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Anosoy endomorphisms*
by
FELIKS PRZYTYCKI (Warszawa)

Abstract. 'We goneralize notions of Anosov diffeomorphisms and expanding
maps by introducing Anogov endomorphisms. For such an endomorphism f we assume
the existenco of an invariant hyperbolic splitting of Ty, (M) along every f- tm]ecbory
(w5). 'The main result of this paper is a construction of an uncountable family of pair-
wige nonconjugated Anosov endomorphisms contained in a small open subset of
OY(M, M). We construet also an Anosov endomorphism which has an are of unstible
manifolds at some point. We prove some tochnical lemmas in more general situation
of hyperbolic sets or Axiom A.

§ 0. Introduction. Let M bea compact, connected, boundaryless finite-
dimensional C*° manifold.

DerinertonN. A diffeomorphism f: MM is called an Anosov diffeo-
morphism if there is a continuous splitting of the tangent bundle TM
= FP - ¥ which is preserved by the derivative Df and if there are constants
0>0,0<pu<1l and a Riemannian metric (-, -) on TM such that for

n=0,1,... we have
(1) 1Df* ()| < Cp™|oll  for wveE®,
(2) IDf ()= 0 ol for weB™.

For the main properties of Anosov diffeomorphisms see [4], [8].
DEFINITION. A map feO' (M, M) is called ewpanding if there. are
constants ¢ > 0, 0 < u < 1 4nd a Riemannian metric (-, -> on TM such
that for » = 0,1,... Wé have
1Df" (0}
(see, for example, [5], [9]).

= 0u™" |l

In this paper we generalize the above motions as follows:

DurrNirioN. We call a regular map feC'(M, M) an Anosov endomor-
phism it there exist constants > 0, 0 < u < 1 and a Riemannian metric
£+, > on T'M such that for every f-trajectory (m,) (a sequence of points in M

T, M

+oo
= @, .1 for every integer ) there is a splitting of (J T,

o= 00
= PRI = U @I, which is preserved by the derivative .Df
5 e OO

and conditions (1), (2) ave satisfied.

satistying f(x,)

mn.

* This is a part of the author's PhD. thesis written under supervision of
Dr. K. Krzyzewski and Dxr. W. Szlenk.
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In §1 of this paper we prove (see Theorem 1.16) that the set of all

Anosov endomorphisms is an open subset of C*(M, M).

From the definition of an Anosov endomorphism it does mot follow
that there exists a splitting of the whole tangent bundle TM = B°*@E".
Notice that 1«7:0 depends on the whole trajectory (,), therefore it may
happen that E:b =+ Ego though @, = ¥, (but (#,) 5% (¥,)). Such a pheno-
menon is impossible for B , it depends only on #,. Indeed, if veli then
{IDf* ()| 5=55>0, hence vely . .

In this paper we congider also special Anosov endomorphisms for
which ®* does not depend on the trajectory containing @. A classical
example of such an endomorphism is the algebraic endomorphism of

the torus: 1] for » > 2. Special Anosov endomorphisms were first

n
11
introduced by Shub in [9] and called there Amnosov endomorphisms;
however, the theorems formulated there and concerning such endomor-
phisms are false (see Theorem 2.18 and. Corollary 2.19).

DErFINITION. We say that two maps f, g« O (M, M) are topologically
conjugate if there exists a homeomorphism h: M—M sach that foh = hog.

A map feC' (M, M) is said to be siructurally stable if there is a neigh-

bourhood U of f in the C'-topology on O*(M, M) such that ge U implies
that f and g are topologically conjugate.

It is well known that Anosov diffeomorphisms and expandings are
structurally stable. In this paper we claim that these are no other Anosov
endomorphisms satisfying the property of structural stability. This is an
immediate consequence of our main vesult (see § 4):

TEROREM 4.11. BEvery non-empty open in the C"-topology .subset of
the set of all Anosov endomorphisms of class C*, which are not diffeomor-
phisms or expandings, contains an wncountable subset such that, if f + g
are any elements of its, then there emists no surjective map @<C°(M , M) which
‘makes the diagram

M—A1 > M
oM m_”__;._‘,M

commute.

I\Tc_)w we shall try to explain this strange behaviour of Anosov endo-
mc?rphlsms. Consider f-trajectories (z,), (y,) such that m, = g, and there
exists a neighbourhood U of y_, for which

' Aist (T, {5l oo VU bit o) > 0.
Let us perturb f inside U to an f' such that there exists Y€ W;‘,_l Loo?

icm
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¥ F Y W) =Y. (W3_ 1100 18 the local stable manifold of f at y_, —
gee Theorem 2.1.) ,

Just as in the case of diffeomorphisms (see Corollary 1.14) there
exists exactly one f'-trajectory in the small uniform neighbourhood of (s,,).
This f'-trajectory is of course («,). Thus if there exists a conjugating homeo-
morphism % close to the identity, then h(wy) == @,. Hence h(y_,) = y_,,

cand 50 B(y_,) =y_, for some f’-trajectory (y,). Thiy contradicts the

fact that as long as o(¥_n, ¥_,) is small, it grows at least exponentially.

- We may give also another explanation of the nonstability of Anosov
endomorphisms which are not ditfeomorphisms or expandings. An oper-
ator fit—Id in the space of continuous vector fields on M, where
V() = DfY)o Vof(-), is not invertible. Indeed, let (2,), (¥,) be f-
trajectories ay above. Then it is easy to check that a vector field V' which
is zero outside U and V(y_,)eHy_ —{0} does not belong to the image of
i —1d.

The above ideas in fact explain only the non-s-stability (s-stability
means that the conjugating map can be chosen arbitrary close to the
identity if the perturbation is sufficiently ("-small) and will not be used
in thiy paper (*).

In § 2 (see Theorems 2.15 and 2.18), we construct an endomorphism
which is close to an algebraic Anosov endomorphism and at a point
has many different local unstable manifolds. This construction can be
reckogned as another explanation of the nonstability of Anosov endomor-
phigms. ‘ ‘

Tn our proof of Theorem 4.11 we use the following topological in-
variant: if # and z are periodic points of f, then there exists a non-periodic
f-trajectory (y,) such that 4, = x and o(y_y,, 2)—>0 for n—oo, where ?
is the period of z.

Some technical statements will be proved in the situation of a hyper-
bolic set A (similarly to the well-known case of diffeomorphisms) It is use-
ful to consider the inverse limit 4 of a system ...« A4 A</l4, .. We claim
(see Theorem 2.3) the continuity of the transformation A»(2,)Wg 100
(with (*topology in the set of local unstable manifolds regarded as embed-
dings of the disk).

In § 3, we introduce Axiom A endomorphisms which are generali-
zations of Smale’s Axiom A diffeomorphisms (see [8]). We claim that the
set of nonwandering points in the inverse limit of Axiom A endomorphism
with a shilt satisfies conditions of Axiom A* (see [1], [2]). This permits

(%) Aftor sending this paper for publieation, the paper of R. Mafié and C. Pugh
“Stability of endomorphisms” appeared in Warwick Dynamieal Systems. R. Mafié
and C. Pugh proved that Amnosov endomorphism (called by them “weak Anosov
endomorphism”) is e-structurally stable iff it is either expanding or a diffeomorphism,


GUEST


252 F. Przytycki
18 to uge results of Bowen. on the existence of the unique invariant measure
with maximal entropy.

The paper of Katok [4] has been very helpful in the preparation
of this paper. I wish to express my thanks to M. Krych and M. Misiure-
wiez who read a preliminary version of the paper and made many valu-
able suggestions.

Symbols:

B(z,1) the open ball with centre # and radius ¢;

dist,(4, B) int{o(z,y): wed,yeB}, where A, B are subsets of
a metric space with a metric ¢;

Diff An* (M) the set of all C™-Anosov diffeomorphisms on a mani-
fold M, 1< r< oo ‘

End An" (M) the set of all C"-Anosov endomorphisms on a mani-
fold M, 1< r< oo

EndAn"(M)  EndAn"(M) - {Bxpandings};

B the unstable (stable) subspace for an f-trajectory (a,)
in a point «; (often we shall omit the subscript f);

Eﬁi“% E:.EB) NB (OTxiMy 1);

e the unstable subspace at wePer(f) for the periodic
trajectory of z;

E;‘,f’l the orthogonal subspace to Zi® in T, M with an inner
product;

&y the parallel translation from T,M into T, M along the
unique shortest gheodesic joining # and y (under the
agsumption that ¢(z,y) is sufficiently small);

fl4 a mapping f restricted to a subset 4;

ey the conjugating map between A and A’ (see Notation

1.18, and Theorem 1.20);
Kz, see Theorem 2.8;

A a hyperbolic set (see Definition 1.1);

A lim (4, f) — the inverse limit of a yystem ... £> AL> 415 ..,
where 4 is a hyperbolic set of an. endomorphism f;

N.(f) the number of all fixed pointy for f*;

Orb,(2) {F(@)}nzo for zePer(f);

ord,(z) the minimal period of xePer(f);

2(f) the set of all nonwandering points of f (see Definition
3.1);

Per(f) the set of all periodic pointy of f;

Per,(f) {wePer(f): ordy(w) << n};

Per’(f) Jjth class of Per(f) under Spectral Decomposition (see
Theorem. 3,11, Definition 3.12, Proposition 3.13);

Per}(f) Per’(f)nPer,(f); '

icm"
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the standard projection m;: A4, n,.((m,,)) = @;;

dist, ({0}, 4), for # — a point, 4 — a set;
:Exlyw)g(f(m),g(w)}, for f,geC"(M, N), M, N — Rieman-
nian manifolds;

the standard C'-distance betwen maps 1y9¢CH{ M, N)
for which o(f,g) is sufficiently small;
the unique point of the intersection W;O‘AAW,‘,‘O,A for
() (Un) e A, 0liyy 9o) < »(4) (see Proposition 2.3 and
Notation 2.4); -

the unique point of the intersection W fmn,,o..nWa ove TOT
(@), (Wn) e A, 3((w,); (y,) sulticiently small (see Prop-
osition 3.7);

the constant deseribed in Theorem 2.1;

the circle in R* with centre 0 and radius 1;

the wet of all C"-special Anosov endomorphisms (see
Definition 2.12);

the spectrum of a linear operator L;

the conjugating map between Per(f)n A and Per(f')nA’
(see Remark 1.23);

local unstable (stable) manifold (see Theorem 2.1);
submanifolds W ., and Wy ,,, intersect each other
transversally ;

global unstable manifold for jf-trajectory (z,) at a
point 2,3

WO B2y, 0);

see Theorem 2.8, Definition 2.9, and Notation 2.10;
global unstable manifold at wxePer(f) for the periodic
trajectory of w.

hyperbolic structure of endomorphisms.

