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Approximation by .spline interpolating bases
by
J. DOMSTA (Sopot)

Abstract. Spline interpolating basis in O%(I) is constructed for & = 2m+2,
with m = —1,0,... The splines applied are of degree k+ 1 (without defect). The
end conditions for the interpolating splines depend only on the values of the expanded
function, not on its derivatives. It follows that the constructed sequence of splines
of degree k-1 is simultaneously a basis in all of the spces C'(I) with I =0, ..., k. -

Our construction is a slight but essential modification of the original one which
is due to Shonefeld [18]. In our case the order of approximation by the partial sums
is estimated by the moduli of smoothness of order ¥+ 2, for all k. The proof of these
estimates is the same as in the periodic case is done by Subbotin [22].

1. Imtroduction. Our aim is to give a construction of a simultaneous
interpolating basis for the space O*(I) of k-times continuously differen-
tiable functions on I = (0, 1) for k¥ = 2m -2, m > —1, i.e., to construct
such a sequence {¢®} = O*(I) that
1.1) {¢" is a basis in CY(I) for O<I<KFE (cf. [18], [19]).

(1.2)  For the countable dense sequence {i, ¢, ...} = I, L.e. for the dyadic
points
14 for 4
(1.8) = .
1(2v—1))2N for ¢
with ¢ = N+», N = 2", 4 and » being integers, 1 < » < N, the following
condition .
(1.4) o (t;) =6, for 0<ign, n=0,1,..

I

Lt

0
2,3,...

[

if satisfied, where d;, denotes the Kronecker symbol [20j.
¢%(I) is treated here as a Banach space with the usual norm

12
(1.5) IF19 = DD for  feCM(I), k=0,
I=0
where D'f denotes the continuous derivative of f of order I and
(1.6) gl = lgll; for geO(I), '

(1.7) llglls = sup lg(¢)] for any bounded function g on 8.
te§
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A Schaunder basis of the Banach space (X, || ||) is any sequence {#,}e X
such that each z¢X has an expanonis

o= ' a,(@)a,
n=0 ’
convergent in the norm || |, with unitluelly determined functionals a,(x).

According to the Banach-Steinhaus theorem the partial sums

(1.8) . 8,0 = D a(@)a;

1=0

are uniformly bounded as linear operators on X and the functionals a;
are continuous. :

It should be noted that for the interpolating systems with nodes
ab {t;}, the functionals a,(f), for feO(I), are necessarily of the form

_ f() for =n =0,

1.9 [

( ) N(f) f(tn) - Sn—lf(tn) for n = 1)

and therefore @, is a linear combination of the functionals &,f = F(t;),
4 =0,...,m, for n>0.

In the case of periodic functions systems satisfying (1.1) and (1.2)
were constructed by Schonefeld [19] (cf. also [18]), for even values of k,
and independently by Subbotin [21], [22], for any k. In the last two
papers the best estimates of the order of approximation by means of
@ higher order of moduli of smoothness are given.

In this paper we construct simultaneous interpolating bases for
O%(I), k=0,2,... modifying slightly the Schonefeld’s construction
proposed in [18]. Moreover, we complete here the proof of Schonefeld
(see Section 6) and compare both of the constructions with respect to
their approximation properties. In the proofs of our estimates we depend
on the Subbotin’s papers [21], [22].

2. Spline functions. The progressive difference of order » with incre-
ment & > 0 of the function f is denoted as usually, i.e.,

7

2.1)  ALf(s) =‘Z(’.)(-1>r+ff(s+¢h) for r>0,h>0,

(3
=0

whenever s, s+7%,...,s+rh are in the domain of f. The symbol [s,,
81y ..y 8; f(+)] denotes the divided difference of order r of f at
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» Srhy L&y [805 ()] = f(s) and for r>1

3 $p—13 f(')])/(sr*sn)

{80y 81y

(805 ++5 875 F()] = ([815 oo, 845 F()T= S0y ---

= jf(si) [ﬁ (si—s)]
3=0

i=0
J#0
These notions are related as follows

(2.2) Wrlls,s+h,...,s+7rk; f(-)] = 45f(5).

