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On a.e. convergence of expansion
with respect to a bounded orthonormal system of polygonals

by
P SCHIPP (Budapest)

Abstract. It is proved that the bounded orvthonormal system of polygonals
introdueed by Z. Ciesiolski is an a.e. convergence system.

L. Introduction. In paper [1] by Z. Ciesielski was introduced a uni-
formly bounded orthonormal system of polygonals. This orthonormal
set C = {¢,: neN} (N ={0,1,2,...}) has some of the properties of
the Walsh and trigonometric systems. The relation between the set €
and the Franklin set iy the same as between Walsh and Haar systems.
In the present paper we prove that C is an a.e. convergence system. This
follows from some property of the Franklin system and from the fact
that the Walsh system is & convergence system. The method used here
is the same as in [4].

2. Preliminaries and notation. The Walsh-Paley functions are defined.
ag follows:

1) w, (@) == c*q) ('mz fnkm,,)

f=0

(M. = e \ n2e N, & = Y o,2-0+) e[O 1); @, mee{0,1}, § =V =1).
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The well-known relation between the Haar system {y,: ne N} mnd
the Walsh-Paley system can be stated in the form

z'l)'b
(2) gy () == 27 Sapy (G 1)27) gm. s (0)
Je)
(®e[0,1), 1< k2™, me N).

In general, to every orthonormal set B = {F,: ne N} with elements
defined on the interval [0, 1] we can-construct in this way a new ortho-
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normal set & = {G,: ne N} as follows:
G = Fy, G = I,

om
3) Gm (@) = 272 3 0y (1 —1)27") Fymy (@),
J=1

where me N, 1< k< 2™ and »e[0,1]).
It F, = f, (ne N) ave the Franklin orthonormal functions (see [27]),

then the system @ is equal to the system C introduced by Ciesielski.
The following theorems will be used later:
TrRorEM A ([2], [3]). (a) For all me N and [0, 1] we have

. " o
@) 3 fumial@) < 2°V3 V2™

k=1

(b) For 1< k< 2™ and me N the inequality

(8) Ifumpilh < 6V3 V27
holds.

(See [2], Theorem 5, Lemma 5 and Lemma 7, and [3], Theorem 4.)
TemorEM B [B]. Let a, (n « N) real numbers. Then

(6) fsup ‘Zakwk ‘ dz < Az(z [akl)

where the constant A is independent of (a,, ne N).

3. The main inequality. Let

2™k
M, (8) = 127162”‘,_;%;“@(@’ (me N, we[0,1]),

where the a;'s are real numbers. We shall prove the following
TEROREM 1. If the system I = {If,: ne N} satisfies the conditions

2'm
(7 DTy (@) < OVE, Byl < OV

i=

(0e[0, 1], 1 <k < 2" me N),

then
Pl

(8) Ml <OA( 3 mf) (me N).
Toma M4y

(¢) The Fourier—Franklin series of integrable funclions converges a.e.
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Proof. Let us introduce the functions
K@, 8) = 2™ Py 1 (0)  (h—1)2"" <t < 27, 1<kE<2™, me N).
Then by (7) |

1
(9) m;pfll"fm(w,t)[dwg 0, supf] W, D dt < O
[
and from (3) it follows that
.
(10) Gy (@) = [w, () Ko (o, 1) 8.
0
Let .

mlfﬂfmlz%’"*kw" | (me N,tefo,1)).

Then by (10)

fN VEp(@, )@t (me N)

ggd for an arbitrary geL?(0, 1) Wl'bh lglls <1 by Holder’s inequality we
ve
1

1
6{ 1M < [ V() j’y(m) K (@, 0)|da) @t < |Vl T,
]

0
‘where

11
7= ([ ([ sto) (o, 1 ).

We apply the well-known equality
I = gup [h(t
llhwaiuf (fJ m(@: 1) ldw) ,
Using the mequﬂ,my wv = (u?--0%) /2 by (9) for |k, < 1 we have
f jh w) [y (0, 8)| dtde

(U]
1

1
<1 f 00 ([ 15,0, 01dn) 2144  ¢*0) (1, 016) < O,

0

1
thus I< 0 and of I My < OlIN,la for every geL2(0,1) with [glle<1
Thiy and Theorem B imply (8).
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4. Convergence theorems. Denote by 8,(f; F) and 8,(f; .G) the nth
partial sum of f with respect to the systems F and @, respectively. Since
the matrices (272w, (@—1)27™)F5-1 (me N) are orthogonal, we have

om om
SIF, (0 F (@) = D) (DG (2),
n=0 n=0
thus Sym(f; ) = Sym(f; &)
From inequality (8) it follows that

0
(11) Dlal < oo
. =0
implies lim M,, = 0 a.e. This gives
THEOREM 2. If the orthonormal system T satisfies conditions (7) and
if for every feI?(0,1) Sym(f; F) comverges: a.e., then @ is a comvergence

0
system, i.e., for every sequence (ay,, n « N) with property (11).the series ) a,G
converges a.e. 7m0
Since by Theorem A. for the Franklin system ‘the conditions of The-
orem 2 are satisfied, we have
TrEOREM 3. The system C is an a.e. convergence 8ysiem.
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On maximal ideals in commutative m-convex algebras

by
W. ZELALKO (Warszawa,)

Abstract. Wo give & characterization of commutative complete unital m-convex
algebrag in which all maximal ideals are of codimension one. We describe also situa-
tions in which, thero exist donse maximal ideals (of finite or infinite codimension).

All algebras in this paper are commutative complex complete 10034115‘/
convex and multiplicatively convex algebras (shortly: m-convex algebras).
We shall also assume the existence of the unit element, denoted Dy e.
If A is such an algebra, then its topology is given by means of a family
(llll,) of submultiplicative seminorms, ie., homogeneous seminorms
satistying

loylle < ol iyl

“or all @, yed and all indexes a, and

flel, = 1

for all a. Moreover, if (o) is & Cauchy net, i.e., if |z,—,[,~~0 for each
fixed a, then there exists an @ e.d such that lim (@, — 2, = 0 for each a.
Bvery such algebra is an inverse limit of a directed system of Banach
algebras. We shall describe shortly some facts on these algebras. The
details can be found in paper [2].

Let 4 be a commutative m-convex algebra. We denote by M (4)
its maximal ideal space, i.e.,, the space of all non-zero multiplicative
linear continuous functionals on 4, provided with the weak star topology.
Wo denote by MF(A) the space of all non-zero multiplicative linear
funetionals on 4, also provided with the weak star topology, so that M (4)
is a nubspace of MY (A). Lob us remark that the topology of ™ (4) depends
only upon algebraie (linear) structure of 4 and remains unchanged under
any modification of the topology of 4, though, of course the space M(4)
depends upoun this topology. If we 4, then its Gelfand transform is given by

o' (f) =flw), feM(4).

It is & continuouy function on IM(A). The same formula defines also a con-
tinuous function on M*(4), being an extension of the Gelfand transform
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