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A local characterization of Banach lattices with
order continuous norm

by

8. J. BERNATU and H. ELTON LACEY (Austin, Tex.)

Abstract. A characterization, in terms of local unconditional structure, of Banach
spaces linearly isomorphic to a Banach lattice with order continuous norm is obtained.,

Banach spaces with a prescribed local (i.e., finite dimensional) structure
are plentiful and, indeed, comprise the majority of Banach spaces studied
for their nice properties. Let us make precise what we mean. Let X be
2 (real or complex) Banach space. Following Dubinsky, Pelezyhski and
Rosenthal [6] we say that X has local unconditional structure if there is
a A>1 (depending only on X) such that for each finite dimensional sub-
space F' of X there is a finite dimensional subspace G of X containing F
and a finite dimensional Banach lattice H which is A-isomorphic to ¢
(i.e., there is a linear operator T: G—>H such that 7|7 < 1). We
may re-phrase this as follows: X has local unconditional structure if and
only if there is an upwards directed family # of finite dimensional sub-
spaces of X whose union is (dense in) X and such that each member of # is
A-isomorphic to a Banach lattice for some fixed 1>1 depending only
on X.

It might be thought that all Ba,nach spaces have local unconditional
structure since each finite dimensional subspace is certainly isomorphie
to a Banach lattice. But, it is the uniform bound on the isomorphisms
which restrict the class of such spaces. Indeed, Johnson has shown in [9]
that if X has local unconditional structure, then either X is super-reflexive
or it contains uniformly isomorphic copies of I,(n) or I, (n) for all n. More-
over, Gordon and Lewis [8] have exhibited examples of Banach spaces
without local unconditional structure. ‘ '

If # is the class {l,(n)} for a fixed p, I<p< oo,and w =1,2,
then we obtain the spaces called £, , spaces by Lmdenstmuss and Pel—
ezynski [13]. We note that £, , spaces were first systematically studied
by Lindenstrauss [12] and the &, ; spaces were studied by Lindenstrauss
and Pelezynski in [13] and Lindenstrauss and Rosenthal in [14]
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A general study of spaces with local unconditional structure hag
recently been undertaken by Figiel, Johnson, and Tzafriri [7].

It we assume that X has local unconditional structure for all 4> 1,
then we obtain an isometric theory of such spaces. For example, X is
an %, ; (1<p < oo) for all 1>1 if and only if X = L,(u) for some
measure g. This result traces back te Zippin [21] who proved it under
the assumption that X is the union of an upwards directed family of
finite dimensional subspaces each of which is linearly isometric to 1,(n)
for some n. Tzafriri [20] established. it:for the real case. The reader may
gee [4] or [10] for complete details in the complex case. Thus, we obtain,
in particular, that X is a Banach lattice. On the other hand, X is an %, ,
space for all 4 > 1if and only if X* is an I,(u) space for some measure u.
The reader may check [10] for the details of this. We shall see later that;
there is such a space which is not isomorphic to a Banach lattice.

-In this papér-we investigate general isomorphic local unconditional
stiucture conditions to obtain a characterization of Banach spaces which
are linearly isomorphic to Banach lattices with order continuous norm.
The characterization is given in terms of local lattice conditions, that
is, lattice conditions on the finite dimensional lattices involved in the
local unconditional structure of the space.

There are essentially frivial conditions one can impose to obtain
such a characterization. For example, one can use conditions which yield.
that the natural embedding of a space X with local unconditional struc-
ture into an ultraproduct of finite dimensional lattices hag the property
that the image of X is a sublattice of the ultraproduct. These types of
conditions seem to be uninteresting. A reasonable test of whether or not
conditions are interesting is whether or nof one can prove that an £, ,
(for all 2> 1) space is an L,(u) space from them. We shall demonstrate
that this is indeed the case with our approach.

We shall givé the proofs in the complex case. In most instances,
the real case is established by the same proof by simply dropping the
complex notation.

§ 1. Notations and preliminaries. For convenience wo now state
what we mean by a complex Banach lattice.

DerINITION 1.1. A complex vector lattice is a complex vector space X
such that:

(1) there is a real linear subspace ¥ of X such that X = Y@i¥;

(2) Y is partially ordered so as to be a real vector lattice;

(3) for each #¢X there is an element |#|e Y™ sueh that

|z} = sup{Re(¢”s): 0< 6<2n}

where for w « X, Re(w) is the unique component of w in the decomposition (1)
above, i.e., w—Re(w)ei Y. °
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A normed complex vector lattice X is a complex normed linear space
which is also a complex vector lattice and where the norm satisfies the
condition, if |z|< |yl, then [zl < Iyl

Thus a comples Banach lattice iy a complete complex normed vector
lattice.

The interested reader may consult [10] for other properties of complex
Banach lattices. :

If X is a finite dimensional Banach lattice of dimension n, then
there are positive, normalized, disjoint elements #,...., #, in X which
form a basis for X. Moreover, all the lattice operations are “coordinate-

B n n
wise” e.g., LZ a0, = 3 |a;lw;. The w)s are unique up to permutation.
=] i==1

‘We shall put v
(S -

i=1 2

R

Sgn @, @;

I
hA

n
where sgna is the usual signum of a. Also, the conjugate of > a,u; is taken

4=1

n
to be Y @m;, where @ is the complex conjugate of a.
=1

Of course, if X is a complex vector lattice of complex valued functions
on a set T under the usual pointwise operations, we have that for fe X,
|f], sgnf, , ete. have their usual meaning.

As mentioned in the introduction, we shall show in §5 that there
is a Banach space X with local unconditional structure for all 1> 1,
but X is not even isomorphic to a Banach lattice. Thus, it follows that
in order to obtain a lattice structure we must have some extra conditions
on X. We have not been able to determine conditions which are necessary
and sufficient for a general lattice structure. Furthermore, evidence
indicates that such conditions may, indeed, be so complicated as to be
of uncertain interest. A general Banach lattice does have local uncondi-
tional structure for all 2 > 1. To see this, first observe that it is true for
order complete Banach lattices. This can be easily seen by the approxi-
mation theorem in such lattices (see [10] or [11]). The general result then
follows from the principle of local reflexivity [14] and the well-known
fact that if X is a Banach lattice, then X** is an order complete Banach
lattice. (In fact, the principle of local reflexivity immediately shows
that if X** has local unconditional structure, then so does X. The converse
iy also true, see [7].)

The conditions with which we will be concerned in this paper give
a local characterization of (complex) Banach lattices with order continuous
norm. (Recall that X has order continuous norm means that if Z < x*t,
7 is downwards directed and infZ = 0, then inf |z = 0. The reader may

. 2eZ
congult [19] for various equivalences of this notion.)
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It is not surprising that this case is amenable to investigation. since
under order continuity, nets which converge in order also converge in
norm. The conditions which we impose are conditions on the “bonding
maps” between the finite dimensional subspaces of X and the Banach
lattices given by local unconditional structure.

Let X be a complex Banach space and £ a class of finite dimensional
complex Banach lattices (we assume a fixed lattice structure in each
member of Z).

‘We shall saiy that & is & pre-lattice paving of X if

(A) X = UG, where the family @, is an upwards directed family

of finite dimen;ional subspaces such that there are invertible operators
T,: ¢,—V, where V,e# such that IT,ll =1 and sup T, | < oo (when we

b4
congider the isometric case the last condition becomes |I';7|—1).

(B) There is an n(y) > 0 such that if y < 8 and u, ve ¥V, with [u] A [v]
= 0, then

iz, T uwTdT*lmJl () (lull+ol)  and

Condition (A) just says that X has local unconditional structure,
Condition (B) is new to the literature. As we shall shortly see, however,
it is implicitly found in the isometric theory of %, , spaces. It was motiv-
ated by preceding work in [3] and [4].

