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4. Convergence theorems. Denote by 8,(f; F) and 8,(f; _G) the nth
partial sum of f with respect to the systems F and @, respectively. Since
the matrices (272w, (@—1)27™)5-1 (me N) are orthogonal, we have

om om
SIF, (0 F (@) = D) (DG (2),
n=0 n=0
thus Sym(f; ) = Sym(f; &)
From inequality (8) it follows that

0
(11) Dlal < oo
. =0
implies lim M,, = 0 a.e. This gives
THEOREM 2. If the orthonormal system T satisfies conditions (7) and
if for every feI?(0,1) Sym(f; F) comverges: a.e., then @ is a comvergence

0
system, i.e., for every sequence (ay,, n « N) with property (11).the series ) a,G
converges a.e. 7m0
Since by Theorem A. for the Franklin system ‘the conditions of The-
orem 2 are satisfied, we have
TrEOREM 3. The system C is an a.e. convergence 8ysiem.
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On maximal ideals in commutative m-convex algebras

by
W. ZELALKO (Warszawa,)

Abstract. Wo give & characterization of commutative complete unital m-convex
algebrag in which all maximal ideals are of codimension one. We describe also situa-
tions in which, thero exist donse maximal ideals (of finite or infinite codimension).

All algebras in this paper are commutative complex complete 10034115‘/
convex and multiplicatively convex algebras (shortly: m-convex algebras).
We shall also assume the existence of the unit element, denoted Dy e.
If A is such an algebra, then its topology is given by means of a family
(llll,) of submultiplicative seminorms, ie., homogeneous seminorms
satistying

oy llee < Heoll i1l

“or all @, yed and all indexes a, and

flel, = 1

for all a. Moreover, if (o) is & Cauchy net, i.e., if |z,—,[,~~0 for each
fixed a, then there exists an @ e.d such that lim (@, — 2, = 0 for each a.
Bvery such algebra is an inverse limit of a directed system of Banach
algebras. We shall describe shortly some facts on these algebras. The
details can be found in paper [2].

Let 4 be a commutative m-convex algebra. We denote by M (4)
its maximal ideal space, i.e.,, the space of all non-zero multiplicative
linear continuous functionals on 4, provided with the weak star topology.
We denote by F(A) the space of all non-zero multiplicative linear
funetionals on 4, also provided with the weak star topology, so that M (4)
is a nubspace of MY (A). Lob us remark that the topology of ™ (4) depends
only upon algebraie (linear) structure of 4 and remains unchanged under
any modification of the topology of 4, though, of course the space M(4)
depends upoun this topology. If we 4, then its Gelfand transform is given by

o' (f) =flw), feM(4).

It is & continuouy function on IM(A). The same formula defines also a con-
tinuous function on M*(4), being an extension of the Gelfand transform

A
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which will be also denoted by x”". One proves that
(1) a” (M(4)) =2 (¥ (4)), wed,

and this set is equal to the algebraic spectrum o(®) of the element wed,
ie., to the set

o(w) = {1e0: m—A¢ is non-invertible in A}.

Tt U is an open subset of the complex plane containing the spectrum
o(@) of an element wed, and if ¢ is a function holomorphic in U, then ¢
operates on @ in the sense that there exists a (unique) continuous unital
homomorphism %, from the algebra of all funetions holomorphic in U7
(it is an m-convex algebra with the compact open topology and. pointwise
algebra operations) into A, sending the function ¢ (2) == 2 onto the element x.
Tt we denote by @(x) the value h,(p) we have

(@) lp(@)]” (f) = olz” ()

for each fe M(4). In particular, all entire function soperate on all elements
of 4, and if for such a function its Taylor expansion is ¢(2) = Ea%z",
then @(2) = ganwn for each wed. !

The Gelfand-Mazur theorem for m-convex algebras implies that
every closed maximal ideal of 4 is of codimension 1 and it is the kernel
of & functional fe M(A). Since for any closed ideal I = 4 the quotient
algebra is also an m-convex algebra, it follows that every closed ideal
is contained in a closed maximal ideal. An m-convex algebra is waid to
be a Q-algebra if the set of all its invertible elements is open, or equiv-
alently, if it has a non-void interior. If A is a @-algebra, then every its
maximal ideal is closed and so it is of codimension 1. So M(4) = M*¥(4),
moreover, this is a compact space. In the case of » barrelled algebra A
(but not in general) the converse is also true, ie., it M(A) iy compact,
then A is a @-algebra. The latter is equivalent also to the compactness
of the spectra o(x) of all elements wed (again provided 4 is w barrelled
gpace).

