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of time-depending linear control systems
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Abstract. Given a family of econtinuous linear operators: Op: XY, 0<t< 4 0
(X, Y — Banach spaces) with 04X < Op X for i< ¢’ and such that for each ye¥
there is a pair (4, #;) for which C;«; = y. Then there exists a i, such that 0, X = ¥.
This result is applied to the proof of the existence of the universal time for
controllability of systems described by a differential equation in a Banach space:

dw/dt = Aw+ Bu,

where A does not depend on time f. A modification of the main result allows us to
prove a similar fact concerning the so-called zero controllability.

Let a confrol system be deseribed by a differential equation in

a Banach space
dn

1) —d;:A(t)ijB(t)u, 0<t< +oo,
where # belongs to a Banach space ¥, u belongs to a Banach space ¥, 4 (%)
is a linear (not necessarily continuous) operator acting in H, B(f) is a con-
tinuous linear operator mapping F into H.

The problem of the existence of a solution of equation (1) with an
initial condition ’
2) #(0) = @,

and the form of the solution is discussed in detail in [1].

The gtandard tool for representing the solution is the so-called evol-
ution operators.

We shall make the standard assumptions warranting the existence
of the so-called evolution operators of equation (1) (see for example [1],
Chapter II).

We shall not recall all the properties of evolution operators. For our
consideration it will only be important that evolution operators, i.e.,
a family of continuous linear operators U(t, s) mapping Y into itself,
depending on two real parameter: ?, s and such that
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1° U, 8) =1, (

2° U(tys) = U, z)U(r,s) for 0 << v,

3° the so-called generalized solution of equation (1) with the initial
condition
(3) By (8) = @y,

can be written in the form
i
(4) 8,(t) = U, 8)ay+ [ Ut, ) B(v)u(v)dv

(see for example [1], Chapter II).

We say that systems (1) is controllable if for each pair of elements
@y, %, of B there is a time #, and a control «(-) such that the generalized
solution corresponding to the control u(-) and the initial condition (2)
satisfies the condition @(f,) = a,.

In the case where #; is fixed and equal to zero we speak of zero-con-
trollability.

‘We say that there is a universal time ?, for controllability if for an
arbitrary pair @,, %, there is a control 4 (- ) such that the generalized solution
of equation (1) corresponding to initial condition (2) and the control
u satisfies the condition #(f,) = @,.

In a similar way we can determine the existence of a universal time
for zero-controllability.

In [5] Zabezyk has proved the existence of a universal time when
. B = F are Hilbert spaces and the coefficient operators A4, B do not depend
on time.

In this paper the result of Zabezyk is extended onto arbitrary Banach
spaces I, I. Moreover, it is shown that there is a universal time for zero-
controllability for non-constant operators A () and B(t).

The method of the solution of the problem. is based on an abstract
approach developed in papers [2], [3], [4].

By a time-depending linear control system we shall under stand a gystem
of two Banach spaces over reals X, ¥ and a family of linear continuous
operators C;.depending on a real parameter 1, 0 <t <oo, called time,

(5) xZ 7).

We say that system (5) is controllable if for all y¢ ¥ there is a pair (¢ , @)
such that ‘
(8) O, =y.

We shall say that time t, is universal for the controllability of system
(8) it O, X = 7.
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Let X be the Cartesian product of two Banach spa.ces X =XyxX;.
We say that a system

¢/
{7) (X X Xy ¥)
is zero-controllable if for each @, X, there is a ¢ and a uweX; such that

{8) Cylmy, u) = 0.
‘Write

(9) X; = {weX,: there is a ueX, such that Gy(w,u) =0}.
TEEOREM 1. Suppose that
{10) X=Xy, for 1<ty

If system (7) is zero-controllable, then there is a universal time %, such that
Jor every myeX, there is a uye X such ﬂm,t

(11 6'1 (@9, %g) = 0.

Proof. The set W; = {(#, u)eX,x X;: Cy(w, u) = 0} is closed in
the. space X,X X, as an inverse image of a continuous operator. Let
P be a projection operator mapping X,x X, onto X,,P(®,u)=a.
Observe that X; = PW,. Hence, by the Banach theorem on open maps,
either X; = X, or X, is of the first category.