1.1, DuriNirioN. Let U be some open subset of M, let f: U—~M be

a regular (-map (such a map will be called an endomorphism). Let A
be a closed subset of M such that f(4) = A < U. Then 4 is called a hyper-
bolie set for this endomorphism iff there exist real constants: 0> 0, u:
0 < p< 1 and a continuous Riemannian metric (-, > on T'M such. that
tor avery f-trajectory (@,)i%.. of points in A and for every integer
4 we have: ’
Ty M = I, DB,

&) .
Df(Hz) = g, ., IDfp(0I<0ulv]l  for wel,
Df(mL) =T, IDFOI= (O il for  wel
for n=0,1,...

This family of splittings will be called hyperbolic.
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1.2. Remark. TLet 4 = M be a hyperbolic set for f. Then f is
an Anosov endomorphism. Of course, in this case f is a covering map,
hence there exists a positive integer I called the degree of f such thast
every point has exactly N counterimages. The diameter of fis defined ag

sup {diamB: B is a ball in M, fFUB) = UB“ B, are open, disjoint

sets, f|B;: B;~B is a homeomorphlbm for ¢ =1,...,N}.
1.3. Exampre, An example of an Anosoy endomorhpism of degmo
is the algebraic endomorphism of the torus I*: [n—H ?L]

Remark. The Cartesian product of two Anosov endomorphivms
is also an Anosov endomorphism. -

1.4. ProrosITioN. For any hyperbolic set A for f there ewists a smooth
Riemamwian metric (-, - > 4 adapted to A on T M such that for some A: 0 <A< 1
and for every f-trajectory {m,} = A

[1Df; (D)2 < A0l for
IDfp (0}l > (1/A)|wl,  for
IR HA is equivalent to |- |.

(From now on, a hyperbolic set /4 being fixed, we shall use in general
the metric -, >, and we shall omit the subseript .)

Proof. We define a new metric (-, > on T4 as in [5]:

vell

)

’l)eEgl..

N
(oy, vy = D' (Dfl(m1), Dfy(vs)),
F=0

where N is such that Cu" < K < 1 for some K.

In what follows we extend (-, ->" to.a continuous Riemannian metric
on TM and approximate it by a smooth metric.

We firgt prove some technical facts concerning hyperbolic sets.

1.5. DeriNtTIoN. Let B, B be subspaces of R" with an inner prod-
uet (-, ->. Define

tan X (B, B") = SUP{leu/sz”: wy e B, wn‘fE”a Wy 4wy e B~ {0}} .

1.6. Remark. If dimE = dimB", tan, < (B, B") =
tan< (B, B).

I dimE" < dimE’, then tan < (B, B") = -+ oo.

1.7. PROPOSITION. Let f be an endomorphism with a hyperbolic set A.
There exist real numbers £>0, a> 0 such that for all f-trajectories
{@a}y {a} = 4, o(my, yo)) < & implies

then.

tan & (6, (By), Bog) <o and  tan (64, (T, Fit) < @

-

icm
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Proof. We shall prove the first assertion. Liet £ > 0 be a number
such that (1/2)—A—¢ > 0. Choose £ such that
”Dfm_gf(m)f(w)onwogmn < ¢ for z, ye/l, Q(wz y) < é.
< O[] for every » tangent
to M at any point of A.
Let (x,), (4,) be f-trajectories satisfying our assumptions, let we
&« Sy (By,), w o= w,-twy, 0w elly, w,eky . Then

DS g (walll 22 \DF gy (20)]| — |Dfry (201)]
> (l'gf(mo)f(wo)opfv(,ogq/omo( M= Cloll — 2wy
= ((1/2) =) kol — Alhwall > ((1/4) — 2 — &)l
So
ol _ o] o2
llwall " (1/0) ((L/2) ~ 2 — ) o]

Therefore it is sufficient to define a = 0/((1/2) —1—¢).
In particular, it follows from Proposition 1.7 that if o(, %) < &,
then Oy, Mis the unique commbn point of Eoy(Hy,) and B . So we have:

1.8. OoROLLARY. dim B depends only on #, (i.e., it does not depend
on the whole sequence (w,)). The maps @ > Lm B are locally constant.
- We now investigate the continuity of the splitting T, M = Egi@E;‘
with respect to (z,). We shall need the following
1.9. LumMA. Let us take a sequence of finite-dimensional linear spaces

By, By, ... with inner products and a sequence of linear isomorphisms Ly:
B;~>By,,. Furthermore, put B, = B{® B}, Li(Bi™) = B and suppose that

L) | < Alwll for vel,
WLy (0] 32 (1{2) o]l for ve B} and for some A with 0 <A <1.

Lot a, >0 and suppose tan < (Hi, BH') < afor i =0,1,... Then for
every ch(, Sor which tan <t (w, Hg") y < B there exists a conswm K > 0 and
a positive integer N such that

tan < (L,_,0 ... 0 Ly(w), By) S KX for all nz> N.

In fact, K and N depend only on the triple (a, §, A).

Proof. For a vector veB;, let v = v'-4v* = o'+ v* where vleB}*,
e B, v°BS, v eBY. Of course, (v°)' =o' Let a vector w satisfy the

+
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. conditions of the lemma. Then for sufficiently large n we have
(Lp—10 - .. 0 L)
I(Lpwy® - - 0 Low)?|
(L0 ... 0 L)
T (s <+ 0 Lo — W(LpyO ... 0 Lyw®)?|
|Ly—30 .. 0 Lyw"| _ WZLyper0 .. 0 Lgw®)2| |1
S Lpa10 e 0 Lgw®| - W( L0 .0 Lyw®)|
(l/ln)wu ~1 . . ] -
< (S o) <lwmiaaes) -
< B A+ 0 B)) — 2ma)H < KA.
We shall apply this Lemma to the case of a sequence of tangent
spaces and derivatives Df, : T, M—T, M.

T

1.10. TuEOREM. Let all objects be as im Definition 1.1. Then the map:

tan X (Lyy0 ... 0Lo(w), By) =

f-trajectory (w,)— the splitting Ty, @ Hy,

is continuous, i.e.,

(Ve>0)(36 > 0) (AN positive integer) (Vji-trajectories {#,}, {y,} < 4)
(o(@iy) < 8 for —N<i<N) = tm & (B, &, (B9)) < &
Proof. We shall prove the last inequality for unstable subspaces.

Let & > 0. Let a = § be equal to the number o described in Proposition 1.7,

For a triple (a, f, 1) take numbers K and ¥ as in Lemma 1.9 such that

KV < ef2.

There exists a & such that for any two f-trajectories {s,}, {y,} = 4
if o(w, ¥;) <6, 4 = —N,...,0, then

&gty

(1) tan (&, (B, BY) < o4
where B =Df, o..oDf,_ 8Oy (B _ )y
(2)  tan < (By, B%) < a.

Now it suffices to apply the result of Lemma 1.9 to the sequence
of isomorphisms Df,: By @ W15, @Iz, and fo any vector
we B . Hence tan <t (s BY) < e/2. Thus, using (1), we obtain

tan (g, (By)s By) < s.
Now we formulate important Theorems 1.11, 1.12, 1.13 which are
very similar to the analogous results of [4], [6], [10], [
1.11. THROREM (Anosov’s theorem on uniform perturbations). Let (B,
be a sequence of finile-dimensional linear spaces with inmer products, and
let Lyt By~Byy, ¢ =... ~1,0,1,..., be a sequence of limear dsomor-

.
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phisms such that sup | Ll < A and sup IL7*| < A for some real number A,
i ‘
Write B; = B{®EBY, L") = E?(ﬂ
ML)l < Al for  wel,
1L ) < Al for  veBY,, and for some A with 0 <1< 1.

Let v be a positive number and let, for any integer i, V, denote the open
ball with centre at the origin in B, and radius r. Then for every ¢ there exists a &
such that for every sequence of diffeomorphisms Fp: Vi~F,(V,) < B,,,
if 0ou(Tyy Lyl V) < 8 for all 4, then:

(a) The set Wi of all points of V,, whose images under F;, F,  oF,.
B0l 0l oareinV,, Vi, ..., respectively, is o O*-submanifold of B;,

(b) The set W of all points of V,whose images under Fi, Fio Y, ...
are in Vi, Viegy ..., vespectively, is a C*-submanifold of B,.

(c) Submanifolds W; and W intersect each other ai exactly one point b,

and suppose that

 Purthermore, Wik Wi

(4) @01( LBV < 8, 901( D BV < e
(e) [1Fs(vy) — Fy(va)ll < ((1 + 1)/2) oy —vsl| for vy, vee WH,
1B (0y) — B (g)l] < ((1+ 1)/2) oy —oll for vy, vae Wiy,

Under the condition that F;(0) = O for every i, & depends in fact only
on numbers A, & and A.