We say that 4 iy an m-convex By-algebra, it A iy, moreover, metrizable.
Since in many examples of non-Q-algebras we found dense maximal
ideals of infinite codimension, we asked in [3] the following ¢uestion:

Ts it true that an m-convex Bgalgebra has a dense maximal ideal
of infinite codimension if and only if it is not a @-algebra?

In this paper we give a positive answer to this question. The answer
is also positive in a more general case, namely if we replace here a By
algebra by a barrelled algebra, but it fails in the general case. Moreover,
even in the general case, the answer is “almost positive”, namely we prove
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that all maximal ideals are of codimension one it and only if there exists
on A & stronger (not necessarily strictly stronger) complete m-convex
@-algebra topology. This is. contained in our main result. As a corollary
we see (Corollary 1) that A4 possesses o dense maximal ideal of infinite
codimension if and only if it possesses an element with unbounded spec-
trum. Wo discuss also the problem of possessing a dense maximal ideal
(not necessarily of infinite codimension). Such an ideal always exists if
the space IR(A) is non-compact (Proposition 1), but it may exist also
otherwise. So in Troposition 2 we give two conditions equivalent to the
closedners of all maximal ideals, under the assumption that the space
M(A) is compaet. One of them is the equality of the algebraic and topo-
logical joint spectrum for any n-tuple of elements ,, ..., ,e4.

I would like Go express my gratitude to Dr Z. Slodkowski, who
communicatied me o part of the proof of the main theorem (implication
(iii) = (iv)) and suggested « fruitful Bxample 3 which disproved a previous
conjecture stating that A possesses a dense ideal if and only if the space
M(A) is non-compact. ’

We shall prove now our main result. )

TimoruM. Let A be a complete, complex, unital, m-conven algebra.
Then the following conditions are equivalent: )

(i) Hoery mawimal ideal of A-is of codimension 1.

(ii) For each clement wed the spectrum o(w) is bounded.

(iii) Jor each element wed the spectrum o(x) 8 compact.

(iv) A s a complete m-convex Q-algebra under a fopology stronger
than the orviginal one. .

(v) A is a complete m-convex Q-algebra under some topology.

(vi) The space M*(A) of all non-zero multiplicative-linear functionals
on A i3 compact in the weal star topology.

Proof. (4)=(ii). We have to show that if for some zye4 the spectrum
o) is unbounded, then .4 possesses a maximal ideal of infinite co-
dimonsion. So suppose that for vome wyed there exists a sequence 2, €0 ()
of ecomplex numhbers tending to an infinity. By the classical theorem of
Woierstrass, there oxists o sequence g,(2) of entire functions sueh that

(3) D M0) = Ry B By - e
We put

no== 1, 2y

@y = (o), M o=1,2,38, ..

Let I bo the smallest ideal of A containing all the elements xy, £g, .-
”

Tt consists of all finite yums of the form 3 @y, ys;cd. We shall show
=1
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n
that I is a proper ideal in 4. Tf not, then ¢el, ¢ = 3 @y, for sgome elements
1

Yy vy Yned. Take any functional fe M(A) such that f(a,) == z,. For

1<i<n we have
‘ = (%) = ¢; (f(mo)) = f(%‘(mo)) = f(#;)

and it gives contradiction since

N w
1=j(e) =f( X wwi) = 3 f@)iw) = 0.
i= =1
Thus I is a proper ideal of A.

Let. now M be any maximal ideal of 4 containing the ideal I. We
shall show that its codimension. is infinite. If not, then by the classical
Frobenius theorem its codimension is 1, and so M is the kernel of a functi-
onal Fe MF(A). Since w,el = M, we have F(w) =0 for ¢ =1,2,...

Let X be the algebra of all entire functions of one complex variable.
Tt is known (cf. e.g. [3]) that every multiplicative linear functional on &
is the point evaluation, i.e., if @ is such a functional, then there exists
a complex number 2, such that

D () = p(%)
for each geH.
‘We put now
D(p) = T (p(a))

for each peB. It is clearly a multiplicative linear functional on H, so
there is a complex number 2, such that

Fp()) = p(20)
for each peF. Taking as @ the functions ¢, we see that
Pi(%) = F((p,,(mg)) = T(2;) = 0.