It is clear that pre-lattice paving is an isomorphic invariant. In order
to check that a space has a pre-lattice paving it is sometimes easier to
check U G, is dense in X. We shall now show that this is indeed sufficient.

limy(y) = 0.
?

That is condltlon (A) is moditied to condition (A’) where the only change
i tlat U @, = X.

LDMMA 1.1. If X satisfies conditions (A') and (B) relative to 2, then
it satisfies (A) and (B) relative to 2.

Proof. We recall that in [4], Lemmas 5.2, 5.3, we showed that if
X = —L—J—Gr'—,, where the &,’s form an upwards directed family of finite dimen-

I
sional spaces, then for each finite dimensional subspace F of X and each 0> 0
there are a finite dimensional subspace H containing F and a @, such thab
thereis an isomorphism T of H onto @, such that |l — T'w|| < 0 |lw|| for all @< H.
Suppose we have the conditions (A’) and (B) satisfied. Let A= sup [T ]

14
and for each finite dimensional subspace F of X let Hy, be a finite
dimensional subspace of X such that F < Hj and there is a &, and an
isomorphism Sy of H, onto @, such that

. (A—1 1
e — Spa| < 0z || Where 0< < mm{m, m}
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Then
1 l + 0
(1—0p) o] < 18parll < (1 +0p) ol and  SHHISF < —F ke
Moreover,

oS5l < 1S5 oSy < (22 .
Now let ap = 1/I7,, 87| Then |z— azSpall < Kbzl for a constant
K > 0 not dependent on F. We put Ty = apT,,Sp. Then the family
{Gg, Ty} as F ranges over all finite dimensional subspaces of X satisfies
conditions (A) and (B). The family {@} is clearly upwards directed,
ITpll =1, and sup|Tyl < co. Moreover, clearly X = {JGp. Thus we
F P

need only establish that condition (B) holds.
Suppose Vg, (= V,,Fl) is cofitained in Vy, and u, v are disjoint in Vg, .

Put uy = Tp, T, v = Ty, T50, Uy = T”FzT;Fl‘lu’ and v, =T, _’[’;Fl

~ Then a simple computation shows that

0
I~ < (05, + (=)
1

and similarly for |jv; —o,|. Now

fug| A g < akg] A (0g] - [y — ua| 4 19, —

and, hence, an 7(F) can be chosen to satisfy condition (B).

§ 2. Existence of pre-lattice pavings. In this section we show how
pre-lattice pavings oceur implicitly in L,(u) spaces and, indeed, in all
Banach lattices with order continuous norm.

‘We first need the following extension of Clarkson’s inequality.

Lewva 2.1, Let @, y eL,(p) and g(@, y)= o+ yI° + o —y[P — 2 Jo|” —
—2y|? where 1< p < oo, p % 2. Then

lg(@, y)| = 2127 —2|||la] & lyI][°.

Proof. Let #z, w be complex numbers and put‘h(z, w) = [z+w® 4+
+g—wP—2 2" —2 |w|®. Since h(z,w) =0 if 2w = 0, we may assume
that [¢| =1 and r = |w| > 1. Put ¢ = cos(argzw); then

[2+wP+ g —w[P = (1 -+ 20t 722 L (1 — 20t - r2)Pl2

and for fixed #>1 this has a minimum (maximum) value 2(1--r2)?2
itp=2 (1< p<2). Since 2(1+72)P2—2 — 27 is an increasing (decreasing)
funetion of 7 on [1, co) if p =2 (1< p<2) and has value 2(272—2) at
7 =1, Clarkson’s inequality and our extension both follow.

Suppose now that p > 2 and let I': Ly, (u;)->L,(u2) be an isomorphism
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into such that |T]>1, | T =1. If @, éel} (uy) and 2| A ly] = 0, then

2129" — 2| Tw| A | Ty]|[?

< ||Tw+ Ty + || Tw — Ty|* — 2 | Tol” — 2 | Tyl

<Pl + g 1P + lw—yi? — 2117 (l2]” + 1)

= |ITP2 e +yI?) —2 1T~ e +y P = 2(1 TP — 1T7177) o +y17

Tt is wellknown that IL,(u) satisfies condition (A) in the isometric
sense (see [10]). We shall show that it satisties condition (B) with respect
to any set of isomorphisms with suitable restrictions on their norms.
This is not true for p = 2 and we know of no other examples where it
is true.

PrOPOSITION 2.2. Let X = L,(p) for 1< p < oo, p % 2. Then X has
isomeiric pre-lattice paving with respect to {lpm): m =1,2,...}.

Proof. Let X = UG where the G,’s form an upwards directed

family of finite dlmensmnal spaces such that there are isomorphisms

T,: G,~l,(n,) such that |7 =1 and i(a) = 177 tends to 1.
Suppose a<p and @,yel,(n,) arve disjoint. Then by the extended
Clarkson inequality applied to T= T,T.%,

[1T2) A 1Ty l|P < PP — 1T H2) o -y 1P
A(a) and [T < A(8),
= 272 — 2|77 (2(a)? —2

1272 2
Sinee |1 <

n(a) (a)72)0

is the required net for condition (B).

For general Banach lattices we have the following result whose proof
is similar to that of Lemma 1.1.

PROPOSITION 2.8. Let X be a Bamach lattice and £ a set of finite
dimensional sublattices of X which is upwards directed and | JZ is dense
in X. Then X has isometric pre-lattice paving with respect to L.

§ 3. Existence of a pre-lattice structure on spaces with a pre-lattice
paving. In the process of developing the theory of contractive projections
in an I, (g) space we proved that if M < L,(u) is the range of a contirac-
tive projection on L,(x), then for all #,ye M, ((Remsgm )" A lyl)sgnye M
(see [3] or [4]). In [3] Bernau proved that the converse iy true. (Actually
in [3]1it is stated in the form that |#|sgny < M and this is called the ewchange
property by Bernau. The existence of [¢|sgny in M from the above is
a gimple consequence of the monotone convergence theorem in Ly, (u),
something which is difficult to formalize in a general non-lattice theoretic
setting. We shall have more to say about this problem later.) This is
interesting and motivational for our situation since ranges of contrac-
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tive projections in IL,(u) spaces are ex&ctly the Banach spaces lmeamly
isometric to L,(v) for some measure v (see [4] or [10]).

‘We shall demonstmte in this section that via local approximations
we can obtain in Banach spaces X with a pre-lattice paving £ the begin-
ning of a lattice structure in that for 2, y<X we can produce in X an
element which behaves like ((ReTwsgnTy)* A |Tyl)sgnTy where the
appropriate interpretation is given in ¥ as mentioned in §1. We show
that if we consider the net of such elements, we can use it to construet
a corresponding Cauchy net in X. The limit of this net plays the role of
((Remsgnd)™ A |yl)sgny in the space.

A comment on our procedure is perhaps in order. There are two estab-
lished methods of embedding Banach spaces with a local unconditional
structure into a Banach lattice ¥. One is an adaption of the embedding
of &, , spaces into L, (u) spaces as developed by Lindenstrauss and Pel-
czyrigki [13] and it can be found in [7]. The other is the elegant ultra-
product method developed by Dacunha—Castelle and Krivine in [5].
Using either of these embeddings one shows that an %, ; space for all
A>1 (1< p < o) is an L,(u) space by showing that it is linearly iso-
metric to a sublattice of an IL,(») space, the I,(») space being obtained
by the above methods. We have found it more convenient do not embed X
into a Banach lattice, but to construct the lattice structure on X directly.

‘We now describe in detail the method of approach. Suppose X has
a prelattice paving with respect to £. Thus X = | @G, where the @,’s

form an upwards directed family of finite dimensi};mal subspaces and
there are V,e# and isomorphisms T, of @, onto V, satisfying conditions
{A) and (B). For convenience we shall adopt the following notation.
It ®,yeV,,

a(@,y,y) =(Rewsgny)* A lyl)sgny =

and, similarly, if a, f are complex numbers,

a(a, B) = ((ReasgnB)* A |6|)sgnp.