1.12. TumorEM. Let 4 and A be real numbers, 0 < A < 1. Then for o
sufficiently small and for any & there ewist a 6 > 0 and a positive integer N
such that for

(i) an arbitrary number r > 0, :

(ii) arbitrary sequences of linear spaces (BM)F®., (BSF® . and
sequences of limear isomorphisms I{): BY'—=BW,, j =1, 2, with |I{|| < 4,
I < A, for which there ewists the hyperbolic splitting BY) = BY¥ @B«
with coefficient A,

(ifi) arbitrary sequences of C'-mappings FP: vPO--BW, (VY as
in Theorem 1.11) such that

0 (FD IOV < & and  FP(0) =0,

the following assertion holds:
if BY) = BP) and o, (FP, FP) < 8 for i =0,1,..., N, then

0 (WS, Wi <& e (W, WHY) <e.

1.13. TrumormM (Anosov's theorem on families of e-trajectories). Let A
be a hyperbolic set of f: U~M. Then there ewist a mneighbourhood U(A)
of the set A, and numbers sq, no > 0 with the following properties:

For amy n (ny> n > 0) there ewists s> 0 such that for amy endomor-

and

4 — Studia Mathematica LVIIL3
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phism f': UM with e ( (f,f) < &, for. any topological space X, amy
homeomorphism ¢: X—~X and any continuous map ¢: X—>TU(d) such
that o(pg,f'@) < ¢, there ewisis a continuous mapyp: X—U such thai:

1) v =ry,

@) ey, 9y <m,

(3) if for some s X—U wehave 'y = f'y' and o(p, ¥') < nothen y' =y
It is essential in Theorem 1.13 that g is a homeomorphism and that

is why a proof of the structural stability of Anosov diffeomorphismy in
which the above theorem is applied does not work in the case of Anosov
. endomorphisms.

1.14. CoromiARY. If f, U, A, U(A), &, n, ¢, f satisfy the assumptions
of Theorem 1.13, then for any e-f -trajectory (y,) = U(A) there emists evacitly
one f'-trajectory (z,) such that o(w;, y;) < n for every i.

Proof. In Theorem 1.13 one can take as X the set of all integers
with the shift to the right.

1.15. CorOoLLARY. Under the assumptions of Theorem 1.13, if (y,)
is an &-f-trajectory such that y, = Yy, ., for some p and for every n, then the
f'-irajectory (x,,) from Corollary 1.14 has period p.

Proof. One can take X = {0,1,...,p—1}, ¢(

Now we can easily prove the following

1.16. TuworEM. The set of all Anosov endomorphisms is open in
oMM, M).

Proof. The first method. Let f be an Anosov endomorphism with

a hyperbolic coefficient 4. Let e, > 0. Let &, be equal to 4 from Theorem 1.11
chosen for &, 4 and

A = max (sup |Df, ||, sup |(Df,) ).
zeM ze M

) =4 -+1(modp).

Let &3> 0 be such that for every f'«OY(M, M) and x,yeM if
elff) <& and o(»,y) <e then

”Df; "“‘ff’(m)](w)o nyogw” < &g.

Let &, be equal to & from Theorem 1.13 chogen for g = n. Take
& = Mmin (e, &). Let f'<O'(M, M) satisty the condition g (f,f) < 8.
Then any f-trajectory is an ep-f-trajectory. From Corollary 1. 14- it follows
that for a given f'-trajectory (®,) there exists an f-trajectory (y,) with
(@ Yn) < & for all n. We detine

Ly =84 sy ODfy, 08, 0 ¢ T, M—>T,

It is clear that the splitting 7, M = B g (By) @ By, (T3 ) 18 invariang
under I,,. All the assumptions of Theorem 1.11 are satisfied (the role of

+1M'
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maps F; is played by the derivatives .Df%) The resulting manifolds Ef ..
and B, are linear subspaces of T, M because Df,, are linear. Moreover,
the splitting T, M = B, ©Hy is invariant under Dfmi and hyperbolic
(with the constant 14 2)/2).

We shall give another proof of this theorem. F01 this purpose we
ghall use the following theorem.

1.17. TumorEM (A globalization of J. Mather’s theorem, see [12],
[4], Theorem 1.1). Let X be a normal topological space and let m: TX X
be o finite-dimensional vector bundle with a continuous Riemannion metric
&y Lot Dfs TX->TX be o linear bundle automorphism covering f: X—X
and satisfying quIZJ 1Dfll < oo, Let ¥ denote the Banach space of all bounded

Te

continuous sections of TX with the topology of wmiform comvergence. We
define fi V=¥ by fi(V) = DfoVof™. Then:

spec(fu)n 8 =@

iff there emists a hyperbolic continuous splitting of TX which is preserved
by Df.

Proof is the same ag in [4].

Proof of Theorem 1.16. The second method. Let f be an Anosov
endomorphirm with a hyperbolic coefficient A. Let f'<C*(M, M). For
a non-periodic f'-trajectory (w,), denote by @ the natural transformation
n—>w,. The transformation ¢ induces in the usnal way a vector bundle

(TM ) over Z (the set of all integers) such that the following diagram
eommutes ’

e*(TM) —_——e . TM
@) . n
E 2 —> Z\l‘il[

@ is injective. Therefore there exists (n*(p))™" (detined on the image of
7*(¢)). For brevity we shall denote this inverse map by a. (In the case
of a periodic trajectory with the minimal period p one considers a vector
bundle over Z, instead of a bundle over Z.)

Denote by

9 the space of all bounded sections of ¢*(T.M),

¥ the gpace of all bounded sections of ¢*(B¥),

¥* the space of all bounded sections of () By,

n

where for each j, BY is defined in the following way: @; being fixed, we
first take an f-trajectory (y4) by putting
1) 9§ = a;
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(2) to define yJ for ¢ < j we consider the counterimage P = ( FH™ (ay);
yi is defined as the point of P lying closest to s (if there are several
points in the s ame distance to #; we choose any one of them).

Now we define B by Hf = a(E )

Of course, ¥ = ¥*@®7™* To sunphfy our notation we shall denote
‘the shift on Z also by f'. Define

Df,: a(T, L) a(Ly M)
as the map induced by Df% Ty, M1, +1M Proceeding in the same
way as in Theorem 1.17 we defme Fre

Put

fl . |:-A11 A:m:l_ *//'”@V“.-y«//”@/if“
. = : .
'A‘ﬁl 'A'22
Using Theorem 1.10 and Proposition 1.7, one can check that for
any 5 > 0 there exists 6(y) > 0 such that if @al(f,f < 8, then
Mull < (@1-4+24)/2, Mal< ‘77)
G < @-4+2/2, (4l <_:71-
We shall show that if # is sufficiently small, then inequalities (3)
imply (spec(fu))n 8" = @. This and Theorem 1.17 will yield the existence
of the structure of an Anosov endomorphism for f .

‘Write
Ay, 0
‘A=[ u
0 A,

Let us Qstima,te the norm of the resolvent of .4 for £e§*
[(An —E~? 0 ]
0 (Ayp— )|

(8)

IB(4, &) =

For Vey® we have
WA — EY VI = I1EL(V)l— 1y (V)] = (L — ((L+2)/2)) 1V
= (X —2/2) 7.
For Vey™ we have
W(4se— ELY VI 2 I aa( V)~ IV 3 (1 2)/2) 7 = 1)1V = (1~ 2)/2) [V
For any veT,Z we consider the decompositions
v =t 02,  olelh, vﬂeE;J‘
and
v =0kt Vel v Y.

Let o be the number defined in Proposition 1.7. We have
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o] < 1™+ 1)) < (a+ 1) e = (a+1) Iivzll < (a+1) wll
In the same way we can. get [0°] < (a-+1)|].
Thus, for any Ve, we obtain
4 — &L~ VI< (2/(1— l)SﬂIJ(lV wll 1V < (4L +a)/[(L—=2)}IVI.

Therefore

inf|R(4, &7 = (1—-1)/(4(1+a)).

gest
It follows from the above inequality and from Remark IV, 3.2 of [3],
p. 208, that if

C o A
(4) Wi A”“H[Am . ]
then

‘ <(@1-2)/(41+a),

(speefy) NS = @.
For any Vev':

0 Ay A (T® A & . -
” Ay 0 ]( )‘ I 12( M4 Aoy (P < (NP4 1TV

<2+ |Vl
Thus, in. order that inequality (4) be satisfied, it suffices to have -2 (1+ a)
< (1—A)/({#(1+a)).
Remark. The above method is more economic than the first method
of the proof of Theorem 1.16. Our considerations concerning the operator

Ay Ay . e : . X
are in fact hidden in the first method in proofs of Theorems
21 22

1.11 and 1.13.

1.18. Notation. Let A be a hyperbolic set for the endomorphism
f: U-M. Denote A =1lm(4,f) PM Define f: A>A by =.f((@,))

= Ppp1 .
It will be ugeful to prepare the following essentially topological

1.19. Tiowma. Let  g: U->M. Then, for any compact set P <
+co
lim (N g™(T), ¢) invariant under §
e -
‘ P aEE(”o(P%g)- {
Proof. It is obvious that lim (my(P), g)  P. Now let (m,) be a g-

trajectory in. lim (m(P), g). For ;L-IE_T i there exists a; P such that = (a;) = @;
for j > . Th’uﬂ a¢—+(w,n) and by compactness of P we have (w,)eP.
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Tsing Theorem 1.13 we can obtain an easy proof of the following

1.20. TEEOREM. (T 7,) (V7 < 1) (T2 > 0)(Vf': U-M)if Qal(f,f'), thew:

(a) there emist A’ = U such that f'(A') = A’ and o homeomorphism
h: A>A' =lim(4',f") such that

(i) hofld = (f'|4"Yoh, and

(i) o(h,id) <7,

M if Pc hm ﬂ (f™(!),f) = P M and if a homeomorphism
hy: AP samsfws - conditions: hyofly = ( f |p)o by and g(hy, id) < ny, then

P=A and hy, =h.
Moreover, for each f'-trajectory (x,) « A’ there ewists a hyperbolic splitting.