For the properties of the divided differénces the reader is referred
e.g. to [11]. )

By £, 4 and £ we denote the set of all integers, non-negative inte-
gers and reals, respectively. For a bounded function f defined on an inter-
val 8§ =%, the expression

(2.3) o (f; 8) = sup{|45f(s): 0O < h<< 8, 8,s+rheS}

defines the moduli of smoothness of f of order 7, reA”. For 7 = 0 we shall
use simply |f|lg for wy(f; ), where & > 0.

In the sequel the following basic properties of the moduli of smooth-
ness will be used and no references will be made to them: u,(f; 8) < w,(f ;3 0')
8" 2 85 wpa(f; 6) < 20,(f; 0); n(f5 00) S0 0, (f; 8); w,14(f5 8) < 8 x
x w,(D*f; 8).

In the last inequality and below in (2.5)—(2.6) we denote by D*f such
a Tunction g of bounded variation, whenever it exists, for which,

(2.4) f(s) = Hig(s) +P{, (s)

holds for s and a in the domain of f (an interval § « %), with H,k(s)
S .

= [h()dt and P, being a uniquely determined by @ and f polynomial

a
of degree not greater than k—1. In this case integration by parts leads
to the identity

(s~ a)* D*f(a)

17 1
@3)  fl&) =77 [ (6=t + B (5) +

for s> a, k> 1. Using x, for max{0, s} and applying the divided dif-
ference to both sides of (2.5) (with & replaced by k —1) we get

b
(2.6) B[S0y - 855 F()] = [ B(so, -, 835 1) AD*7f (1)

2 — Studia Mathematica LVIIL3
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for k> 1 whenever s, ..., 8; are in (&, b) = § (the domain of f), f being
continuous at s, in the case of k¥ = 1. Here

LM t) = 7‘}[307 vevy Sk ('_t)]j-_l]

is the B-spline of order k—2 (degree k—1) with knots at {s,, ..., 8;}.
The B-splines may be defined equivalently as follows whenever

(2.7)  B(8gy.--, for teZ, b>=1,

o < 81 < .un < 8y [T
(2.8) B(sgy -eey 8- ) eOF2(B) for k=2,
(2.9)
In each I; = (s;_;, 8;) it is polynomial of degree < k—1 forj =1,2,..., k.
(2.10) B(sg, ..., 8,58 =0  for 1 ¢<{So, 8y,
(2.11) [ B(ss, .., 31yt = 1.
R
In the above definition %> 1. It follows that
(2.12) B (S0, vy 835 M < hflsp—50  for =1,
. and
(2.13) B(Sgy.ony 838 =0 iff  1¢(sy,8,) for k=2.

In particular, if there iy a piece-wise continuous version of D*f in
{80y 83, identity (2.6) implies the generalized Lagrange-Taylor formula:
there are Se(s,y, s;) and ae(0, 1> such that

(214)  Bl[8e, ..., 83 5()] = aD*f(3—0)+ (1 — @) D¥f(54-0).

Let & = {... <s_; <8 <8, <...} be a partition of the real line #
without cluster points and let I; = {s;_,, 8;), je%. By O%(8) we denote
the (linear) space of all spline functions of order m defined on the interval §,
with knots at #nS, i.e., each geC%(S) is m-times continuously dif-
ferentiable and ¢ is polynomial of degree < m-+1 in each I,nS # @, with
m > —1.For m = —1 no condition about the continuity of ¢ is imposed.
It is obvious that D¥peC%*(8) whenever peC(8) for k =0, ..., m-+1
(the continuous from the right version of D*p is to be chosen).

Levma 1. Let peCg(R), m= —1, & being a fived set of knots. The
Jumps

(2.15) J(m+2)¢(8i) — Dm+ltp(5‘¢+ ) DMty (S _0)

of the (m-+1)-th derivative of (pvsam’sfy then the equations

S

. (2.16) J(m+2)‘l’(s irg) = (MA2) 85 1, eo sy Sgpmpr; ()]
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or i e%, whenever m > 0, and for m = —1 we have
(2.16") B (s, 0) I Mo (s;) =[50, 865 0()]-

In this lemma we denoted by
(2.17) B(t) = (m+2)[8;y, ..

the i-th B-spline B(S;_i, ... 8;1ma1i ) Of order m corresponding to the
given & (cf. (2.7)). This lemma follows immediatelly from the Peano-form
(2.6) of the divided differences.