Now suppose that {6}, ..., é},} is the disjoint, positive, normalized basis
for V, (we shall assume that the basis is fixed throughout the paper).
If o, yeG,,, then T,» = Ya;e} and T,y = Zﬂje” and we put

(3, 9,y) =T;%a (Zw ay, B;) ef)
it {#,y} ¢ &,, we pubt wu(,y,y) =0. Smularly, we define uq(z,y, )
=y (— @, Y, ¥y Us(®, Y, ¥) = Us(—i, 4, p) and w, (@, ¥, ) = wy (4, Y, p)-
‘What we shall show in this section is that the net {u;(z, ¥, ¥)} conver-
ges in X (we call its limit, appropriately, a(z, y)). This shall be proved
as a consequence of a series of lemmas. We are grateful to W.B. Johnson
and L. Dor for the improvements in exposition of our original proofs

a(Tym, T,,y,y
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in this section and for some substantial remarks and improvements of
the lemmas involved.

PrOPOSITION 3.1, For each ®, yeX, {u;(e
in X.

To prove this we are concerned with the following situation =, ye@,,
and V, < V,,. What we need to estimate is |{uy (@, ¥, 1) ~ U1 (@, ¥, ya)ll-
Since

lota (@, 95 y2) — 20 (@, 9, yo)| < [T

, Y, p)} 98 a convergent net

QIHIT Uy (&, Y 71)’"11 g (@, Y, polll,

we consider the rlght hand expression. Let 8 =T, T 1 ¢f = B,

*=1T,a and y*=T,y Thus if T, s =3 et and 1’,,14 = Y Be,
then w* ZozJ 4, and ’l/* = 3Bi6}, Tpus(m, Y, ys) = a{w*, y*, ys), and
Tt (2,9, v1) = S a(ay, ﬁ, ¢}. Thus we wish to estimate |ja(w*, y*, y) —

-—Za az, B) 6| Now if |ajl < |Bjl, then

|2l = (D gen)l < vsu] X oo < s Saer]
< sl (38| < nsuns=]| 3 g < 2| Y et
" where 4 = sup||T;"|l. Furthermore, condition (B) tells us that if Jy, J,

k4
are disjoint subsets of {1,...,n(y,)} and w0, then

113 651 2|3 et [ < 200 ] S

Thus we have reduced the problem to the following abstract situation:
V is a finite dimengional Banach lattice, fy, ..., f, in V satisfy

(1) i fay) <JByl, then | o fi]| < K| 28,5l for some fixed constant
K > 0 independent of V¥, and

(2) if J,, J, arve disjoint subsets of {1, ..., n} and o0, then

|5 st18] Sl <o Sl

n .
for some fixed # > 0. We wish to estimate |ja(w, y)— 3 a(a;, f)f| where
=

@ =Yof; and y = YBf; and a(z,y) = (Reasgniy)* A lyl)sgny. This
is accorhplished in the following series of lemmas which are also of inde-
pendent interest.

LeMma 3.2. For each 8> 0 there is a positive integer N < (4/8*4-1)
such that if V is a finite dimensional Banach lattice and fy, ..., f, in V
satisfy (1) above, then for ® = Jlosf; and y = 3 B;f; there is a partition
Koy ..o; By of {1,...,0} and b, = %‘ 4 f;y A,y B.eC such that A, =1,

T
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By =0 and B, =1 for.r =0 such that

lo— Z A1,

Proof. By partitioning the closed 1/é ball in € with a rectangular
grid we can obtain disjoint sets Hy, ..., Hy such that the diameter of H;
isless than 6, 0cHy, A,eH,,and H, < {z le—A,| < 6} and N < (4/8+1)%
Let

+ Hy

S (lleell 4+ Yyl -

K,={j: a)pjeH,} and Ky,={j: |8l <|gld}.
Then we put :
= Zﬂiff for r %0 and hy = Zaiff'
JeK, v JeR,
Now
N
Jv— 2B = Zﬁ)ejll <Kol
r=0
and :

< Iyl

- 3, Hz% AL

CoROLLARY 3.3. In Lemma 3.2 the K, A,

N N
HZa(Arh,, B.h)— ) da

r=0 r=0 jeK,

Proof. Now we have a(A,h,, B, h,) =

y b, also satisfy

(a3, B3| < K8 (lall + gl -

B,((Re.d, hsgnh,)* A b, |)sgnh,.

= B,((Red,)* )* A1)h,. We choose the partition as in Lemma 1. If
r % 0, then, for j e K,,
[(Red,)*t A1)g;—((Rea;senfy)™ A |8;1) senB;|
+ l
~18 [(ReA,.)+ AJ.-—(Re%) /\1] < 1514, —F <51B.
) §

I 7 = 0, since By = 0, a(dyhg, Boho) = 0 and la(ey, B;)| < I8, < 8layl
for jeXK,. Thus the result follows from condition (1).

LEMMA 3.4. For each &> 0 there 48 a 0> 0 such that if V is a finite
dimensional Banach lattice and iy, Ug, ¥y, Uy are in V such that ' ;

1ty — sl + 1oy — Dol < S(lltexll + Hloull) 5
then h
llw (% 1) — 6(%a5 ©2)]| < e(llttall - Toal}
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Proof. Let ej,..., ¢, be & disjoint positive normalized basis for V
and pub

Uy = Zaiei, vy = Zﬁiei, Ug =‘2a;ei,l and v, = Zﬁ;%-

Then
alay, B;) —a(a u ﬁ¢
< (Rea,- sen )" A 18, Isgnp;—sgn Byl +
+|(Reaysgn )" A 18] — (Reajsgn B)* A 6|

< [P lsenfi— sgn il -+ la; sgnp; — o sgn il + [ 1B — I

< |B—Bi+ (1B — 1B:)) sgn | + 1B — Bil +- oy ISgn By — sgn Bil + | — o

<31Bi— ﬂ,-]+laiy|sgnﬁi—sgnﬂ;-|—l—|a¢——a;[.

It [sgnﬂi——sgnﬁﬂ < g/2, then

(05, Bi) — a(ay, B < 31B;— fi) + oyl &/2 oy — ]

If |sgnp; —sgnf > /2, then

18— Bil = |1B:l(sgn B —sgn B7) | +[(18: — 1B:)) sgn Bi| = |Bls/2 — 18; — Bl
Hence [Bil, 18] < 418;— Bil/e so that

la(ag, Be) — a(ai, B) < 1Bl 181 < 818, — Bil fe.
Thus '
< (348/8) (It — tall + oy — 051} -+ /2 s ]|
< ((84-8/2) 8+ /2) (Ihuall + 1021} -

Thus a 6 Whicﬂ is independent of V' can be so chosen.

Levwma 3.5. For each N and & > 0 there is a 6 > 0 such that for each
finite dimensional Banmach lattice V if hy, ..., by in V satisfy condition
(1) above and |||, ] A [hy||| < 0 for n+ p, then for a,= 3 Al andy = 3 Byh,,

lla(@, 9)— 36 (4n, B b < e(linll + Iyl
Proof. Pub hy = h,—(/h,] A 3 ih])sgnh,. Then the k) ave disjoint
8#N

Mo =Tl < D[ 1Bl A [he]]| < 3O

8#N

fla (tyy 1) — a(uay v:)l

and

80 that
[ A= 4,00
< XMl =)l < N (N 1) Gmax |4,| < 230 K [
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where K is the constant given in condition (1) above. Similarly,

H N'B,1, ZB Y

< 2N*0K |yl
Now

at@, v)— a(4a, Bh,
<leto, 9)—a( 3 4aks, DBaR)|+
(S 4ums, DB = Da(4n, B b
< [et@, 9)—a( 3 a.n, S BH)|+ 3 1Bal o~ T3l
< Yate, p—a( Y 4k, 3B, m)| +2 oKyl

Choose 8 > 0 to satisty Lemma 3.4 for ¢/2. If 0 is chosen so that 2¥°6 K
< min (8, £/2), then the conclusion follows.