Proof. In Theorem 1.13 one can take X = 4, g = fand ¢ = 7. Put

A =p(d) and B((m,) = ( ( ( )))zi.m.m

(p: A—U is constructed in Theorem 1.13 and fulfils pof = f'oy). By
Lemma 1.19, h(4d) =lim(4',f). In the same way one can construct

s A'—T such that o]’ = foy. Define

W (@) = (v (F((n)))1 -

Since o(yo ', ) < 7o and o (y'oh, m) < 7o, we have yoh' = my, yp'oh = m,.
Hence hoh' =idy, and Kok =id,, so & is a homeomorphism.

Let hy: A-—>P satisty the conditions of (b). Then 0 (760 by, 7o) < 7o,
80 mo by = v, which implies the assertion of (b).

Sometimes we shall use the notation by, for k.

Since Anosov endomorphisms are not structurally stable (cf. §§0, 4),
therefore A need not be alift of any mayp. In fact, if b were alift of hy: M—M,
thenf'oh, = hyof.

1.21. Remark. If f: MM is an Aposov endomorphism, then
gyl (M, ) = lim (3L, 1),

Hence, taking into account Proposition 3.4, one can obtain

1.22. COROLLARY. The property Q(f) = M is stable. More emactly:

(VfeBad An'(M))(3e > 0)(Vf) (o(f, ) <& &Q(f) = M) = Q(f) = M

(see § 3 for the definition of nonwandering points).

1.23. Remark. mPer(f) is & one-one map, o hypy defined in Theorem
1.20 induces a one-one map Oy, ]?er(f)n/l»]?er(f )nA' given by the
formula 0, = 7,0/hy,0 (nul(Per )nA))
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If f: M—>M is an Anosov endomorphism, then 6., maps Per(f)
onto Per(f).
§ 2. Stable and wunstable manifolds.

2.1. TupoREM. Let A be a hyperbolic set for an endomorphism f: U~M
with the hyperbolic coefficient smaller than a A << 1. Then there exist B> 0
and p > 0 such that for amy f': U—~M gol(f,f’) < p and for any f'-trajec-
tory (wn)eh,,,(/I) (see definitions in Theorem 1.19) the following conditions
are satisfied:

a) for each inleger 4 the set
Wiar = {ye Mz (V1> 0) o(f*(y),f*(w)) < B}
is o manifold (called as in the case of a diffeomorphism, the local stable
manifold);
(b) for each integer © the set
Wapr = {0 M (A(Wnhhamo) (V2 < 0) [f(4,) = Y 41&Yne U
& (Yt 0) o(y_y, #;-0) < R)]}
is @ manifold (called the local unstable manifold);
(©) (Y2, ye Wyg,n)e(f*" (1), f*7(2) < (2+2)/3-¢(f" (%), f"(®),
(Vz,ye Wﬁ.%,n 0 (Yto1s ~t—1) {242 [3-0(Y_yy 2)
for t=20,1,
(d) T, W{z; =B for (m)ed.
Furthermore,
(e) (Ve> 0)(30 < 1 < B) (Y (@,)ed) Wi ,, B, are e-0-close
(for the definition of e-("-close see [13]).
Proof. Let u, be such a number that if ¢, ( (f', f) < po, then the
hyperbolic coefficient of f' on m,(A’) is smaller than 1 and max (sup 1Df 2l
sup (Df)~H)) < max (sup D7l sup I (DfYI)+1 = 4.

Choose & number 6 > 0 to 1 ¢ and A as in Theorem 1.11 on uniform
perturbations. Then there exmt numbers 0 < u < fhy, 0 <7< min (1,
inf {dist(4', M—T): eu(f,f) < pu}) such that

(VF, e (F, 1) < 1) (Vg em(A)) (Ve )
<1) % &) <n = |ID(expiy )0 0exDy)oeyny — DA < 8

(VoeT, M) (]/ +4 /]/ ?-E;i)||wn<||<Dexp;l),(v)n
(l/2+z 1+/’L)H "
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For any f' with 0 (fs f ) < pand for any (@,) e}/I' consider the sequence

.. =T, .
Define FM:.B(O, n)~>

- ()€’

-'”¢+1M by
Fyy(v) = expg 0f 0exp,,(v).

Then ineoiuality (1) implies

By, (v) = Df (o) < ol sup |(DTy)—Dfr
wi |lwll <l
<lhlo<s it l<n;

‘inequality (1) implies also
(DFy )y — D (Df)ull <

So it follows from Theorem 1.11 that there exist manifolds WM " :md

W, contained in the balls B(Og, ar, ) such that g( (W) guey <

Ty 17

Write Wie) , = exp, (Wi). The number B may now be defmed
as an arbitrary 7 satisfying the above conditions. (d) now easily follows
from the fact that for #, < n,

mi <

Using Theorem 1.12 one can prove the following

2.2. ProrosITION. Let f and R be as in Theorem 2.1. Then

(Ve) Au) (VS': T-M)(V () e 4] (Vi)

eqlfify<u = ch(Wf’ aghyep @), R 2 Wi x, \n) <

2.3. PROPOSITION (see [4], p. 161). Let A be the hyperbolic set for
f: U—~M. For sufficiently small 4 < B and sufficiently small u we have

(VF': O, (', £) < W) (V0 < 8 4)(9) (¥ (5),(y) ey D) (V)

(G("vn i) < 7’) = W;f,dr]iw ;'/;,a

and, the intersection consists of exactly one point.

Proof. The propogition easily follows from Theorem 2.1 and from
the following generalization of Proposition 1.7:

If f is an endomorphism with A the hyperbolic set, then there emist u > 0,
E>0, a>0 such that

(Vf's U=M) (Y (@) hpp( D) (Y (1) ehpr( )
(901 Fof') < néo(wo, o) < &) = tan < ( 'vol/o(]}“(v‘,ﬂ)o) -Ua;u)i' ) < a.

2.4. Notation. If g{a,y;) <» = »(4), we shall denote (ay in [4])
by r(#;, ;) the unique common point of the manifolds W},m,[, g and Wi, 4.
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2.5. szonm Let ()42 o b =0,1,..., (@ ed, be a family of

J-trajectories. If (2F) - (al) (the convergence in the topology of A), then
( ot
() Wyt &
Proof. The theorem is an easy corollary of Theorem 1. 12
2.6. COROLLARY. If families (af) , (y%) e A, H=0,1,..., satisfy (a%) (o)

and (Y i (), then
”(af, f'/?)m*”'(w‘i)r )
for every i (of course, provided that v(af, y¥) is defined).
Now we define global unstable manifolds.

2.7. DepINITION. Let 4 be the hyperbolic set for f: U—M. Let
(z,) 4. The global unstable mamfold is the set

Uf" (Wi pR)-

n=0

Way =

More exactly:

We = Uf( f(f(W:; W nU)nU)

Remark. If U s M, then W, may be disconnected.
One can in a standard way prove the following

2.8. TumorEM (cf. the analogous theorem for diffeomorphisms in [4]).
Let o O"-map f: M—M be an endomorphism on a neighbourhood of its
hyperbolic set A. Then for (w,) e Athere ewist diffeomorphisms hm ac : R"—»R™

(m = dimEy,) and 0" maps k : B"—>M, ky(B™) = W3, by, (0) = @ such
that the diagram
. >R™ Ozgiyy > R™—
kz’i : k”i+1
Y b Wu
- W Wy >

commastes.

If f is vegular on the whole manifold M, then k, are immersions.
Note that km,; need not be one-one maps.

2.9. DurNirioN, Let us define a metric of, as the metrie on B™ deter-
mined by the Riemannian metric on TR™ induced from the Riemannian
metric on M by the immersion

fogy: B"—>Wo, = M
(the subscript @, in the symbol ¢f, will be often omitted).
2.10. Notation. Write Wi . 4 = {@eR™: of (2, 0)< v}

Bfs Ty
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Note that this set is compact.
2.11. Notation. Let f: M—M be an endomorphism. Then we write

6.(f) = {(@) lim (M, ): @ = a}.

In the sequel we obtain some results concerning the structure of
the set (W, r)(n) €Gu(f)-

To this purpose we distinguish a certain class of Anosov endomor-
phisms SEndAn"(M); its elements will be called special endomorphisms.

2.12. DEFINITION. feSEndAn"(M) if f is an Anosov endomorphism
of clags (" and, for every @, (#,) Gy, (¥n) <Gy, we have HZ = Hj.

2.13. ProrosITION. If feSEndAn'(M), then for every ®, (w,)eG,,
(Yn) €@y we have Wg = Wy .

92.14. Remark. Bach algebraic hyperbolic endomorphism on the
torus is gpecial.

9.15. THEOREM. Let A be an algebraic hyperbolic endomorphism on
the torus T™ with a symmelric matric. Let A especd, |4,] = max [A].

Let pjespecd, luy) = max 1. Aespeod
Aespecd, || <1
Denote by o the degree of the endomorph«sm A (=

If o—1> Afpy, then

(Ve > 0)(VoeI™) (3fe01(1””, ™), em(f;4)<e (2> 0) the fam-
iy of sets {me 2 (@) Gy ()} with the Hausdorff metric contains

a subset homeomorphic to the interval (0, 1.

The same is true for the family {Hz NB(0,1): (,)eCGy(f)} with the
Hausdorff metric.

(We call the lagt property “the property I of f at the point &™.)