In the sequel we shall consider only the case of equi-distant knots,
when

T t)mH]

ie.,

;| = 8;—8;_; = h = const for jeZ.

Moreover, we restrict our considerations to splines of even order
(odd degree), although some theorems will concern their derivatives
of any order.

It follows from the results of Schoenberg [17] that

(2.18) Bfm(g,. ) =G, . for i,je¥, mz= —1,
where
(2.18") G = (MM, M™)  for leZ, m> —1

denotes the scalar product of standarized B-splines (cf. (2.17))
MM = (m+2)[0~1, ..., l+m-+1; (-—57*].
The index 2m -2 is chosen in order to be consistent with the no-
tation of [8]. Using this notation we can conclude from Lemma 1
LeMmA 1'. The jumps JO"+9g(ih) of the (2m-3)-th derivative of
@ecC () satisfy the equations
m=+1
2 G,(”‘)J(2m+4)q)(('b'+j)h) = p—m-3 Ai””H(('i—m——Z)h)
J=-—m—1
whenever & = {th: 1eZ}, h> 0, for i%.
The following result was announced during the Colloqulum on Con-
structive Theory of Funetions, held in Cluj, September 1973.
TueorREM A [9]. There are constants C,, and ¢,,«(0, 1) depending on m
only, such that for the inverse matrices AW = (GIM)™ = (A 4,

nit,
=0,1,...,n) we have
A < Cpgi™  for 4,5 =0,1,...,n,
uniformly in ned = {0,1,...}; ihere
G, = G, Jor i, j=0,1,...,m, ned.
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The proof of this theorem is quite similar to that of Theorem 3,
case 1 =1, of [8], which is presented there in Sections 8-10. Therefore
it is omitted here. The only difference is in the following

Levma 2. The (m+1) X (m~+1)-submatriz D, with the elements

D,,,;,s,=ZG$:’9, Wm)E for =0,
=0
8 non—smgulow for m=2m—1, m >0, where ™, with | = +1, £2,.

.y £ (m+1), denote the roots of the characteristic polynomial

. m41
(2.19) 2(2) = ame,
I=—m~1
numbered in such a way that |y{™| > 1, whenever le{l, ..., m4+1}.

Proof. All the roots 9f™,1 = £1,..., £(m+1) are simple and
negative (c¢f. [17], Lemma 8). Thus this lemma is a frivial consequence
of the identity

-1

1
Duju=— D &0,
kE=—m-1
where (G k = —m—1,..., =1, j = 0,...,m) is a triangular matrix

with posmve elements on the main diagonal (cf. (2.10), (2.13) and (2.18))
and ((yfP)*: k,1=0,...,m) is the Vandermonde matrix of (different
and negative) roof,s of (2.19), for m > 0.

3. The special splines. For » = 1,2, ..., and m > —1 let us dehote
by OF = 0g, (I) = C™(I) the (n~|~m—|—1) d1mens1ona1 space of splines
of order m with &, = {ifn: ¢ =0, ..., 7} as a set of knots. For n =1
we shall nse equivalently O = 2,,,, to denote the space of polynomials
of degree <m+1, for m> —1. It is obvious that O} < Cf, for I, n
=1,2,

Let us consider the subspace O of all peOF, with m’ = 2m-+2
(cf. Section 2), which satisfy the condition (cf. (2.15))

(3.1)
JO D (i) =J0F) =0 for 4 =1,...

We assume Oy, = 0p.
we have
(3.2) dim O = n+1

It follows from Lemma 1’ and (3.1) that each peOm, satisties the
following equations

ym+1,
Because of the linearity of the jumps J,,

n—m—1L, ..., n—1.

dor nzm +2 =2m++4, m= —1.

. n—m—2 N
(3.3) D GMIEAD — g AT g (G — 1 — 2) )
J=m+2
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for i =m+2,...,n—m—2. Using the matrices AL = (GI)~! defined
in Theorem A, we get

n—m—2
B4) D AP i sy BT ((j—m—2) ) = nomt g
F=m+2

for ¢ =m+2,...,n—m—2,
with o >m’'+2 =2m+4.