Proof of Proposition 3.1. We adopt the notation following the
statement of Proposition 3.1. That is, we assume that fi,...,f, in 14
satisty conditions (1) and (2) and that =3 e;f; and ¥ = >p:f;. Let
&> 0 be given and suppose 6> 0 (to be chosen precisely later). From
Temma 3.2 we find an N < (4/6°+1)* and a partition K, .. , Ky of

{1,...,n} and by = Zaf” ,—Zﬁ,fjforr#-OA—-lBo-—OB-—l
e
and A, chosen as in Lemma 3.2 sueh that

”m—Z.A,h,

+|y— 8(ll+ 1),

and

N n
13 atd,h, B — 3 alay, )F| < EoClal+lyl)-
=0 j=1

By Lemma 3.4 we choose 0 < 6 < 2/K 50 tham

“a ,Y) —a ZA Ty ZB, ) ).
Now by conditions (1) and (2),
(1B A Ihylf < H Za |+ || 2 8 ) < nE o+l -

Thus if 7K (lg]l + [yl) < 0, where 0 is the constant of Lemma 3.5, then

Ha (>4, S'Bh)— ”ZA h, J)

< (8 +H6) (llsl] -+ Ilyl\) < Ze(fwll+ w1

'y
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Thus
la(, 9) Za %y B;) ffH e (o]l + Iyl
F=1

Since in our situation #(y)-=0, we can, indeed, choose y, so large that
7{y) K (llell -+ lyll) < 6 and obtain the conclusion of Proposition 3.1.

§4. Order continuous pre-lattice pavings: As we mentioned at the
end of § 2, pre-lattice pavings do not quite yield a lattice structure on X,
What we mneed is a condition which will assure that the sequence
v, = a(®, ny) = limu, (s, ny, y) (whose existence was shown in § 3) con-
verges in norm fo an element which we shall label P, (z).

The element P,(#) will turn out to be a piece of the band projection
of » onto {y}*+ (this is the motivation for this limit). In order to do this
it turns out that we mmust be in an order continuous situation. Hence we
impose another axiom which we shall show is valid in any Banach lattice
with order continuous norm. We are still assuming that X is a complex
Banach space with a pre-lattice paving £ and that X = (@, where@,, V,,
and T, have the same meaning as before.

DeFINITION 4.1. Let (v,) be a sequence in X. We say that (v,) i
Z-increasing if there is a submet {G¢,} of {&,} such that for each A there
is a sequence (v,(3)) such that

(i) v, (A)sgnov,(4) = 0 for all n, m;

(#) (lv,(4)]) is increasing (inV,);

(i) T7'v,(2)—>v,.

The sequence (v,) is #-increasing and dominated if there exists e X
such that the @,’s which are chosen above also satisfy:

(iv) 2€@, for each @G,;

(V) |0,(A)] < |T;2| for all » and all 2> 1.

The paving & of X is called order continuous if every domma.ted
#-increasing sequence (v,) in X is norm convergent in X.

To show that we are nbt working in a vaccuum we note at onee the
following two propositions.

PROPOSITION 4.2. Suppose 1< p < oo, that & isomelrically paves X
and that the elements of 2P are finite dimensional 1,(n) spaces, then & is an
order continuwous pre-lattice paving of X.

Proof. Tet (v,) be a dominated #-increasing sequence in X. By (i)
and (v) we have

o (A <

Wper (N < 1Tz for all » and A

Apply T'7%, and take the limit over 2 using (iii)'to obtain |v,|| < ffv,,,4)l < |2}
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for all #. Since each V, is an [-space, (i) and (ii) give, for m > n,

[9m (2) = 2 (D = [0 (D] — [0, (P < o (AP — [0 (AP
Use (iii) again to deduce
10— 0,ll° < oyl — 0 P=>0  (m, n—>00).

Our result follows.
Next we consider Banach lattices with order continuous norm. If
a Banach lattice hag order continuous norm, then it is order complete [10]
in the sense that its real part is an order complete vector lattice.
THEOREM 4.3. Let X be a Banach lattice with order continuous morm,
then X has an isomeiric order continuous pre-lattice paving.

Proof. It is well known that under the hypothesis of the theorem

there is an upwards directed set & of finite dimensional sublattices of X

-‘whose union is dense. One way to prove this is to start with a maximal,
pairwise digjoint set D of positive elements of X and to consider the set &
of finite dimensional sublattices of X generated by components of elements
of D. Theorem 1.3 of [11] and the fact that an order bounded increasing
sequence in X is-norm-convergent to its supremum provides most of the
necessary equipment.

By Proposition 2.3, & is a pre-lattice paving of X and the maps
T,: G;—7V, satisfy the extra condition

lle —T,0) < {4(A—1) J(A+1)} izl

Suppose then that (v,) is a #P-increasing dominated (by ) sequence
in X. Since

90 (3) = T7 0, ()| < {4(2— 1)/ (A+DHTT v, (D]

condition (iii) shows that v,(1)—w, for each n, and that T,@—>w. If m > n,
(ii) and (v) give {v,(4)] < v, ()] < |T,|. By (iii) we have |v,] < |v,] < l#].
In addition (i) and (ii) give |v,,(4)—v,(3)| = |0,,(2)]— v,(2)| so that the
limit over A gives |v,—%,| = |v,|—|v,|. Since X has order continuous
norm, the order bounded increasing sequence (|v,|) is convergent and
hence (v,) converges as required.

Our condition that a pre-lattice paving be order continuous is highly
weal in character. It would be nice to have an equivalent simple global
condition. Ultimately we will show that X has an order continuous pre-
lattice paving if and only if X is linearly isometric to a Banach lattice

 with order continuous norm. By a result of Meyer—-Nieberg [19], order-

continuity of the norm is equivalent to the non-existence of sublattices
which ave linearly and lattice isomorphic to ¢, and have order bounded
unit ball. With this in mind our next result is not too surprising.
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THEOREM 4.4. Let # be a pre-lattice paving of X and suppose X con-
tains no subspace linearly isomorphic to ¢y, then & is an order-continuous
pre-lattice paving of X.

Proof. Suppose (v,) is & Z-increasing sequence in X which is domin-
ated by x. Let (n;) be any strictly increasing sequence of integers and
let w, = vy, o Oy Let p;, » be complex numbers such that |yl < u
(j =r, r+1,...,8), then

] 2 w0y < X sl gD = Dyl (10, (2)
j=r b r

< 1 {[Ong, (W] = [0, (D)) < 11T

|~ I, (2)])

By taking the limit over 1 we have [|2y, il <

the series Y &w; is norm convergent in 'Y and [ &0 < el &)
Suppose now that (v,) is not convergent in X, and let &

infsup ||v,, — v, /. Sinece |v,(4)—v,(A)| is an increasing function of m
>0

fgrmjaeh fixed » and each 1, we have ¢ > 0. Choose & subsequence (v,,)

of (v,) such that < o, — 2,/ < 3¢/2 for each &, put w; = v, —0,,

(k=1,2,..)); and define T: ¢q,>X by T(§) = X &w; ((&)et). The

argument above shows that |7 < [l|l. Let ()¢, and suppose &, = [[(&)Il.