Proof. It sufficies to prove the theorem for non-periodic points
becanse each periodic point is an image of a non-periodic point. In fact,
since deg.d = o > 1, we have that the inverse-image of any point contains
at least two points and at most one of them can be periodic. Let vy, 7,
Yoy Bay «eoy Ppy Tpy Vppas -5 ¥ DO all the eigenvalues of 4 (only the lash
g—p numbers are real). :

Here p +¢ = n. Denote the real parts of the eigenspaces by

1) By, By, ..., By, Bypay oo y 1y,

For every 4, 1 <i<p, we choose a basis {v;, w;} in B, such. that

|det.Al).

respectively .

a;
A|E; —[ 8, ﬁ] Choose in RB™ an inner product satisying, for every

< i< p, the conditions v; | w;, |v,] = \wfl\ =1 and H; | H; for ¢ #j,
1 <1, §<g. .
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Finally, we equip T(I™) = T™x R™ with the Riemannian metric
induced by the above inner product and denote the metric on 7™ induced
by this Riemannian metric by .
A is a covering map, so there exists a number 7> 0 such that for
every @&, 2o I™ if A(2,) = A (%,) and 2, # 2,, then o(z;, 2,) > 47.

; oo
Let # be a non-periodic point. Let us denote the points of | J A~"({z})

ne=l

by n-tuples (o4, ...y 0n); 0K 0;<< oy in the following way (defined by
induction): ‘
If (04 .., 0,) €A™ ({w}), then o—1 of counterimages of (o, ..., oy)

laiy outside the 27-ball with centre z. We denote those points by (oy, ...
ey Oy 0)y (04 ovey Oy 1)y ooy (0, - o —2) and the last counterimage
by (04 .eey 0y 0—1).
‘Denote by (oy, 09, ...) the trajectories which are elements of G (4).
"Turther on we shall define certain disjoint neighbourhoods of certain

) Ony

00
points contained in () 4~"({=}), in which we shall perturb the function 4.

=1
Now we introduce further notation. Let an inner product be defined
in B™ and consider a splitting into orthogonal subspaces R" =P, P, ...
.. @®Py, k=2, This gives for any yeR" the representation y = y,+ ...

. Y. Write
(2) Kopoay = {@ePyr ol < agd+ oo +{wePy ol < o)
Let dim P, = dimP;, = 1. Define ¢, Ky, o—~Ko o 28 follows:

Qo(Yry ooey Yp) = v(f’/n cony Yimrs Y€y (Yafan)  pa(Wall/aa) - - ”'I’z(?;’k/ak))y
where p,, ¥,: RB—R are functions of class 0% such that supp ¢, = {—1,1),
|(~—1/2,1/2) iy linear, p,(1/2) = —y1(—1/2) = 1, [yps(#)] <2 for every
weR, suppy, « (—1,1), v,){—1/2,1/2> =1 and for every ze<R we

have 0 < py(2) < 1.

(3) Ij’ |2¢(a o) sup |dy, [di]| < 1, then @, is a diffeomorphism.
R

Letus return to the torus I™ Let By, ..., B, (respecmvely, Eh, y By,)
be linear subspaces of R™ buch that {Byps 113’ < q} {Ejl,
co By} < (B, Bg)) (see (1)) and E¢1—|~L’ + B, v (Bt

oo By, = B Let (B be one-dimensional lmear subspa.ce of R"‘
contamed in the A-invariant subspace corresponding to i, (u;) (if Ay (u4)
is not real, then X' (') is not .4-invariant).

Denote by diyy wvey Kipy fgys o-ey g, thE eigenvalues of 4 correspond-
ing to Hy,..., By, ‘Efl’ ooy By
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Let us fix the splitting:
Tk
I(I™) =@ F;
f=1
=F®E,NEHD... SE NEHD(E NE'ND ... @B, nE" OB,
Consider the splitting

k
Loy (T =§_Dl(DATZI,..,.‘:”))"’(IQ%

Denote the set exp,(K) by K and exp,p.exp;’ by ¢¥, where K is the
set defined in (2).
Write (A/w,)/(c—1) = &. For any point (oy, ..., o,) We define

.....

o) — If(al'"" ay)

Ayeens @R
for the following values of a;: oy = z/k*(L/4)", ag = -r/lc-(l/l‘,q_l) for qf:
w41 and @, = 7[k for ¢>r--1.

It is easy to see that 4 (U, ...
, O , < 0—2, then:

o)) = Utoyyu.. oy BenCO I 0 < 0y 00

very Oy Ty
(017 LRRS | anl) # (0'1) LRSS U;Lz) = U(al,...,am)m U(v‘,...,u,'ts) == Qj'
G
@ % o) @ %/// * RO TRR T
Uam Uy / \

we perturb 4 on Jined sets

Fig. 1
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We now define a transformation f: T™—T™ ag follows:

A4 (y) for y¢ U ( U ) U(crl wIp)?
N (67,000,
f(y) = 0<]u‘<g'f

Aoglo "’"’(y) for

01+ @y & Ye U(al,...,a-n) .
It is easy to see that v
”-D(ﬁg?"’;;xﬁun)f—idli < 09" for some constant c,.

Hence and by (8), if ¢; > 0 is small enough, then f is a 0'-diffeomor-
phism. ¢, can be chosen arbitrarily small, provided ¢, is small enough.
Therefore, o0, (4,f) < e

It is obvious that if oy, ..., 0, < ¢—2, then

W}’:no((cl,uz, 11 030,0,.0.)), vk =MWy, (RN 1 U(nl, ,u'n))'
(1/2) (/)
e <0, 1>—*{Wf}”,mo,ge= (%) €

Write # = . Now we shall define a transformation

‘Write

M:{te(O,l):t:jo, 010K <o—1,n=1,2,.. }

fuml

Qf course, & is dense in {0, 1>. We firgt define +': &/—#" by

k3
oy N e
v (Z 0’5/(0 - 1)1) = W}‘,no((cl,vz,...,un,o,o,...))'
(251
It is obvious that / is an injective Lipschitz map and its inverse is Lip-
schitz, too. Furthermore, ¢ («)is dense in #" and in view of Theorem 2.5
# is compact. Therefore one can extend ¢' to a homeomorphism ¢: {0,1>—=%#".

2.16. Examprr. The endomorphism

n 1L 0
110
0 0 n

for large » watisties the hypothesis of Theorem 2.15.

2.17. Remark. If (o—1)> (4/uy), then in Theorem 2.15 one can
claim that feO"(M, M).

Another property of the family (W #)w,eq, is described in the
following

2,18, TumorEM. Let feSEndAn'(M)—{Diff AnuExpandings}, 1<
< +oo. Then for every s> 0 and @ M there exist f': M—~M, 2> 0 and
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a set G, < G, (f) such that - Sy )< & @, is homeomorphic to the Canior
set and for any 1< R the map G2 (@)W, — Wz 48 & homeomor-
phism of G, ondo the family W3 s = Wi ap e, 0Q0EDDED wilh the
Hausdorff metric.

Analogously, &> (zx, J>Bg s a homeomorphism.

Sketch of the proof. Let «# be a non-periodic point. Let =, o be the
numbers defined in Theorem 2.15. Let ay, 0 < o < 7, be such a number
that f(B(f(w), )N B(f(@), a;) = B.

- Let ay, 0 < ay <7, be such a number that f(B(®, a)) = B(f(2), a).
As in the proof of Theorem 2.15 we denote by (0) some point contained
in f”1 {z}) such that (0)¢B(z, aa)uB(f( )y @ ) Let us denote the points

of U 7 ({w}) in the following way (defined by induction): if (ay, ..., o,)
sf {w} 0 < 0; < 0—1, then there exists a point, which will be denoted
by (o4,..., 0y, 0), contained in f~"'({}) such that (oy,...,0,,0)

¢B(=, az)UB(f(w)7 al)-

© Now, using a method similar to the method applied in Theorem 2.15,
one can perturb fin the union of disjoint nelghbourhoods of the Tollowmg
points:

{04y vy Oop) Wlth Opipr =0 for i 0Kig<n—~1.
The set & can be defined as the set of all trajectories (0, ...) for which
Oy =0, 4 =0,1,...
2.19. COROLLARY. Any element of SEndAn(M)—(Diff AnuBxpand-

ings) is not a structurally stable map.

Proof. If there exists a homeomorphism p: M->M such that pof'
= fop (where f’ is constructed in Theorem 2. 18), then, for some &, o(z, )
< ¢ implies ¢(p(®), p(y)) <-R. Hence

(Wf',no( (@), 6 s) = WE o), R ‘P(W}",no((zg)),d) < W}fw(m)za
for some f'-trajectories (s,), (# w) such that (s,) s (4,), (2,), (#)) <G

This contradicts the agsumption that ¢ is a homeomor phism.

§ 3. Axiom A endomorphisms.

3.1. DEFINIITON. Let f: MM be a continuous map. The set L(f)
of nonwandering points is defined by

2(f) = {we M: (YU a neighbourhood of z) (In > 0) MUYNU @)

Corollaries 1.14, 1.15 imply the following

3.2. PROPOSITION. Let f: M~>M be an Anosov endomorphism. Then
Perf 2(f).

Hence, as in the case of a diffeomorphism we can generalize the
notion of an Amnosov endomorphism:
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3.3. DEFINITION. We call & map feO'l(M M) an Awiom A endomor-
phism iff:

(a) each point of Q(f) is regular,
(b) 2(f) is a hyperbolic set,
(¢) Perf = Q(f)
- The following proposition can be verified directly:
3.4, PROPOSITION. Q(f) = 2(F) = {(w,)¢ M : for every m, @, 2(f)}.
(We recall that f denotes the shift in the space M = lim(M, f),
Qlf) = Lim (2, £12)).
— -
3.5. PrROPOSITION. If f 48 an Awiom A endomorphism, then Perf is
dense in Q(f). .
We introduce the following metric on M:
5((“’1»)7 (yn)) = Su];((2 _{__}_)/3)\”5 Q(wn: yn))
€.
where 2 is the hyperbolic coefficient of f. Let (w,) e 2(f).
Remark. It is obvious that the condition (¢) implies f(Q(f)) = 2(f)-
The condition (a) implies f be an endomorphism in a neighbourhood of 2(f)

in the sense of Definition 1. 1
Define:

W) = (e 2
W"‘“{ s = \("/n)G g
It is obvious that
-Ws(u)) == { yn EM 0 (Yns ®n) e raary 0}
Now we prove simple propositions:
3.6. PROPOSITION. We have !