Lemva 3. The mappmg V,: Of—RrMHL
for e, & = 0,1, ..., n, is one-to-one and onto.

Prootf. Aecordmg to (3.2) it is sufficient to consider the kernel of V,,.
For this let @(ifn) =0 for all 'i’, it follows that JI%*) =0 for 4
=1,2,...,2—1(ct. (3.1) and (3.4)). Thus O = Z,,., and has n4-1
>m’+3 zeros at {0,1/n,...,1}. Hence ¢ = 0. m

CoroLLARY 1. T'o each vector (fi: 1 =0,1, ...,
one @eCpy such that

where (V,p); = g(ifn)

n) e R there is exactly

(3.5) p(i/n) =f, for i=0,1,....,n
COROLLARY 2. Let g; €0 be defined by the conditions
(3.6) @(efn) = d,; for 4,5 =0,1,...,n

Then the following estimate
(3.7) W™ g(in)] < Cun™ gl for
holds with some constants Cp, > 0 and ¢, <(0,1) depending on m only.

COROLLARY 3. The matrices AM™ defined in Theorem A are uniformly
bounded in n as operators in the (n-+1)-dimensional real Bamach space
with the mawimum norm. In particular, it follows (cf. (3.4)) that the estimates

(8.8) max }J(’“ P

2, =1,2,...,n—1

C,, ™ +1mayxmy;,,+"¢ i/n)|
3

hold for peCh, a/rwl w2 m' +2, with C, >0 depending on m only, where
m =2m+2, m>= —1.

Levma 4. There s a constant C,, depending on m only, m > —1, such
that the estimate

(3-9) Ity ..y t; D™ N()]] < C’mﬂm+2nl?bXIAE'/L;“??(?J/")I/#?(WITl)
holds for peCmy, n=m'+2, le{l, 2, ,m’+2} and for any set v
_{t()"' tl} el = <0 1 t0<t1< <t17 T =<t07tl>7 ITI =tl—'tﬂ7

where ﬂ(u) = min{u, 1}.
Proof. According to Lemma 1 the L.FL.S. of (3.9)
as follows (cf. (2.6) and (2.12))

Loy < IBillo- X 1705+9) < (' +2)- 4.9 max [T 42|17,
ieP" T

may be estimated
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where & = {i: ijneT}, and therefore #9 < |T|n+1. The estimate
(8.9) follows now from (3.8). m .

The property expressed by the following Theorem 1 for the periodic
case is due to Subbotin and is given in an implicite form in [21] and [22].
With 2 lower order of differences it is given also by Schomefeld in [19],
Lemma 2.3. This problem in the case of the interval was brought to my
attention by Z. Ciesielski.

THEOREM 1. There ewists a constant O, > 0 depending on m only,

m > —1, such that the estimate
wy(DFe; 1fn) <

(3.10) O |45 (i)

holds for peOmy, nzm'+2 =2m-+4, 0<k<m' +1, 120 and 1+
< 2m 4.
Proof. According to (2.2) and Lemma 4 we have for m'+12> k

=m' +2—1=0

|4, D™ (1)] < Ha™ 2 Cmm?XIA%“fP('il%)I/%h‘

<m0, max | A7 g (i)
; .

whenever 0 < h<1/n.

For 0 <l+k<m' +1 it is sufficient to check the case of [ =0.
According to the generalized Lagrange-Taylor formula (2.14) we have
then

(3.11) [ DFp(8)l < I Aspp(ifn) |+”dD’“ ]+am’° (5+0) — DFp(3—0)]
< maXIAuan %/%)H— k+3)Ay(p)[n
with 0 < a1, [§—t < (k+1)/n, where
nmax|J@HI| for  k =m'+1,
Alp) = ¢
[P+l for k=0,1,...,m,

whenever te{ifn, (i-k)/ny. Without loss of generality we have supposed
that 5 < 1. Inequality (3.10) with ? = 0 follows now from (3.8) for &k = m' -1
and by induction with respect to decreasing &k = m', m'—1,..., 0.