So all functions ¢, have a common. zero 2,, which contradicts relation (3).
Thus the condimension of M is infinite.
(if) = (iii). We have o show that if for some med the spectrum o(w)
is non-closed in ¢, then there is an element in 4 with an unbounded spec-

trum. So let Aec(z)N\o(x). Thus @ — Ae is an invertible element in 4 and,
by formulas (1) and (2) the spectrum of the clement F == (@--7ie)™" i
unbounded. :

(iii) = (iv). Let (Jl]l,) be & system of submultiplicative seminorms in 4
giving its topology, denoted by . We put

@]y = sup{|A]: deo ()} = sup |&" (f)|
fei(d)
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for each wed. It iy clearly a submultiplicative seminorm on. A, possibly
discontinunouns (¢f. Example 1). We define on 4 a new system of submulti-
plicative seminorms
*
laolly == max(lelq, (2],).

The system (le]%) defines on 4 a new m-convex topology, denoted by z*.
The topology =* i8 certainly stronger than the topology =. We shall show
that the algebra 4 complete in the topology z* So let () be a Cauchy
net in the v* topology. Thus (@,) is also & Cauchy net in the topology T,
i.e., it T-converges to an element @y e 4, and, moreover, thenet @,” of Gelfand’s
transforms i uniformly convergent to a continuous function w(f) defined
on M(A). In order to prove that 4 is v*-complete it is sufficient to show
thatia(f) == @ (f). Butfor oach fe M(A)itis @, (f) = f(m)~>F(@) = @5 (),
and at the same time @ (f)>u(f). So we are done. Clearly, (A, 7*) i
a @-algebra since the neighbourhood of the unit element, given by {red:
| —el, << 1}, consinty entirely of invertible elements.

Implication (iv)=>(v) is trivial and (v)=(vi) follows from the fact
that for a Q-algebra M(4) = M*(4) is a compact space (the topology
of M*(4) depends only upon the linear space structure of .4 and not upon
its topology).

To conclude the proof we observe that implication (vi)=-(ii) follow-
immediately from formula (1) and implication (v) = (i) follows from a suit-
able property of @-ulgebray (all maximal ideals closed, therefore of co-
dimension L),

OoROLTLARY 1. L'he algebra A possesses o dense mamimal ideal of infinite
codimension if and only if it possesses an element with unbounded spectrum,

JOROLLARY 2. If the space M(A) 48 compact, then the space M¥*(A4)
i compact, too. v

‘We shall show now that the topology making of A a @-algebra (as
in condition (iv) of the theorem) can be essentially stronger than the ori-
ginal one.

BxAmer 1 ([2], Bxample 3.8). Let 4 be the algebra of all complex
continuous funetions on the closed unit interval [0, 1]. For any countable
compuet subset o < [0, 1], and wed we pub

[

80 A iy o complete m-convex algebra under the system (lall,). It
is mot a @-algebra, but it satisties conditions (i)-(vi) of the theorem.
The stronger (-algebra topology considered in the proof of (iii)= (iv)
is the usual Banach algebra topology on 00, 1]. .

The next example shows that condition (vi) cannot be replaced
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by the compactness of the space M(4). It shows also that the converse
of Corollary 2 fails to be true. :

Examere 2 ([2], Example 3.7). Let T be the space of all ordinalg
less than @, the first uncountable ordinal, with the order topology, and
let 4 = C(T) with the compact open topology. Since every continunous
function on 7 must be constant beginning from some ordinal on; then
M*(A4) is the one-point compactification of the non-compact space
M(A) = T, and the algebra A satisfies conditiony (i)=(vi).

Both algebras in these examples are non-barrelled. algebras, Kor
a barrelled algebra we have a stronger version of our theorem:

COROLLARY 3. Let A be a commulative, complew, wnital complete m-con-
vex algebra, which is a barrelled space. Then the following conditions are
equivalent:

(i) Bvery mamimal ideal of A s of codimension one.

(il) Hwvery mawimal ideal of A is closed.

(ili) The spectrum o(%x) of each element xed is bounded.

(iv) The spectrum o(x) of each element xed is compact,

(v) 415 a Q-algebm;

(vi) The space M(A) is compact.

The proot follows from the theorem and from the fact that if 4 iy
a barre'led algebra, then (v) is equivalent to (vi) and to (i) (ef. [2], The-
orem 13.6). :

As it was seen in Examples 1 and 2, conditions (if), (v) and (vi) of
the corollary fail in general to be equivalent with condition (i).

‘We shall discuss now the problem when an m-convex algebra possesses
2 dense ideal. .