(3830 < u<1)(VE > 0) §(f (@), F((ya))) < w*8((@a), (@)
f(w (yn W(wm.dﬂ
(Vo< 0) 3(FH{(@)s F(a))) < 6 5((@a), 9a)) Jor () W00
Proof. We put 6" = R (R was defined in Theorem 2.1). It (y,)
e Wi, n then

8(fl), Flwa) = 511]9((2.-1-2)/3)|n|g(m
max(mp( (A=2)/3)" g (@, ) “‘;13((2""2)/3)]"'9(%“,ynﬂ))
By Yy ((2—}- Z)/3) 51;1;((2_}_ ;_)/3)17»1 o

8( (), F¥((@ ))k—bwt-—m) o},
S(F () (@)l < 8 for B>0 (B<O).

bl Y1)

<ma,x(( (2+24)/3) sup( A+2) /3)‘”’ Dy yn))

((2 +2) /3 !Q( (4) yﬂ))
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Tt suffices to put g = (2+21)/3.
A similar argument holds in the case of the unstable space.

3.7. PROPOSITION.
(36" (V0 < 8 < 8™)(Fe> 0) (Y (an); () e R(F)) §((wn)7 W) <& =
= V"Vf%)’,,nW“(j,n,,d conta'mi exactly one point r((wn), (yn)).
Moreover, 1f((m,), (Yn)) € 2( f) (i.e. @ has the local product structure).
Proof. Take 6 < 4 (4 is detined in Proposition 2.3). For &< &
take & = min(»(8/2), /2) (v is defined in 2.3). Let 8l () < ¢,
(@), Wa)ed . )
Write 2, = 7(%, %o) (cf. 2.4). Of course, #e Wy s Liet (2,)¢ M be
an f-trajectory such thatz,e Wy, 5 for <0 Ifnz0, then ¢(z,,s,) <
10 (20, ). Since o(a,, ¥,) < 1/u", we have (25 Y) < (1/p") 0.
If 7 < 0, then oy, ¥,) < 4™ 0(20, Yo)- Since ¢ (@, Yn) < 1/u™, we have
0%y @) < (1/u™) 6. Hence (2,)e Wisy,e N Wiy,,0-
One can prove that (2,) < in a standard way. It may be done as in
the proof of Theorem 6.1 of [4] (apply Theorem 1.13 and Theorem 2.5).
Tn a similar way as in [4] one can prove the following
3.8. PROPOSITION. (a) £ is & locally mawimal set (i.e., there ewisls
an open set Uz @ ¢ U & M such that

(Flok= U = {fl@)) = 2

() (V@) e M) (I (w,)ef) (a,)e Wi, (if J maps M onto M).

3.9. PROPOSITION. (a) 2 has a local product structure (i.e., if (@,)
(W) G and o(m, yo) < »(4), then r(@y, Yo)e Q).

(b) 2 is a locally maximal set.

(c) (Vaoe M)A (y,)eQ) we Wy, (if f maps M onto M).

Proof. (a) follows from Theorem 1.13, (b) and (¢) follow imimedi-
ately from Proposition 3.8.

One can easily generalize Oorollary 2.6 as follows:

3.10. ProrositioN, The map

() {((%‘n), (f’/'n),)e‘g(f) X‘Q(.f): é((mﬂ)’ (yn)) < 8(6“)}"")"9(f)

48 continuous. .
Write W) = Win Q(f).

Propositions 3.5, 3.6, 3.7 imply that f!.Q(f ) is a8 homeomorphism
satisfying Axiom A* For such homeomorphisms R. Bowen in [1] proved
the following:

3.11. TEROREM (speciral decomposition theorem). There ewists the
decomposition Qf) = P (FHu ... VQ*(F) such that £ (f) are closed disjoin
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sets, f(Q%) = Q0 where g is a permutation of (1, 2, ..., k), and if g"(j) = j,
then fr: Q1> Q7 is C-dense (C-density is defined in [1))-

Remark. One can define the sets Q7(f) in the theorem above as
the closures of the equivalence classes Per?(f) of the equivalence relation ~
defined by:

(mn) ~ (yn) iff W@w“mn) #0.
3.12. DEFINITION. We define an equivalence rélation in the set Per(f)
as follows:
B~y < [Ty o(B")NWE,, 4 B, Top (R™ W2, = @ and each of these
two inter-sections is transversal at least at one point].

3.13. PROPOSIITON. The seis Q/(f) = mQi(f), j =1,2,..., %, are
preaiﬁgly the closures pf equivalence classes of the relation introduced in
Definition 3.12: Pex?(f).

3.14._}%_@mark. It is not difficult to prove that for any (@,) e 2, zye 27,
we have Wi N2> Q.

For diffeomorphisms one can replace the above inclusion by the
equality. In the case of the endomorphism the inclusion may be proper.
There is an example:

R R

Fig. 2

3.15. BxAmprm ([9]). Let f: §*—S* be defined as shown in Fig. 2.
We have 2 = Q'UQ% Q' = {exp(0)}, & =8'— U f~(exp2ni ({0, a)u

nz0
u<h, 1))) :
It can be seen that for any zeQ* if (w,) is an f-trajectory such that
%y = @, then the point exp(0) belongs to W . '

5 — Studia Mathematica LVIIL3
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The following two propositions will be used in § 4:

3.16. PrOPOSITION. Let ‘f: MR, be an Amiom A,aevjilgmr)7~plaism.
.y oy we have \ ) Wy = M.

J=1

Then for any points dePeri(f), § =1,2,..

Proof. This easily follows from Proposition 3.9 (c).

3.17. ProposicIoN. Let f: M—M be an Anosov endqmom)h@'sm. Then
there ‘;zm';ts a neighbourhood 0y < Bnd An'M of the e?lzdomorphmm I such
that if f <0, then the conjugacy 0pp: Pex( f)—Per(f') preserves spectral
decomposition. ' ‘ o

Proof. hyy is a homeomorphism between 141_12(M ,f) and EI_H(M I

i ' owith [, fore W == W}‘ Rpglin)
reover, hy; conjugates f' with f, theref rr Wi = Winyli
1;[}2111?32 hf,; prgerves the relation ~ defined in Remark 3.11. Gormequgnﬂy,

our statement follows from the equality in Proposition 3.13. . '
We conclude this section with some results about measures invariant
under f or f if f is an endomorphism satisfying Axiom A. f 13 is a homeo-
morphism which satisfies Axiom A* and has the property d(;swrlbed in
Proposition 3.10. Thus, for f|@, Bowen’s theorems proved in [1], [2]
hold. So we have the following theorem: " ‘
3.18. Temormy. Let g7 (j) = j. Denote X! = (J QUO(f). There ewists
o ’ o1 .
on X7 ewactly one probabilistic measure i invariant wnder f with entropy
he (F127) = Ryop (FIXT). i cam be obtained as the weak limit of the sequence
: N,,.(fiD)

Ny F12) e
ewmists @ Markov partition for f|XI. Therefore the system (X7, fIX, u) s
isomorphic to a Markov chain. : o

3.19. Note. Let # be an invariant measure for f|Q(f). Write »
7 (7) (i.e., for every B »(B) = i (n;* (H))). Then the system (2(f), f12(f),
is a matural extention of (Q(f), fIR(f), »).

Theorem 3.18 and Note 3.19 imply:

3.20. There exists on X! evactly one probabilisiic measure p ?‘/ruvm"i(ww
under f with entropy h,(f|X’) = hm(j’\XJ). w can be obtwined as the weal

limit of the sequence (u,)y¥, where

(Bo)7, where [, (B) = for B a Borel subset of X’. There

)

=

N 1)
B 5
for B a Borel subset of X7.

3.21. Remark. If g(j) = j, then f1# is C-dense, hence the sy‘sf.e]‘n
(X, fi%, @), which is a natural extention of (X7, f|X, u), is isomorphic
to a mixing Markov chain, hence it is isomorphic to a Bernouwlli shift.

icm°®
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§4. Nonstability of Anosov endomorphisms.

4.1. DEFINITION. We say that an Anosov endomorphism f has the
property (x) iff for every w, yePer(f) we have @ ¢k, (R™-—{0}) (for the
detinition of &, see Theorem 2.8).

Notice that for @ = ¢ this means just that %77 ({z}) = {0}.

4.2. BXAMPLES. (a) The endomorphism from Example 1.3 has the
property (x). Indeed, if #eT? is periodie, then its coordinates are rational.
But k&, (t) = @#+1-(a, b) and a/b is irrational.

(b) Bxpanding maps have not the property (x). More precisely, if f
is an expanding map of M, then for every » » € M we have wek, (R™— {0}),

Denote by EndAn"(M) the set End An" (M) — {Expandings}.

4.3. TurornM. The set of all elements of BndAn"(M) satisfying the
property (x) is a dense Gy (residual) subset of EndAn"(M).

Proof. Fix any Riemannian metric ¢-, > on M (independent of f
unlike the metrics adapted to f used in previous sections). Let ¢ be
the metric induced by- (-, ->.

(i) Let n be an arbitrarily fixed integer. Write

Poryf = {a}, o}, ..., d"}, 4, = min g(aft, f2).