As a simple corollary of Theorem 1 we obtain the following Bernstein-
type inequality ‘

(3.12) ID*pll; < Oy macx (i )]

for peOfy, n=m'+2, 0< k< m'+1, and also the following one
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(3.13) orlg; 1/n) < Cpmax | 4y, p(i/n)]

for peO™y, n=m' +2,0<1<m +2, with the constant C,, depénding
on m only, and m' =2m+2, m>= —1. °

TueoREM 2. Let ¢;<Cy be defined as in (3.6). Then the following local
estimate
(3.14) |4, D* (1)

holds for je{0,1,...,n}, tel, 0<h<<m' +1, 120, l+k<m +2, 0< h
<lm, nz=m'+2,m = 2m+2, m = —1, with some C,, > 0 and g, (0, 1)
depending on m only.

Notice that the R.H.S.’s of (3.9) and (3.11) may be made more local.
Then Theorem 2 follows from (3.7) like Theorem 1 follows from (3.8).
Therefore the proof of Theorem 2 is omitted here.

L]

4. Interpolation and approximation by the special splines. The pro-
jections #{™): O(I)~C™, defined for m' = 2m-+2, m> —1, according
to Corollary 1 of Section 3 as follows

(4.1) a™f(ifn) =f@ifn) for ¢ =0,1,...,n
induce the following mappings #{™"": O(I)->Ci-® = D*¥(C™;), where
(4.2) Al B = am B f — Dhyl W’H"f for 0<k<m +1,

whenever feC(I) and Hf(t) _ff s)ds for tel.

Obviously, :rz( LIS TR pI'O]BOtIOIL onto C%* = Ol:B), because the
polynomials #,_, (the kernel of D¥) are contained in om,fork =0,1,
..., m’+1 and af™ is a projection. It follows, moreover, that

(4.4) Dkﬂ(w,l) f = o DRF
for feC¥I), k>0, 120, k+I<m +1.

Aceordmg to Theorem 1 the operators =f® are bounded. in the sup-
norm, uniformly in #. Indeed,

(4.8) Il Pyl = ID=Mfll < w0 m&XIAun‘P(%/ﬂ)l
< n*Cpmax |43, f(i[n)| < O ID*fli; = Ol
for ¥ =0,1,...,m +1, where f = Htg, ¢ = al™f (cf. (4.1)).

LEMMA 5 The projections ab™ are umformly bmmded as operators
in (CY(I), | 19), whenever 0<I+E<m'.

Remark. In the case of I4+% = m’'+1 the statement of Lemma 5
fails because the derivatives D'l f are not continuous.
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For further considerations we need some bagic notions of the approxi-
mation theory. Let
By, (2) = inf {Jlr —2'|: @ e X}
denote the best approximation of z<(X, | |) by elements of X, = X, X
being a normed space. For finite-dimensional subspaces X, there exists
2’ ¢ X, such that Exo(w) = |z —2']. In this case the standard estimate
(4.6) By, (2) < [~ ()] < (L+ lmyl) Big, ()

may be obtained for any linear projection m, onto X,.
The following result of Whitney (cf. [23], Theorem 1):

(4.7) B, (/) < Cpogsa(f; 1T1)  for  feO(T), k>0,
with 0, depending on-k only, and also (4.6) give us
(4.8) If —7flle < [L+ B+ 1) (171 [ 1O (F5 1T1),

where 7.f denotes the unique polynomial of degree k41 whmh 1nte1p-

olates f at v ={ly ..., By =T, and v =min{lt;—%: ¢ #j, ,]

=0,1,...,k}. ‘
TEHEOREM 3. Let ke{0,1,...,m'+1}, m' =2m+2, m>= —1. The

estimate

(4.9) ID*f ~ D' flly < O o (D¥S; 1)

holds for feC*(I) and n > m' 42, with some C,, > 0 depending on m only.

The proof is the same as in the periodic case (ef. [21]):

Using the Rolle Theorem we can state that for large enough » > n,
the difference D*f—D*z™)f has at least n-+1—k zeros at #9, which
satisty the conditions

o<tt<tf<...<t®, <1, ®<kn and 11—, <k/n,

1o —tgk_)l <@k+1)/m, . tBp—tF>=1n
for all 4¢{0,1, ..., n—k} for which the L.H.8.’s are sensefull. Thus we
can cover the mterval I by subintervals T; < I of the length |1} < Oy, /%,
ie., ThouT,u... , =1 with

Ty o= {t/,o; ij,17 s Ymegrnt < {6 ®, ... k) ity 1< Iy,

for which z; > 1/n. Hence, according to (4-.8), the estimate
(4.10) |D*f 51, D*f g, < OO (DVF5 1)
holds for feC*(I), n = n,, and je{l, ..., fo}, with some O,, > 0 depending
on m only.