Sinee the v,(4), and hence the w;(2) are all parallel, we have, for r> p,

”Zr Ef’wj(l)” = Hg(Re §,-)wj(A)H
~ HZ"(Re £)w ()| + |[$;Re &1y ()| — HZT [Re &, (4
1 1 g
> | SRty ()] - | 3] e (2
! 1

> 28, lw, (W]l — &, lon > 2spe—-e,,-3a/2 =& e/2.

r+1—”n1”
Let A vary and then let 7—oco to see that | T (&)l > &,-8/2 = [(&)]- /2.
It follows that T is an isomorphism of ¢, into X contrary to hypo-

thesis. Thus £ is an order continuous pre-lattice paving of X.
Tl

" §5. The lattice structure on X. In this section we give in complete
detail the proof that a Banach space with an isometric order continuous
pre-lattice paving has a lattice structure under which it is a Banach lattice.
Sinee the complex cage presents a degree of difficulty over the real one,
we write all of the proofs in the complex situation. At the end of the see-
tion ‘we indicate how to obtain the corresponding isomorphic case from
the isometric one.

ulell. Hence if (&)ec,
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We now suppose that X = (&, where @,, V,, and T, have the same
meaning as before and we assume that |7} ']|-1, ie., that we have an
isometric order continuous pre-lattice paving on X. We recall the follow-
ing definition formally since it will be used repeatedly.

DerFiniTION 5.1. For @,yeX,

a(s,y) = limu, (2, ¥, ).

THEOREM 5.2. For x,yeX the sequence (v,),
convergent.

Proof. We take the net of all of the @’y such that @, y¢ @, and pub

0,(2) = a(T;@, 0Ty, 2).

Then (v,) is clearly Z-increasing and dominated by ». Hence (v,) is con-
vergent because Z is an order continuous pre-lattice paving.

DeFINITION 5.3. For each @, yeX,

with v, = a(®, ny), s

Nn—>00

P,(2) = lima(a, ny)

and
T, (@) = P, (@) —P,( —)+i (P,(—iz) — P, (ia).

The motivation for J,(«) is that it is the component of @ onto {y}++
under the band prOJectlon in a Banach lattice.

‘We shall now prove some computational rules for the operator P,.
These should be interpreted as properties of the positive part of the real
part of an element of a complex vector lattice. )

PROPOSITION 5.4. For @,9, @, %, ¥y, B,e X we have the following.

(1) 1Py (@) < |Py(@ ) Py (—a) = [P, (@) + Py (— o)l < Wy (@)l
= [[Py(@) £Py(— @) £ (P, (—iw) £ P, (i))]| < lir].
(@) 1Py (@ +s)ll < HPy(w:)II-I- Py (@)1 ‘
(iii) If Py(#,) = 0 and Py(w,) = 0, then P, (@ -+w,) = 0.

(iv) 1P, (1) — Py (@)l < 1Py (@, — @)l < lloy — 21, SO that P, is con~
timwus Also  [la(#y,y) —a( wz:./)” llaey — @,
(v) P, ( (@) +Py wz) = Py (@) +Py ().
vi) P r( P,,(m) =0 = (:i:wP,,(w)).
vn) P, [Py (@) —Py(w;) +i (P, (wa) — P, (iw,))] = Py (P, () —Py(ay)}.
vm) P,(P,(m)—Py(—u)) =P,(a).
Py (T, (@) = Py(w) = ( (@)

P1 oof. For each integer n and each complex number a, since
awy(ai, 0y, y)—a(az, ny) and ||T;]->1,

la(Tyam, Ly, y)|—>la(az, ny)l.
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Moreover, in V, we have that

la(T,m, nL,y, VI < la(L @, nT,Y, p) —a(—T0,nTy, p)
= []a(Tym, 'n'Tv:’/ﬁ 7)+a( "‘Tyw7 nTyyi 7’)“
< H“(Tymy nl,y, y)£a(T,2, 0Ty, y)+
+i(a( —iTy@, nT,y, y) £ a(iT,0, nT,y, 2,
with equality of norms for all eight possible choices of sign in the last
.expression. Let y vary to get corresponding mequahues involving a(a, ny)
.and similar terms, then let n—oo to obtain (i).
For (ii) we have in V,,
a'(T (w1 +@a),nT,Y, Y)SgnTy?l
: < (T, 0Ty, v)sgn T,y +a(T, 0y %Tyy)sgnfl’yy
Hence
”a’(Ty(ml +,), nT,y, 7’)” <

and (i) follows.
Part (iii) is immediate from (ii).
To obtain (iv) recall that if b > 0

la(Tywy, 0Ty, )+ la(T @5, 0Ty, ¥)|

gt Ab—eT Ab| K [(a—e)t ADI< |la—o
in any lattice group. Hence,
llo(T, 2., 0Ty, y)—a(L, @, nT,y, v
< Ha'(Tv(wl—mz)i Ty, 7)“ <
and (iv) follows.
Let m,n be integers with m > 2n, and let w;(n) = a(®;, ny) for
j=1,2.In V7V,

T, (a0, — o)

1a (Ty(wl(n) +w,(n)), mT,y, y) — (@ (T w1y nT,y, p) +a(Ty@s, 0Ly, y))l
= \a, (1’,, (wy(n) +wy(n)), mT,y, 'y) -
—a(a(T,0,nT,y, y)+o(T,25, nT,y, y), mL,y, y)l
L T wy(n) —a(L, oy, nT,y, ¥)| +|T,wy(n)— a (T 2, nT,y, v)l|

where we have assumed throughout that p is large enough so that @,
-contains all the elements above.

Take norms, let y vary and then m->oo to conclude

12y (102(m) +103(n)) — (103 (m) +wy(m))]| = 0.

Now let n—o0 and use (iv) to obtain (v).
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For (vi), if w,(n) is as defined above

a—Tywi(n), mI,y, y) =0 = a(£iT,w,(n), mT,y, y)

Letting y vary, m—>co and then n—co we have (vi).
The proof of (vii) is similar to that of (v) and (vi).

For (viii), put #, = @, #, = —a. As in the proof of (v) we have, for
m > n,

for all m.

H (w1 (n) —wy(m)), mT,y, 'y)—

— 60Ty, 0Ty, 7)— a(Tymy, nTyy, 1), Ly, y)|>0.
It m>n,

a(a(Tymiz 77’Ty'y: ) _“(T'ymm '”’Tyf‘/: ?)s mTyyy 7)

R = a(T,,a;l,nTﬁy, 7).
Hence letting y vary and then m—>oco, we have
' P, (wy(n)—wa(n)) = wy(n).

Now let n—o0 and use (iv) to obtain (viii).

Part (ix) now follows from (vi), (vii) and (viii).

Next we define disjointness so that it means what it should mean
after we put a complex Banach lattice structure on X.

DrrrvirioN b5.5. If @, yeX, @ iy digjoint from y, in symbols ¢ | y if
a(i®s,y) =0 k=0,1,2,3.
The main properties of disjointness are now established.
LeMMA 5.6. For o, yeX, and any positive integer n,
(1) lla(@, ny)il < nlla(@, PI< n Py (@)l
(i) lla(y, ®)l < 4a(z, y)I.
Proof. Use the corresponding facts in V, and take the limit over y.
ProrosITION b.7. For #,yeX the following are equivalent.
(i) o Ly.
(il) P,(i*o) =
(iil) Jy(@) =0 -
(iv) v Lo
Proof. The equivalence of (i) and (iv) follows from Lemma 5.6 (ii).
Equivalence of (i) and (ii) follows from Lemma 5.6 (i). Clearly, (ii) implies
(iif) and if J,(2) = 0, P (i'z) =0 (k =0,1,2,3) by Proposition 5.4 (i).
PRrROPOSIIION 5.8. If a | b,
(i) lla+0l = na+e““’bn lall for all real 6;
(i) Py(a+b) = Py(a)+Py(b) (yeX).

