then its incidence matrix contains no 3 by 3 sub-
matrix (or “square”) of 1’s. Hence for n = 2 and s = 5/3 the earlier const-
ruction can be modified using the incidence matrices from Brown’s graphs
ingtead of the incidence matrices of the projective plane. For # = 2 and
5/3 < 8 < 2 it seems likely that appropriate 0—L matrices exist to allow
one to carry out a construction similar to the earlier one, but the author
has not been able to show this. Specifically, the problem is the following:
Given 5/3 < s < 2, does there exist a positive integer ¢ and a § > 0:.such
that there exists an infinite number of positive integers & for which-there
are k by k 0-1 matrices containing greater than or equal to %* 1’5’ but
containing no ¢ by C submaftrix consisting entirely of 1’s? This problem
is related: to, but seems simpler than, the problem of Zarankiewice ([7]
and.[8]), an unsolved problem of some standing in combinatories. The
above problem and the problem of Zarankiewicz have natural exten-
tions to the case n > 2 (..

(*) The problem stated here has been solved in [6], p. 60. See also the thesis
of 8. Roman,. University ef:Washington, 1975.
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3. When > 2 and s = n—1/2, the results of the earlier construc-
tion can be “stacked” to produce a suitable set  H. Specifically, in the
earlier construction partition A into % infinite subsets 4,, ..., 4,. For
each j, choose 4, ..., 4, just as 4,; and 4,; were chosen before.

o«
Pick D; from A,;x 4,; a3 above but then let D = (J [D; X 4;;X ...
' =1

e XAy 1. We have #(D) > [k()]*™ but D contains no 2X2xX ... X2
hypercube.

4. Let B be the set that comes out of the initial construction above.
The missing link is a proof that E (or some modified version of Z) is in &s.
The proofs that worked in the analogous place in the earlier setting ([5]
and [11]) seem to fail miserably here. On the brighter gide, the projective
planes that are the key to the development are constructively given [15]
so that one knows, in some sense, exactly where the points are.
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