Moreover,

oy DFf = n,jD"ng"')f for j=1,...,5.
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Thus, according to (4.10), Theorem 1, and (4.1)
(411)  |D*p—7, D*flg, < OpOpsaie(D*p; 1)

< Cpmax | 47729 (i/0)] < Cp g1 (D¥f; 1),

for all j, where ¢ = ={™)f. Inequalities (4.10) and (4.11) imply (4.9). m

5. Smooth interpolating bases. As above, let the parameter m’ = 2m + 2,
m =z —1, be fixed. Let, moreover, , denote the nth dyadic point of I
(cf. (1.3)). The interpolating sequence (¢{™): n>0) < (" (I) is now
defined as follows (cf. (1.4)): '

1° For 0 <n<m'+1 ¢ is the unique polynomial of degree not
greater than n# with the property

(5.1) o) =6;, for 0<Ki<m, n=0,1,...,m +1.
2° For n > m'+2 ¢{™ is the unique element of gy, which satisties
(8.1') - oMty =6, for 0< 4,<2N n=m+2.

In this condition N depends on =, cf. (1.3).

This definition is a generalization of the original Schauder basis
in C(I), which we obtain here for m = —1.

THEOREM 4. For each m > —1 the sequence (¢™): n > 0) is a Schau-
der basis in each of the Bumach spaces (CHI),| IF) for 1 =0,1,...,m’,
iv6., it is a simultaneous basis for C™ (I) in the sense of Schonefeld (cf. [18],
7197 and (1.1)). ‘

(o~
The coefficients a{™ of the empamsion f = 3 o™ (f)egf™ are deter-

n=0
mined as follows
(5.2) A(f) = () for n=0,
' ft) =8 f(t,)  for wz=1,
where
(5.3) S = X AT for m>0, feO(D)
1=0

Moreover, the estimate
(5.4) ID'f —D'SCfllr < O oy yat( DS, 1/m)

holds for feC'(I), 1e{0,1, ..., m'+1} and 0> m'+2 with C,, > 0 depend-
ng on m only.

Proof. It is sufficient to prove (5.4), because (5.2) was proved in
Section 1, ef. (1.9). The proof of (5.4) is standard (ef. [19] and [21])%
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Obviously,

2, for 0L nSm +1
(5.5) Smfel” ™, N ’

O,y for n>m'+2,
for all feC(I). Moreover,

SEMf(t) = f(t)  for
Thus S{f = {mf for 2N = m'+2. Now, estimates (5.4) for n = 2"
= 9N follow from Theorem 2. For other values of n which satisfy the in-
equalities 2N > n> N' = max{m'+1, N}, let us write

0o = ST 557

i =0,1,...,m, n>0.

Thus g0, and
0 for
(SEF S () for
The Bernstein. inequality (3.12) allows us to estimate
1D gullz < O (2N VSRS —SF Al

for all 'rb> m' +2. Now, applying Theorem 3 to the R.H.S. of the last
inequality we obtain (cf. also Theorem 1):

ISGRF —S{) STIFI < Cop Oy (SIS 1/

< Cpmax | A7,8 SEIf(4/28)]

4 =0,...,m,

1) =
In (%) i=mn+1,...,2N.

< Opmax | AT f(i[2N)]
:

L Cp e (f; 1/0),
whence we infer easily (5.4). In the last estimates we have used the result
 of Whitnéy in the case of N = m'+1 and the properties of moduli of
smoothness.
COROLLARY 4. For each 1e{0,...,m'} the sequence (D'¢{™: n3>1)
*is a basis for O(I), i.e., (¢0); n>0) is a simullancous basis for O™ (I)
in the sense of Ciesielski (cf. [4]).
Indeed, let

(5.6) ISUPf—Fll;->0  as m—>oo  for feO(I),
where
(8.7) Dl (f)Dgfm) = SGIf  for w1,

i=l
with some continuous functionals af'? defined on O(I). It follows from
the uniform boundedness of S, that (cf. (4.3))