2 — Studia*Mathematica LVIIL 2

for

0 (k=0,1,2,3).
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Proof. In ¥, we have
3
IT,al AT < D (6(#FTyay T, b, p)l
k=0
so ||IT,al A |T,b]||-0. Since
|7, 0+ 6T, b — |T,a+T,bl| < 2|T,al A |T,b,
(i) follows.
Since
(ReT,asgnT,y)* A

(ReT,bsgnT,y)* < |Tyal A |T,b],

we conclude similarly that

ala+b,ny) = ala, ny)+a(b, ny)

and (ii) follows.
PROPOSITION 5.9. We have

P, (Py(2)—P,(e)) = P, (P, (@) —Py(—a)— (2)) LPy(—a).
Proof. Let
Uy = a(a(, ny) —a(z,ny), my) and b, =a(—w,ry).

Since the elements of V, obtained by substituting T',a, T2 and T,y in
the expressions for g, b, are disjoint it follows by the usual limiting
arguments that a,,, 1 b,.

Let r—oo to obtain P, (— )J_am » for all m, n and then let m, n—oc
to conclude P,,(-—m)J_P,,( (%) — ) By Propositions 5.8 (ii) and
5.4 (vi)

Py(“m,n) = Pu(a’m n)

+Py(—Py(—a)) = Py (@ — Py (—a)).

Now let m—>oco0, n—>occ0 and use Proposition 5.4 (iv). This proves our result.
(In fact, we can show P, (J, (@) —P,(2)) = P, (@ —P,(2)) but this will not
be needed.)
PRrOPOSITION 5.10. The set {weX: @y} is a closed subspace of X.
Proof. Use Propositions 5.7 (ii) and 5.4 (iii) and (iv).
, ProrosrrioN 5.11. If yilys then P, (@) _LP,, (wg) (20, wpe X) and
ence

Sy, (@) Ly, (@) (0, @peX).

Proof. Clearly,
lla (& (1, m13)5 )| < Wy (mya)ll = 0.
Letting n-+-oo we conclude JP,,2 (P,,l(wl)) =0 and our result follows oasily,

n
PROPOSITION 5.12. Suppose w,, | w, (m % n) and v, = D w,, then v,
M=l
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is P-increasing. If in addition y,, | vy, (m % n) end w,
fiwed we X, then (v,) is also dominated by .

Proof. Let N be a positive integer and write w, (1) = T,w,, if w,<G;
and 0 otherwise. As in the proof of Proposition 5.9 we have

=P, () for some

” [Wr (A)] A [y, ( Z)l][—>0 for n =m.

Thus we can determine A, such that
|| 10s

In V,y

(VI A o (A)]]] < 1/N?

define

8
Wy, (A'N

for Aziy,l<m<n<N.

N
)= D) (103 (2l A o () ) 00 ()

J=

= 10,

-

L
where the prime denotes omission of the terms with j = »n,forn =1, ..., N,
and w}(ly) = 0 (n > N). Note that the wy(Ay) are pairwise disjoint in ¥,
and
(o, (Azy) — Wy (Ay) | <

If ]]T;;rll is chosen to Dbe strictly decreasing to 1 and we take v,(4)
n

(N —1)-1/N* <1/N.

= wih(Ay) for Ay = A > Ay., we have exhibited (v,) as a P-increasing
Mm=1
sequence. ‘
In the special case considered, we can for fixed N choose M such that
1P, () —a(z, My, is as small as we choose for 1 << m < N. Then for w,, (1)
we choose T',u, (@, My,,, ) in place of Tyw,, = = T,(P, () ) for 1< m< N
and zero otherwise. We still have

100m (D] A 0B ]| 0 m £,

Now if we mimic the earlier definition of the wjy,(4) and v,(4), the disjoint-
ness of the w,(2) gives us v, (4)| < |T,#| for all n, A as required.
THEEOREM 5.13. For each y<X, J, is a contractive linear projection on X.
Proof. That J3 = J, and ||/, (@) < || is a consequence of Prop-
ogition B5.4. It remains 130 prove linearity of J, and for this it suffices to
show that & —P,(#) — P, ( — o) is additive. Let a, b, ¢ be elements of a vector
lattice with ¢ > 0; for any positive integer =,
((+b)* +a~ +b7)A 3¢
= ((6+b)" +a* +b%) A 3¢
< (a+b)" A3¢+at A3c+bt A3c
< ((@+d)"+a* +0%) a9
< (a+bB)T A9+a" Adc+b A9c.

(a,-}—b) Aet+a" Actb ACS
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Now

H“(Ta(mrl‘wz)’ nT,y, l)—“(Tz(mx'l‘wz): Iy, Z)-|~a,(-T,1m1, sy, A)—
—a(—T@1, W13y, 1)+ a(— Ty, 9"1’;.?/3 A —a(—T@,, nT,y, l)”

= “a(“TA(W1+m2);'3'”'Tz(‘h }*) +a(T;y, 3’”/14% AN+ a( Ty, 30Ty, 4) —
“‘(“(Tﬂ.(wl'l'mz)7nTﬁ,y,A)’l“a'(—Tzwu'"’T).y:Z')'i'a’("TAmz;nTz?/aA))”-

The usual double limit argument produces

[Py ( — @y —@,) +Py (@) + Py (wg-—[P (@ @) +P,, <_
< ]|P,,(m1+w2) +P, (— @) + Py (P”(ml_{_mz) + P
=0.

@) + Py (— )]l
=) + Py ( "“”z))”

) 4
Hence #+>P,(#)—P,(—u) is additive as required.
‘We now have the machinery and can make X into a complex vector
lattice quite quickly. Choose a maximal pairwise disjoint subset D of .
TEROREM 5.14, For fized weX,

{yeD: J,(w) 0} > {yeD: Py( #0}

and the larger set is at most countable. Further, the series 3 P, (@) is ton-

veh
vergent so that > J,(w) is also convergent. In addition & = 3 J,(%).
veD veD

Proof. Let {y,} be a countable subset of D. By Proposition 5.12,

if w, = P, () and v, = ZP ), then (v,) is #-increasing and dominated

by . Since Z is an order contmuous paving, (v,) is a convergent sequence
in X. In particular, [P, (2)]|—+0 (n—o0). The countability assertions and
the convergence of ZP (®) and 3 J,(#) are immediate.

Let 2z = ZJ ). Since J, is linear and continuous, J,

= dJy8~—Jy w =0 (ypeD). By maximality of D, #—=z =0 and we are
done

DuriNirioN 5.15. The real part, ¥, of X iy defined by

(w—2)

= {weX: P,(F+iz) =0 (yeD)}.
The jzositibe cone, K, of X iy defined by”
K ={zeX: Jy()

=P,(#) (yeD)}.

Observe that K = ¥ by Proposition 5.4(vi) and that ¥ is a veal
subspace of X by Proposition 5.4(iii). If we Y NiY, we have P, (i*») = 0
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(k =0,1,2,3) so that J (@) =0 (yeD) and # =0 by maximality.
Also K is a cone in ¥ by Proposition 5.4 (v).

THBEOREM 5.16. The cone K induces a laitice order of ¥ under which ¥
has order continuous morm.

Proof. HaeKN(—K), wehave 0 =J,(#) +J,( —#) =P, (@) +P,(—). .
By Proposition 5.4 (i), J,(#) = P,(w)—P,(—a) = 0 (y<D) and by maxi-
mality # = 0. Thus K partially orders Y.

Suppose #¢Y. By Theorem 5.14 and the definition of Y,

@ = DP,(a)— D p,(—a).

yeD yeD

21’ (@), then »*eK (Propositions 5.11, 5.10, 5.4 (iv)). Simi-

larly, % —a = ( —a)*eK. Suppose zeK and ¢—we K. Consider P, (T —2).
By Propositions 5.4 (ix) and 5.9 :

Py(a" —2) =Py (J,(x* —2)) =P,

Define ot

Ty (8) — T, (2)
=P, (P, (@) —P,(2)) = P,(J,(@)—P,(2)) =
=P, (J,(@—2)) =P,(3—2) = P,(2—x)—

Thus J, (z—a™) = P,(z—a*) (yeD) and z2—a+ K.
This shows that K lattice orders ¥, and that z* as defined above
is @ v 0in the lattice order induced by K. I Y, |z] = 3 (P, () +P,(—)).
yeD

Since Py, (@) | Py(~m) (yeD) and Py(da) 1y (¥'eD,y" #+9)
ogition 5.8 (i) gives
o) = | 32w~

wawgwwwr
An obvious, and easy, limiting argument shows that if &, y — 2 K, |yl > [lo].
Thus ¥ is a Banach lattice under the order induced by K.