J1#dq

Let I" be the seti of all noncontractible piecewise-(* loops in M. 1,(y)

denotes the length of y. Finally, diam, (M) denotes the diameter of MM
in the metric p. Put;

_ min(C, diam, M)

& = a3 diam, M ’

where € = infl,(y).

yel’

Of course, & < /2, hence for every Sf-trajectory (a,) by W o e s an
embedding (for the definition of W;‘Wmu see 2.10). Indeed, if on the con-
trary &, (a) = ke, (b) for @ = b, then there exists a C-path in
joining & with b, such that lﬂu (¥) < C.For p sufficiently large k,%p[ (9ay 12, O+ -
.0 g‘”‘l~7;‘l"f-~,n»l<l)“]‘ (W, ;.‘:{’nf'au) is an embedding, therefore the path v, = Icw_po
ofg o...og)7" (y) iy not closed and Fioy (7) = f" (1) But L[k, (y))
=1 ,(y) < 0, thuy kyy(p) in contractible. This contradicts the fact that #2

u
21,87,0%

! ol
is o covoring map. . )
In the sequel we shall identify
Now define
Al [felndAn"(M): (Vye M) (5 ) ePer, (f))
)
= Yd ]LJl(W:cjf,af,o“““{w}})}'

We prove that for every &, A% is dense in End An"(M). It is evident
(in view of ¢ < (a/3)) that A° = End An'"(M). It suffices to prove that

W ge, v With its image under 7.

]
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Let feA¥; as long as f is the only transformation con-

AFH g dense in A%
. {1y -- ’fys} the set

sidered, we may omit the subscrlpt f. Denote by ¥ =
of all points such that

F¥4 (yg) ePery (f),

y,e(W:,(,,,,,eu)——{w’“)} for some j{f), 1<j(®) <i(f).

‘Write
= [ee M: f¥*(2)e (Per, ()} =X
Let 7, < & be a nunber satistying the following conditions

28 By, m)nZ =9
(in particular, B, (Y:, 1x) NFery( f) =a).

=0 i tFE by, 1<

(1) fort=1,...
(2) Be(ytlv Wl)nBe(fl/tza 71) by a8
From (1) and (2) it follows that

(3)  F (B mi)n({ze M: f*(2) Pery ()} — {f(W0)}) =

for t=1,...,8

Let 7, be such that for every s« 171775¢(¢),,,Z o there exists an f -trajectory
(@,) such that @, = » and for every 7= 0

g(w_,, fr.o:dmﬂ(l)..f(mi(t))) < mf2.

From the definition of Wyie it follows that there exists such p that

for any ¢ =1,...,8 we have

) Wi, qn < 2 (Wegith )
Put

(8) ny = dist,{¥, L-jl (HIK,,Q)
where

- -l 3

Ko = kg0 00,0, © - 00 Wit
and o, »4
of o®.

Since ¢> 1, fed® and f“].lr{“Z is injective, we have ¥ K, =@.
But every K, , is compact and therefore n > 0.

Take 7 << min(n,/2,n,;) such that f|V,, where V,
a one-one map for ¢ =1,...,s.

., #®, 270 are the points of the periodic f-trajectory

= Bq(yh 77) is

icm
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It is easy to see that there exists an f', arbitrarily close to f in O"
topology, such that the following conditions are satistied:

(6) FM — :=U1 V) = fI(M— :Ul V),

(7) Per,(f) = {=1, ..., wi(ﬁ},

(8) J(Vy) = f(Vy),

(9) f'IViis a one-one map,

(10) Y ¢Wyiw, s Where g; satisty conditions YV ' () =f(w).

It is obvious that w,¢ W/mm) it for each £ j(f) (), because
n <y <ég<ay/3. Hence V,F\waj(t), o =G,
From this construction it follows that for any ye M

(11) fllc+1

JePer,(f) = yy u Wty

Of course, & = &y . By the definition of 7, we have
U U
Wf,mf,nz.ﬂ“ = Wf’.wj,nz,au'

Consequently, in view of (4) and (5), we get
W}’:w’.ef.e“ < W;‘L’,mj,e,',n“'

Hence and by the definition of the metric ¢* we obtain

‘ sz’.,ﬂf,o“ = W;"’,:ﬂ','f’.e“'

Thus f'ed®+. '
A® iy an open. . subset of End An'"(M). Indeed, if f* is close to fin C™-

topology, then W,, o pla)uspe is close to W,w, L in the Hausdorff metric.

Now it suffices to observe that g,: EndAn"”(M)-E is a continuous
function.

(ii) In the above con,sidemtiom we had fixed an integer #. Denote
the set () .4* by 4,. Then ﬂ A, = {f¢End An"(M): f satisfies the

Io;«o
property (%)} is @y.

In the above proof we perturbed f on the whole manifold M. By alocal
perturbation one can obtain the effect described below (we omit the
proot).

4.4. PROPOSIIION. Jor every wePer(f), U a neighbourhood of » and
&> 0 there emists f' such that fiIM — U = f’|M U, 0pe(fs f') <& and for
every ye<Por(f) we have
E"—{0}) (B"—{0}).

0,/,( ) ¢7Gf/ g/ f(”) and Bf/f(y) ¢kf'r9f’f(‘”)
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4.5. ProPOSITION. The set of all Anosov endomorphisms of class
O" which do not savisfy the property (%) is dense in End An" (M) —Diff An"(M).

Proof. This is & simple corollary from the following lemmas:

4.6. LEvvA. Let feEnd An'(M)—DiffAn"(M): Tale we M such that
fo(@) ePer(f) for some s > 0 ond w¢ler (f)- For every nez‘ghbowhood Uz,
7> 0 and any set {2+, 22, ..., &%, &/ <Per!(f) for j =1,2,..., % (see Prop-
osition 3.16), there emst f’ and j, (L o< h) sawh tlm& Qa, (FL <
flIM—-TU =f|M~-T, 2ePer(f) and f(#)eky fo(B™—{0}).

Proof. In the proof of Theorem 4.3 we have removed. all counter-
images of periodic points from the unstable manifolds of periodic points.
Here, on the contmrv, we include these counterimages into the unstable
manifolds of #*,...,2"%

Write X = {_f“(w) > 0}. One can easily check that there exist
an ftrajectory («,) and A > 0 such that @, = @, dist,(s,f(X))> 4 and
disty(w_p, X) = A for every positive integer p.

Let 6 <min(4, 4/2) (4 was defined in Ploposmon 2.3) and let @
be such that for any f-trajectory (¥,) we have W,, s < Wwo,a,a“"

From Proposition 3.16 11; follows that if we take a = @ sufficiently

lalge, then the compact seb U sz a8 »(8)-dense (i.e., for every ze M
dist, (2, U Wi g,0) < ¥(
Put

7 = min(R, 1/2dist, (v, L]) U )

Je=1 n=0

(R was defined in Theorem 2 a such

that for j =1,2,...,k:

). There existy a positive integer a

-1 U
7ozj_aog i O -

-1 %
p <08 zﬁ(“rnf,m,gu) <
—a a1 -1

where 21,2 ,.1,..-
trajectory of #

,2L., ¢ ave successive points of the periodic f-

Write
Woj = zf 2a,e% U By, d
1/'.‘
Wi, =k, gj y ..omlzj(wg) for ¢ =0,1,...,a
W, &

Feg®~q41

From the above construction it follows that ¢ Wi ,. Write

. k a '
W= jU UW., o=dist(s, W), V= UnB(v,min(s,?,7)
=1 g=0 .

icm
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Fix %> 0 a number such that for every e M for which o(®, @) < »,
there exists f* satisfying the following conditions:

1) eV <my fIU=V =fI1M-V, f(@)=7F (@)

Now fix a non-negative integer p such that p-+1 is divisible by
13 .
[Jordz’ and 6+((2+1)/3)” < . There exist j, and ye Wy, u such that

Fre2l
0(#_y,y) < #(8). Hence r(a_p, y)e Wo_ ,0Wy, and Wy, = Wi m-
Moreover, Wy, = Wi because dist,(2_,, X) > 2.

We obtain g(f”( @y ), w) < %. Thus, the endomorphism f’ satis-
tying (1) for & = f?(r(#_p, ¥)), is equal to f at each point f2(r(z_,, y)),
0<g<p and ), =1

Moreover, f == f’ at the points with negative mdlces belongmg to
any ftraqeutory (Yn) hllbh that g, = 7(#._p, y) and y_ge W_a for0<g¢<oa
Since y_qe Wy, = Wf, o We obtain

f 07 =f/ﬂ l~1+a(y~a)€ "Vf/,fr.’!?+1'|“’(zi"0) = W}l;’zjo.

Purthermore, f2(y,) % f ™ 0-1 (% hence f(@)ely o (B™— {0}).
Theorem 4.3 and Proposition 4.5 imply immediately the following
4.7. THROREM. Any Anosov endomorphism, except diffeomorphisms
and Brpandings, is not structurally stable.
Now we shall give a classification of Anosov endomorphism in an
arbitrarily small open set in End An" (M) from the point of view of struc-
tural stability.

4.8. TrmorEM. Let feBEndAn'"(M)—Diff An"(M). Write

={Z = (Zy, .., D) P} (f) X ... X Perd(f)}.
Let F: &% be given by B
f((Z17 7 ) (f --1(1) 7f “‘1(70) )

where g is defined in Theorem 3.11. Assume that for every point w<Per(f)
we have a set J, < Z such that Jyy = F(J). Oy is as in Proposition 3.17.
Then, for every neighbourhood 0>f, 0 < EndAn’(‘M ), there exists
Fe@n O, with the following property: .
Tor every wePor (f) and Z eJ, there is an integer s = s(w, Z), 1 < s < k,
such that

(1) Of'f(w)ekﬂlaf'f(zs(x_z))(ﬂm — {0})7
(2) : 0//{(0’1) ¢ USICII,[)!/!(,/) (Rm et {0}) .
ye

where 8 = Per(f')— U 051 (Zg(uyzy)-
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Proof. Write &' = #n(Per}(f) x ... x Perf®(f)) for t =1,9, ...
If f' ¢ 0, , then k(f) = k(f) and we shall write simply %. By Proposition 8.17
we know that-

85,0 (Z) = (B524(Z1), -y Opp(Zn)) «(Per (f') X ...
for any f'e0,n0 and ZeZ.