\T, H'SHf —T, H'f |+0  as

N->00,
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where T, = S™) —8{") for n > I. Thus, according to Theorem 1,

T, H'S\Vf = 3ok D(f)ef™ — Hf —S[A'S,
=1
and, by the uniqueness of the expansion of H'f with respect to (¢f*}: n > 0),
we can state that

T, 7S =T, H'f
It follows that
S(If = DT, H'SLVf = DS BYf
and this proves that
al V() = af™(f) = af™Hf for =1, f0(I),
and, according to Theorem 4, the uniform convergence of (5.6). M

for all feC(I).

6. A comparison with the Schonefeld construction. In the case of
equi-distant knots it follows from Lemma 1 that
m-+-1 .
S @D (i) h+0) = BT AR g((i—m—1)R)

t=—m—1

and. also that

(6.1")

m+41

(6.1") >

j=—m—1

holds for peO% (&) with & = {ih: 1%}, for icZ.
Schonefeld has used in [18] the m’-constant splines on I with knots
at 0,1/n, ..., 1, for n > m’, which are determined by conditions

D™ tlp(in) =0 for

G D™ (i 4j)B) = B A7 g((i—m—1)B)

i =0,...,mn—m—1,...,0—1

(cf. Section 2, where the continuity from the right is supposed). Applying
then (6.1"") he obtained equations for the vectors (D’”'cp('i/%) ti=m+1,...
U 'n—m—2) with rather complicated matrices, corresponding to our
matrices GI{cf. Theorem A and Lemma 1'). The matrices are diagonally
dominated only for m = —1,0,1 (' = 0,2, 4) and therefore the proof
presented in [18] was complete only for these values of m’. However,
using (6.1') we arrive at equations for D™*'p for which the matrices G
deal as coefficient matrices:

n—m—1
(6.2) N Gm D g(jin+0) = ™AL gl(i —m—1) [n)
F=m+1

for ¢ being m’'-constant spline on I with knots at 0,1/n, ..., 1. Using
now Theorem A we can obtain in the Schonefeld’s case all of the above
theorems if we change the order of differences replacing m’ 42 by m' 1.
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In particular, we have for the m’-constant splines

(6.3) w(D¥p;1in)< G’mnklnaxldf/fg’(p ijm)|  for Sl+hm' +1,
(6.4) | D% — D™ |l; < Opepegs_p(Df, 1[n)  for & =0,...,m +1,

where 7{"™)f denotes the unique m'-constant spline with knots at 0, 1/x, ...

., 1, which interpolates f at these points, for feC*(I). The above esti-
mates correspond to Theorems 1 and 3, respectively. These estimates
allow to construct a simultaneous basis for 0™ (I) which is interpolating
with nodes at the dyadic points and a theorem similar to Theorem 4 may
be proved. In fact, all the corresponding properties but estimate (5.4)
are formulated by Schonefeld in [18].

7. Final remarks. The estimates obtained in Theorem 3 for the order
of approximation by the moduli of smoothness are well known in the
literature for approximation by splines being elements of the whole space
OF = Oy, for n >m’+2 (see e.g. [22], [2], [10] and for an extra moduli
of smoothness in the case of free knots see [13]). For the dyadic partitions
of the interval ({0, 1/n, ..., 1} replaced by {%, ¢, ..., t,}, ¢f. (3.1)) such
estimates are given by Ciesielski [5] for the IL,-spaces. Similar results
were obtained by Scherer [15] for a wider class of partitions. of I.

The interpolation processes presented by Schonefeld and in this
paper are especially interesting, they do not require any differentiability
agsumptions on the interpolated function. This property makes it similar
to the local interpolation by splines of higher order degree (with defect)
as is done by Riabenkii and Filippov [14], cf. also [2].

It should be noted that according to theorem of Schonefeld [18]
(cf. also [19] and [6]) the property of the basis constructed in Section b,
allows us to use the products i) (t) @l () ... @) (t2), if suitably
numbered, as a (simultaneous) interpolating basw for the space O™ (I%
of m'-times continuously differentiable functions on the Euclidean cube,
for m' =2m+2, mz —1.