Suppose that the norm on ¥ (induced from X) is not order conti-
nuons. By a result of Meyer—Nieberg [19] there is a linear lattice isomor-
phism 0: ¢,— Y such that the unit ball of f¢, has an upper bound in Y.
Let weK be this upper bound and let fe, = ¥,, where {¢,} is the standard
bagig in ¢,. Since 0 is an order ifsomorphism, {Yn} is 3, pairwise disjoint
gsequence in Y. Since @ =9, =0 for allm, J, (2) = (®) = ¥,,.- By Prop-

Py (T (@) — T, (#))

Jy(zg—z) =0.

Prop-

Py(~a)| = lal.

”n

osition 5.11, 21’ (#) is convergent. Hence [|y,,||<||P,,( @)||—0. Thus &

is not an 1%0111011)11181’1’1 This proves our theorem.
PROPOSITION B.17. With Y as its real part, X is a comples vector lattice.
Proof. By Theorem 5.13, if #eX,

o = \“ Z(P ,(— @) —H(ZP (—1im) —

1/51) yeD yeD

(m)) .
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By Propositions 5.4, 5.8, 5.11,

Py, (£ Y (By@)—Py(—a))) =
yeD

Thus X = ¥ +iY. I #e YNi¥, we have P,(+iw) =0 = P,(Lu) (§eD).
- Hence # |y (yeD) and by maximality, # = 0. Since ¥ has order ,eon-
tinuous norm, Y is order complete. For any real 0,

P, (%) = P,(¢"J, (@) < Py(w) +P,(—a) +Py(—in) +P,(in).

P, (£1P,,(0) F iPyy(—a)) =oO.

Hence

le| = V{Ree’w: 0 <6< 2} =

\Y {ZP,,(e“’m)

At this point things get hard again. We have to jshow that X lis Ea: com-
plex Banach lattice.

Levya 5.18. If yy |y, then Py, =Py +Py,.

Proof. Suppose u,v,w are complex numbers and 0<0 <1 We
have

[(Rewsgnu+o)" A [u-+v|)sgn(v+v)— ‘
— ((Rewsgna)* A Jul)sgnu—|( Rew%gnv)Jr A [vl}sgnv|
< 20wl /(1 —8%) +(2+ 4077 u] A o].

It Olu| < |v] < 671, then ]u[, o] < “‘(|u1 A |v}) and 46‘1|u| A |v]{domin-
ates the left-hand side. It [v] < 8|u|, we have ‘

< 0<2w}.

|sgn(w+v) —sgnu| = [sgn( 1+'u/u tan(sin“iﬂ)
=0/(1—)* < 0/ — 6%,
Hence,

|({(Rewsgnu—+v)* A [u +vl)sgn(u +0) — (Rewsgn @)* A |ul)sgnyl
< 2 |w|[sgn (v +0) —sgnu| + “u +o]— 20 |w| (1~ 6%) 4 |u] A |v].

Our inequality follows for |v| < 0|u| and similarly for |u| < 0|
-Now apply the inequality i 1n Viwith w = Tio, u = nly,, v = %lez

lul | <

Since ¥, |y, and |u| A v << Zla (i*u, v)]—~0, we have

H"'I(my (Y1 “l‘?/z)) —a (@, ny,) —a(w, '”'?/z)“ < Ollell /(L — 6%).
Let 6 ~ 0 and then n—oco t0 obtain Py 1y, =Py +P,, as required.
Lemwa 5.19. If y,, ..., ¥, are distinct elements of D, the real part ¥

of X and the positive cone K of X are unchanged if yy, ..., y, 'are deleted
Jrom D and replaced by Yo = Yy + ... +¥,.

Proof. Immediate.

icm
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LM 5.20. For each zeX, y <D, we have ||J, ol = || 17,1

Proof. Assume that # = J,2. We will compute in V, with the following
notation: v = T,9; v = T wsgnv; n, N, ky, ..., k, are positive integers;
@y, ..., 0, are complex numbers of absolute value 1;

AN v — (Rew)™ AN |o|+i((Imu)* A N o] —(Tmw)™ A Nlvl);
) = ((Re((Re... ((Re((Re(alu— ap )T A Ry o)) +
A 7{;2]@]) + . + Oy % — anu))+ +anu’))+

) is the element obtained by replacing u by wy in the
k,). Now, observe that

wy = (Reu)*t
2(Fyy «vy Koy
+02M-—a3%)+ A knl‘vl;

and &5y (ky,y ...y Ky,
formula for z(kq, ...,

We(Fyy - ey Bl = (R, - oy o) sgMR0)
and that
lim  LmT; %(ky, ..., k,)sg00
Eyseenrkp—>o0 4
=Py (P, ... (Py(Pyle@— ay) + 08— a3®) -+ ... + Oy 10— 2,8} + 0, @)
= ((Re((Re...(Re((Re(a, @ — ay@))* + a0 — @) + ... +0pa®— @) " +
+a,m))*
=\ (Rea;m)T.
i=1
Since,
loyy .., ) < ((Re ... (Re(ayte— apu)) ™ + ... +a,u)*
V (Reqyu)™ < lul,
we have
lle(Fy,y -, By)sgnoll < | lulsgno|| = IT,2].
This gives
I V (Reqa)| = lm  Lmfe(k, ..., Bl < Joll
F=1 Kyseunskp—ro0 A

Because the norm in ¥ is order continuous we can conclude that ||zl < |l
For the reverse inequality we work a little harder. Since [wy| < 2N |v|,
we gee that if 20N < min{ky, ..., k),

dy(lyy ey By) = ((Re... (Re(aywy — agwy))t + ...+ apwp)*
— V (Reaywy)*t

j=1
Let o be a complex nth root of unity a.nd observe that if o; = o’
G=1, ), :

V (Regwy)t = cos(nfn) lwy| = cos (m/n) lwysgnol.
j=1
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Hence, for-this choice of o; we have
le(Byy - vy Bl o8 (/)| wysgnoll — Ty, oy By) — @5 (Fogy on vy Byl
Now )
le(Fry -eny Bop) =2 (Fay -0y Tl < 200l — iyl = 2m [lusigno — wysgno|.
Hence
e(Foss s n)ll 2 c08 (m/m)|wysgnoll —2n usgno —wysgnol.

Let 4 vary, ky, ..., k,—co and then N->co. The left-hand side [becomes

n
1 (Reaa ] < o}
the right-hand side becomes
cos(r/n) | T el —2n o —J, || = cos(n/n) @],

because & = J,#. Hence |||z]| > cos(m/n)lw| and we canflet n—»oco and
obtain |||#]]| = [l#] as required.

TurorREM 5.21. The complex vector lattice structure of X is that of
a Banach laitice, with order continuous norm.

Proof. Let yy,...,9, be distinct elements of D. By Lemma 5.18,
the band projection Jy . ., =dy+ ... +J, . If 0eX, we have |a|
= M|J,#|. Since

n n
|2 7y8] = 217,01,
J=1 J=1
we hagve only to show that

1594 =157,

By Lemma 5.18,j§1J,,jw = J, @ where ¥, = y;+ ... +¥,. By Lemma 5.19,

we can compute |J, x| in terms of P, so by Lemma 5.20 |||, ||| = |7, @l
We are done. " " HI v ]H Wl

If we now combine Theorem B5.21 with Theorem 4.2 we have the
following.