ProposITION 1. Let A be a oo¢n%5utmtiw, complew, wnital, complete
m-convex algebra. If the mawimal ideal space M(A)is non-compact, then A
possesses & dense maximal ideal. .

Proof. If A possesses an element @ having unbounded spectruni,
then the result follows by Corollary 1. If all spectra of elements of 4 are
bounded, then the space M (A) is compact (condition (vi) of the theorem).
So WM (A) 7 M(A) and there is an element in IMF(A)NIN(A) whoso
kernel is a dense maximal ideal.

The following example, due to Dr 7. Slodkowski, shows that the
converse result fails to be true. It is a modification of Txample 1.

Examrerr 3. Put

D = {(2;, 2,) 0% } = [23]* - Jegl® 2 13
and
Dy = {(zu 2) €01 & < (2] [Ry]® < ]}

2
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Let 4 bo the algebra of all functions continuous in D and holomorphic
in D,. For (a;ny convergent sequence a = {(&™, &)} = D, Lim (e, 2{")
= (¥, %), &1" # &, 4 ==1,2, we putb
suplo(e, &) il (24, ) eDN\Dy,
llell = @ (21, M) —w (2, 2,)
A4 2,

max (Hup (2™ , 2], sup‘ ,
n

0

@ (3, 23) — (21, 2)
) rlenn
1

&l -

) , otherwise.

Kup
e

Then 4 is a complete m-convex algebra in the topology introduced
by the system ([lz[l,), for every function in the completion of A has conti-
nuouns fivst partinl derivatives in Dy and so it iy holomorphic in D,. Since
every function holomorphic in D, extends uniquely to a function holo-
morphie in

Dy = {(#y #y) e O Joy]? - (2o < 1},

it follows that MW (A) == Dy, while M(4) = D. Thus M(4) is a compact
space ditferent from IM*F(4).

This example exhibits also a situation in which the space M(4)
is not dense in MI(A4). \

In order to decide whether an algebra 4 possesses a dense maximal
ideal wo have, in view of Proposition 1, to consider the case where the
maximal ideal space M(A4) is compact. Here we can prove the following:

Provosirron 2. Let A be a commultative, complex, complete m-convew ‘
unitel algebra, and suppose that the mamimal ideal space M(A) is compact.
Then the following conditions are equivalent:

(i) Any proper finitely generated ideal of A dis non-dense.

(i) If wyy ..., ity d and

@ D if@) >0

deal

Jor each fe M(A), then there ewist elements 4y, ..., ¥, €A such that

i
(%) Dagyy = e
=1

(i) Kwery mamiseal ideal of A is closed.

Proof. (i)=(ii). Suppose that for ,,...,s,c4 relation (4) holds
true. It mosns that the clements &y, ..., #, are not contained in any closed
maximal ideal, So the ideal generated Ly those elements is a dense ideal.
Thus it i% an improper ideal and relation (5) holds true for a certain n-tuple
1y eeer ) = A
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(i) = (iii). Tmplication (4)=-(5) means that if the elements @y, ..., »,
belong to a proper ideal I, then there existy a functional fe M(4) such
that f(#;) = 0,4 =1,2,...,n Thus the family of closed sets

Z(@) = {fe M(4): f(w) =0}, wel,

has the finite intersection property. By the compactness of JMM(A), there
exists a functional fe() Z(#), what means that I = M =f0). In

vel

particular, every maximal ideal is closed.

(iii) = (1). Obvious, since every proper ideal of the algebra .4 iy con-
tained in a maximal ideal.

Condition (ii) resembles a condition in the corona problem. It says,
in fact, that the algebraic joint spectrum

N

1 8) = (s ooy 2) €O D (@~ s0)y; o e,

fem]

Oatg @y -+

for each n-tuple (yy,...,9,) = 4}
is equal to the topological joint spectrum

0(@1y vy @) = {{f(@1), ..., f(@,)) O™ fe M(A)}.

Example 3 shows that the equality of these two spectra may fail
for an algebra with a compact maximal ideal space. Moreover, in this
cage it follows from onr theorem that the algebraic joint spectrum. is equal to

H¥(01, oy @) = {(F(@), -, F(0n) O™ fe MF(A)).

It would be interesting to know whether the algebraic joint spectrum
equals to the topological one in the case where 4 is a barrelled algebra.
In the case where the maximal ideal space M (A) is compact the affirmative
. answer to this question follows from Corollary 3 and Proposition 2. In

general, it is only known that both spectra coincide in the case of a By
algebra ([1], cf. also [3]).
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