Acknowledgements. The author would like to express his grati-
tude to Professor Dr. Zbigniew Ciesielski for his kind. interest in this work,
many valuable discussions and help in preparation of this paper.

w

References

[1] J. H. Ahlberg, E. N. Nilson and J. L. Walsh, The theory of splines and their
applications, Academic Press, New York 1967.

[2]1 G. Birkhoff, M. H. Schultz and R. 8. Varga, Piecewise Hermite interpola-
tion in one and two wvariables with applications to partiol differential equalions,
Numer. Math. 11 (1968), pp. 232-256.

[8] Z. Ciesielski, On Haar functions and on the Schauder basis of the space U[0, 1],
Bull. Acad. Polon. Sei., $ér. sci. math., astronom. phys. 7; 4 (1959), pp. 227-232.

icm

[4]

(51
{61
[7]
{8]
91

{1e1

[16]

[17]
(18]
[19]

[20]

[21]

[22]

[23]

Approzimation by spline interpolating bases 237
4
— Conslruction of an orthonormal basis in O™ (I%), A note in the Proceedings
of the Infernational Conference on Constructive Function Theory, Varna,
May 1970.
— Constructive function theory and spline systems, Studia Math. 53 (1974),
pp. 177-202.
— and J. D omsta, Construction of an orthonormal basis in O™ (19) a/n,d wy I,
ibid. 41 (1972), pp. 211-224.
H. B. Curry and I. J. Schoenberg, On Pélya frequency functions IV: The
Sfundamental spline functions and their limits, J. Analyse Math. 17 (1966), pp. 71—
107.
J. Domsta, 4 theorem on B-splines, Studia Math. 41 (1972), pp. 201-314.
— Communique at the Colloqguium on Constructive Theory of Funections, Cluj,
September, 1973.
G. Freud and V. A. Popov, On approxvimation by spline functions. Ini Proceed-
ings of Oonference on Constructive Theory of Funclions, Budapest 1969, pp.
163-172.
A. 0. Tens Pou g, Hewucaenue xoneunnz pasrwocmeid, Mocksa—JleHunrpan 1952
(in Russian).
B. A. Marseen, O padax no cucmeme Iaydepa, Mat. Zametki 2; 3 (1967),
pp. 267-278 (in Russian).
V. A. Popov, Direct and converse theorem for spline apprommatwn with free
knots, Compt. Rend. Acad. Bulgare Sci. 26; 10 (1973), pp. 1297-1209.
B. C. Paberruit w A. ®. Quaunuos, Appendix in: O6 yemotinusocmu.
pasnocmubz ypasnerut, Mockra 1956 (in Russian).
K. Scherer, A comparison approach to direct theorems for polymomial spline
approximation, preprint of Rheinisch—Westfédlische Technische Hochschule
Aachaen, December 1972, Aachen.
I. J. Schoenberg, On spline fundtions, with a supplement by T.N.H. Greville,
Proc. Symp. “Inequalities”, held August 1965, at the Wright Patterson Air
Force Base, Ohio.
— Cardinal interpolation and spline functions, J. Approx. Theory 2; 2 (1969),
pp. 167-206.
8. Schonefeld, A study of products and sums of Schauder bases in Banach spaces,
Digs. Purdue University, August 1969.
— Schauder bases in the Banac hspaces OF(T9), Trans. Amer. Math. Soc. 165
(1972), pp. 309-318.
7. Semadeni, Product Schauder bases and approximation with nodes in spaces
of continuous functions, Bull. Acad. Polon. Sei., sér, sci. math., astronom, phys.
11 (1963), pp. 387-391.
Yu. N. Subbotin, Spline approwimation and smooth bases in O (0, 27), Mat.
Zametki 12; 1 (1972), pp. 43-51 (in Russian).
— Applications of splines in appromimation theory. In: Linear operators and
approzimation, ISNM, vol. 20, Birkhduser Verlag, Basel and Struttgart 1972,
pp. 406-418 (in Russian). '
H. Whitney, On functions with bounded nth differences, J. Math. Pure Appl.
9; 36 (1957), pp. 67-95.

Received June 25, 1974,

revised version Jume 30, 1975 (849;.10386)


GUEST