) T}IE.OREM 5.22. 4 Bamach space X cam be given the structure of & Banach
lt.mwe with order continuous morm if and only if X admits an order con-
tinuous pre-lattice paving.

) .Let us note that we obtain as a consequence the &, character-
ization of L,(u) spaces. J

COROLLARY 5.23. Let X be a complex Banach space. Then X is an
&y, space for all 4> 1 if and only if X = L, (1) for some measure u.
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For, we have noted that if X is an %, , space (L<p < o0, p # 2)
for all 1> 1, then & = {I,(n)} is an order-continuous pre-lattice paving
of X. Thus X has-a Banach lattice structure as above: It is easy to see-
that this structure satisfies the condition that |@] A [y| = 0 implies that
Iz +ylF = llol® - lyl? (for p = 2 it is easily seen that X satisfies the par-
allelogram law). Hence X = L, (x) for some measure x (see [10]). We note
that this proof does not use conditional expectation and contractive:
projection theory as the proofs in [4] and [20] do.

‘We can also obtain as a corollary a well-known result of Grothendieck.
without using the theory of #; spaces and normal measures.

COROLLARY 5.24. Let X be a Banach space and suppose that X* = O(T)
Sor some compact Housdorff space T. Then X = L,(u) for some measure u.

Qlearly, we need only show that X is an %, ; space for all 4 > 1. But®
this follows from the principle of local reflexivity and the fact that X**
= 0(T)* is an 2, , space for all 2> 1.

‘We now indicate how to obtain the isomorphic case from the isometric:
cage by using a re-norming technique and lemma suggested to us by
'W. B. Johnson. The lemma is similar to Lemma 3.2 and we only state it.

LeMMA 5.25. Let e> 0 and k be given. Then there is an N such that
for each finite dimensional Banach lattice V, if @y, ..., @, are in V and
ol =1, then there are disjoint hy,...,hy in V and 4; (G =1,...,k;
j=1,..., N) such that

<e.

k N
D= Xl agh
=1 i=1

In particular, there is a linear map 8 of sp{&s, ..., @} = Finto sp{hq, ..., by}
such that .
llo— Szl < ellwll for all weF.

The proof is similar to that of Lemma 3.2 and is obtained by choosing’
an appropriate partition of the closed unit ball in 0% (under supremum
norm). :

THEOREM 5.26. Det X be a Banach space. Then X is linearly isomorphic

“to & Banach lattice with order contimuous norm if and only if it has an order

continuous pre-lattice paving with respect to some class & of finite dimen-
sional Banach lattices.

The necessity is immediate. We shall outline how the sufficiency
is veritied. Thus we assume that X = U @, where @, is an upwards directed

family of finite dimensional subspaceg and there are finite dimensional.
Banach lattices V, and isomorphisms T, of &, onto V, satistying conditions
(A) and (B) in Section 2 and the conditions of order continuity in Sec-
tion 4. Without loss of generality we may assume that ||| = lim |T, ],

¢
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exists for all #¢ X and, clearly, ||| ||| is an equivalent norm on X. Thus it
only remains to show that X has an isometric order continuous pre-
lattice paving with regpect to this norm.

Let ¢,—~0 and for & given p choose N to satisfy Lemma B.25 for e, = ¢
and ¥ = dim@,. Clearly, one can find a y,>y such that #(y") is small
for all ' > ¥,. By Lemma 5.25, there is a block basis hy, ..., by in Voos
relative to the positive disjoint normalized basis of ¥, , and an operator §
of ¥ =1T,(4,) to sp{hy, .. . hy} such that [y — Syl < ellyll for all yeX.
From the deﬁmtlon of the norm it is possible to choose y; > v, such that

(1+&)| ol
1(h,). Let

) @y}, where @; = T
B = T, o;— (]T,,l.m] A 2 ]Tylm,])sgnl’hm@
j#

(1—e)| |l < I, <

for all weF = sp{wy,...

Then
BIA =0 tor i) and IT,e—KI <70V | 1,0
and, hence,

|, Soad] < | S, 0]

where K is a constant depending only on @, (see the proof of Lemma 3.5).
We can choose 7 (y,) small and so we put T, = T',|F, wherein the range W,
of T, the norm is given by ||2aiTylm¢|| = [|2aih*|| and positivity by e; > 0
for i =1,..., N. Then W, is a Banach lattice and it can be shown that
there is an 1sometrie pre-lattice paving using the above and techniques
in the proof of Lemma 1.1. A routine caleulation also shows that it is
order continuous since the original one is. Thus the conclusion follows
from Theorem 5.22.

Finally, we give an example of a pre-dual L, space which is not
isomorphie to a Banach lattice. We shall need the following proposition
mentioned in [15] without proof. The proof indicated here was provided
to us by Lior Tzafriri.

Prorosrrion 5.27. The Banach space U, has a unigque Banach lattice
structure.

Proof. Suppose X is a Banach lattice which is linear ly isomorphic
to I;. Then since X does not contain ¢,, the norm in X is order continuons
[19]. Hence by Theorem 10 of [17] X is order isomor phic to Ly () for some
measure space u. Clearly, u is purely atomic since otherwise i, (u) contains
a subspace isomorphie to separable Hilbert space I, (see [107).

Now, Benyamini and Lindenstrauss [2] have given an example of
apre-dual L, space X such that X* = I, and X is not isomorphic to a xpace

icm
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O(T). Suppose X is isomorphic to a Banach lattice ¥. Then by the above ¥*
iy order isomorphic to I, and ¥** is order isomorphic to .. Thus ¥ is
order isomorphic to a separable M space. But, Benyamini [1] has shown
that a separable M space is isomorphic to ¢(T) for some compact metri-
zable space T. Thus X is not isomorphic to any Banach lattice, but X
has local unconditional structure for all 1 > 1 with respect to {Io(n)}.

N
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Abstract. The extension of real-valued a-additive finite finitely additive regula.
real-valued set functions from an algebra of sets to larger o-algebras of sets is givenr
The extensions are then used to obtain results on o(4*, 4) convergence of z-additive
functionals on an algebra A of real-valued funclions on a set X.

Introduction. Let A be a uniformly closed algebra of bounded real-
valued functions on a set X which separates the points of X and contains
the constants. Let X be equipped with the t, topology which is the weakest
topology on X which makes each fed continuous. In [4] the concept

‘ of a-additive set functions on a paving # of subsets of X was introduced
to represent the a-additive functionals in 4% and it was indicated that
the a-additive set functions could he extended to e-additive elements
on a larger paving (this includes the fact that z-additive Baire measures
in C?(X) can be extended to Borel measures on X). We shall establish
this extension process which depends on which definition of outer measure
is chosen. We then employ the extension to questions about weak, o (4%, A),
convergence of elements in A*. We anticipate that working with a paving
and that working with subalgebras of C*(X) will -prove useful in prob-
ability theory, and in this direction we obtain a weakened form of Pro-
chorovs’ theorem. Also for subalgebras A, = A, we give sufficient condi-
tions for weak convergence of r-additive @ in A to be determined by the
elements of A4,. ’

The authors wish to thank the referee for pointing out that our
results in Section 1 should extend to exaustive functions with range
a suitably endowed topological group. He also noted some of the rich
literature on the subject such as done by Drewnowski [2], Sion [6] and
Traynor [7]. The referee is of course correct and the authors intend to
show this and that the weak additivity condition does yield the usual
additivity condition in a different paper.

§ 1. Extension. We refer the reader to [4] for many of the basic
definitions and results; however, we shall indieate here some of the essen-
tial definitions.

A paving on X is a family #° of subsets which contains @, is closed
under finite unions and intersections, and has X = J #". The paving
is full if X ¥ and in this paper all pavings will be assumed to be full.
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