Let >0 Dbe a real mumber such that o, (f,f)<e = f'«0no,
and e < p (p is as in Theorem 2.1).

Choose one point from each periodic orbit of f and denote the result-
ing set by I;e—r( f). For any sePer(f) consider the partition of J, into
sets of the form {f**4®(Z)}2 = ZeJ,. Choose one point from each
element of-this partition and denote the resulting set by J,.

We shall construct f* by induction. Set fy = f. Assume that for each
7 (v =1,2,...,1) there are given: maps f,, numbers » > 0, numbers
a, > 0 such that for every v

X Per®(f))

(3) ' a<a<0/2
(C is defined as at the beginning of the proof of Theorem 4.3, now for
the metric g, In the sequel we shall use the metric g, but we shall omit

the subscript f.) Assume that for any wePer,f, Zed,n%* there are given
a sequence of poINts (Y2 anet . and & number s(w,Z)e{l,..., k}

Further, assume that the following conditions are satistied for
T=1,...,%

(4) 0o fes fmr) < 8/25,
() it WEI’,O—;,(f),.ZGJmﬁgr then(Y i, z,n) T 8 a non-periodic f~trajec-

1019, Yw,z),0 = Ops(®) ‘mdG(y(_m,Z),—p-orazmzy 04,1(Zoo,2) 570,

O, (x)e
. " \ / ¢ ‘\ Wy, 6y )
Ly
. b //—
0
L]

° O.,

Tig. 8
(6) ) feqlPere . fy = flPerey,fe it et~ 1,
(7) f;lfht(Perr ) =frlf—7(]?errr ) if =232,

icm
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(8)  for every 7 < T KTt and yePer,f, such that ord(y) = = we have

dlSte(((fg;(Orb ?/) - ,.L_), {i’/(m,Z),n}g:Ooo) - Per’tf‘t) ’ U W}t;., w,aﬁ) Zv;> 07

aePoryf wePeryfz
ZeJpnZT
9 %< (1/2)  ind o(wy, @),
Ty Xy

@@y ePeryfr g

(10)  for every wePer.f, we have

an('W};ﬂ.w.a’ W w,a) < (1/2°")-min(y,), . vy ¥y) for T<t—1
(notice that for ¢ = 0 there i3 no  between 1 and #).
We have to define f,.,, new sequences (Y(w,2z),n); DUIDELrS $(2, Z)

for (#,2)ed = {(#,2): wePer,f, Zed,n (2" —2Y or wePer,,,f, Zed,N
NZ and numbers @, v, ‘
Denote the elements of 4 by (#,2)*,..., (=, 2}, (s, 2)° = (2", Z°)

for o =1,..., ¢

Now we shall construet fransformations f, ,,
and points Y, o, by induction. Put f,, = f,.
Assume that the following two conditions are satisfied:

(11) filPer, 1 (f)) = fi,oPexy,; (), ‘
(12)  condition (5) is fulfilled for f,,in placeof f, and for (2, Z)s,

T=1,...,0.

ooy Jugy numbers s((«, 2)°)

Then for o so large that
(degf)* ™M > N Card(J,n2Y) +o
wzi;;qf

there exists an y and its neighbourhood U, such that
.f?,'cyv*ilmdl(y) = of(f(wa+1)7 fta,.y‘-n)l (?/)fPerft,a:

[Pory(f)v U Waanteyw U W,z 0000l (Perf)) A U, = 0.
webowys gl
2edngt

By Lemma 4.6 there exist f, .., and s((a, Z)**1) guch that

(13) Qor(fl,uft,v-f-l) < 3/5‘2”1:
(14)  for every wePer,f,
QOO(W}Z,.W,M "V;':,,_H,w,a) < 1/¢-2% min (v, ..., »),
(15) Jroqd M =Ty = fy | M — Uy,
(16) ft,a(?/) Ek/t,a—l-l,za((m,Z)"'i‘l) (Rm - {0}) .
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. The existence of a trajectory (y(x,z)u-pzm);{ﬁ"__w satistying (8) for f, ..
in place of f, and (2, Z)**" follows from (16) and from the definition of
the unstable manifold. Therefore, from the definifion of U, and (15)
it; follows that conditions (11) and (12) are satisfied for o+ 1.

Hence, conditions (4), (5), (6), (7), (10) for 7 ==1--1 are tulfilled
if we put f; ; instead of f;.,. '

Now we perturb f, . to an endomorphism f;,, such that condition (8)
will also be satisfied.

Denote the elements of the set |

[l D (Per, ., (f0) — (fid(Peryfy ) v y Yz} )
wealory . S
ZeTynattl

by #, ..., & in such a way that if, for some v, fi;(#) is periodic but
fi:(@) is not, then §< y. Take a,, satisfying (9) and (3) for v ={--1.
| If & ePer,y(fi)—Pery(f,,), then, in view of (9) and (6), (7) for f,
we have: B¢ Wi, 4,4, for wePer,,, (f,))—{&}. This allows us to
obtain the same result for every #, 1< p <X, where a,, i replaced
by a,, T = ordfiEY(@"), using the method described in the proof of Theorem
4.3 and consisting [taking successive perturbations of f, ., removing i
from unstable manifolds. If the perturbations are as in the proof of The-
orem 4.3 and arve small enough, then after the last step we obtain f,
satistying (4), (8), (8), (7), (10) and we can take v, > 0 such. that (8) i
also satisfied.

Now set f' == lim f;,

— t—00

It wePerf and Zed,—dJ,, then Z = ¥ oU(Z) for a unique Zed,
and some positive integer N, and we can define s(#, Z) as such a number
that fN'°fd(”)(Zs(w,Z~))ePer"‘(”*z)f. Now if wePer(f)—Per(f) and Zed,,

then @ = fY¥(#) for a unique #ePer(f) and some positive integer N. From

the assumptions of the theorem it follows that Z == f¥(Z), ZedJy. We can.

define s$(w,Z) as such a number that f¥(Z,q z) e Per®®@4f,

By (b) and (6), condition (5) is satistied also for f’ in place of f, and (1)
follows. Condition (8) (with conditions (7) and (10) which allow to con-
sider f' instead of f;) implies (2).

4.9. Prorosuron. If feBnd An'(M), then [ has infinitely many per-
todic points.

Prooif. For BExpanding the answer iy positive and the proof i well-
known. Assume that f is not an Expanding. Assume that the set Per(f)
is finite. Hence Q(f) is finite. This and the property that the dimension
of each unstable manifold is less than the dimension of M, contradict
Proposition 3.9 (e).
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4.10. PROPOSITION. Let f be an Amiom A endomorphism and let Per!f
be an infinite set for some 4. Then there ewists am infinite set B of positive
antegers such that of by, byeB’ and b, by, then by does not divide b, and
for overy beB there emists @ePor’f such that ord (z) = b.

Proof. Let » be the smallest positive integer such that g () =3
(for definition of ¢ see the spectral decomposition theorem 3.11). Then
one can define B’ as the set of all numbers of the form p-r, where p is
a sufficiently large prime number. The existence of points with such
minimal periods follows easily from Theorem 3.18.

4.11. Trmorum. For any open mon-empty set U < EndAn(M)—
—DiffAn (M) there ewists an uncountable set (f).p of Anosov endomor-
phisms contained in U such that if 1, s 1y, then there ewists mo surjective

map peC*(M, M) which makes the diagram
1

M ! > M

'PJ ]
v

M-

commaile.

Proof. Let feU and let 0, be as in Proposition 3.5. Fix j, such that
Perho(f) contains infinitely many elements. Tt is obvious that there exists
an uncountable family (G),., of subsets of the set B’ (see Proposition 4.10)
suech that 4, =&, implies Gy & @,. For tel let f, be the endomorphism
constructed in Theorem 4.8 for J, defined as follows:

J & if ord (w)eGy,
N l@ otherwise.
I ¢, 5 ¢y, then there exists 4" <Per® f such that ord(#)e@ —@,. Assume
that there is & continuous map ¢: M-—22° I such that the diagram

p/
M- L S— 7

L

] ]

cominutes, s

Tt is obvious that if o,y «Por!( Jy,) for some je{l, ..., k}, then ¢(x),
?(y) ePer®@(f,) for some o(j)efl, ..., k}. For any point zePer(f,) there
existy i such that ¢(y) = » and since dist, (ff(¥), 2(f,)) 750, we have
also  dist, (Orby, (@), ¢ (2(f,))) 552>0; therefore @ep(2(f,)). We have
P(2(f,) = Per(f,), so
(1) 2(R(fy) = Q(f,) ‘

Henceo: {1,..., k}+{1, ..., k}is a surjection, therefore it is also an injection.
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Tor any Z <% there exists an s such that
#: U
0/,1 (#'1) e Wft1’°ﬂ1f(za)’
hence '

ol ) < Wy 5
But ord,lz(qo(ﬂ,llf(m‘l)))¢G,2, therefore
905,1(Z0)) = #(0,5(a").

This implies s = j, (because o is an injection). Ax ZeZ was arbitrary,
we obtain Cardp(Per’t(f,)) = 1. Note that by (1)

p(Per'f,) = PerDf,

Applying once more the injectivity of o we see that the number of
jefl, ..., k} such that the set Per? is infinite iy greater for f, than for f, .
But this is impossible.

Using the same arguments as above, one can easily prove:

4.12. TumormM (a) There ewists a residual subset A" = EndAn'" (M)
—Diff An (M) (the set of all endomorphisms satisfying the property (x)) such
that for every fe A" and U, an open neighbourhood of f in End.An’ (M), there
is an f'e U such that there ewists no continuous map ¢: M2 M such that
pof = fog.

(b) There emists a dense subset B" < EndAn' (M) Diff An(M) with
the property : :

for every feB" and U, an open neighbourhood of f in EndAn", there
ewists f'e U such that there ewists no continuous map @: M- M such that
gof =fop.

for j=1,...,k.
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