By (10) and the zero-controllability of system (7)

{12) X, = UZX,.
fn=1
Hence there is an n, such that X, = X, , which by the definition of
X, implies the theorem.
Let X, L3 As X, weshall take a space LP ([0, o0): F), 1< p < -+ oo,
(C[0, 0); F) of functions (bounded continuous functions) with values
in U such that

(13) Tl = ([ @3] < +00, 1<p < +oo,

(13 ()l = esssupliu(-)llp for p = +oo
(B4
and for C([0, co): F).
The norm in X is defined by formulae (13) and (13') in the way as

before. Liet ¥ be the second Banach space.
Let

i
(14) Oy, w) = Uty 0wy + [ UE, D) B(v)u(z)dr
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Under conditions warranting the existence of evolution operators
and a condition which warrants the local integrability of B(¢)u(t) for
all u(-)eX, operator (14) maps X, x X; into ¥ = X,.

Observe now that in this case inclusion (10) holds. In fact, let ¢, < t,.

Suppose that #,¢X; . This means that there is a control u,eX, such that
f
(15) Uty 0@+ [ Tlty, ).B(2)ug(v)dr = 0.
[
Let u,(7) = u4(7) %[0, £,]. Because of the special character oF the space
X;, we also have u,(r)eX,y.
By the definition of u,(-),
(16) ‘
B l
Ulty, 000+ [ U(t, ) B(x)uy(v)dz = U(ty, 0 mn—|~f U(t, v) B(v)te(v) dv
s )
and by property 2° of evolution operators the right-hand side of equality
(16) is equal to
™ )
() Uty ) U tta, 0)+ [ Tlta, 1) B()o(r) de] = 0.
; )
Hence yeX;, which implies (10). Finally we get:
COszOLLARY 1. If system (1) is zero-controllable, then there is a umi-
versal time t, such that for exery w,eY there is @ control u(-)e X such theat
the corresponding solution x(t) of equation (1) with the initial condition (2)
satisfies the final condition »(t,) = 0.

Ig general, zero-controllability does not imply controllability. How-
ever, .1fwe assume that U(t, s) are invertible, then zero-controllability
is equivalent to controllability and the existence of a universal time for
zero-controllability is equivalent to the exmtence of a universal time
for controllability.

) It' follows from the fact that under the assumption that U(%,s) is
mvert.lble the existence of a control from @, to y, in the time interval
[s, ] is equivalent to the existence of a control from @, —[ U (¢, )] ¥, %0 0.

.PROBLEM. Suppose that the system described by differential equation
(1) is controllable.

) Does a universal time for the controllability of the system exixt
without the hypothesis that U(t, s) is invertible?

As a consequence of Theorem 1 we get

THEOREM 2. If system (5) is controllable and

0,(X) < OAX)  for

then there ewists a universal time for the controllability of system (5).

(18) 1<,

icm
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Proof. Putting X, = X, X, = ¥, ¥ = ¥ and

C(y,2) = y— 0O,
we trivially get Theorem 2. .
Let Y = X, = F and X, = X Dbe as before. Let B be a linear con-
tinuous operator mapping F into E. Let C;, 0 <<t < 400, be defined

by the formula
¢
Oy {u(+)) =fS(t—--:)Bu(-c)d1,

[

(19)

where S8(1) is a strongly continuous semigrouf) of linear operators of the
class ¢;.

It is easy to verify that O, satisfies condition (18). Therefore by
Theorem 2 we infer that if the system described above is controllable,
then there exists & universal time for the controllability of the system.

Observe that #(f) = C;(u(-)) can be interpreted as a generalized
solution of a non-homogenous differential equation in a Banach space
with constant coefficients

a
(20) d—‘; — Aw(8)+ Bu(t)
with the initial condition
(21) #(0) = 0.

A denotes here the infinitesimal generator of the. semigroup S(s).

Therefore we obtain

COROLLARY 2. If for all yyeY there is a control w(-)X such that the
corresponding solution of equation (20) with the initial condition (21) satisfies
equality Y (4,,) =y, for certain t, , depending on Yo, then there is a universal
time 1, such that for every yoeY there is @ control u(-)eX such that for the
corresponding solution of equation (20) with the initial condition (21) we
have y(t,) = ¥,-

COROLLARY 3. If for all @y, v, eY, there is a control u(-)eX suich
that the corresponding solution of equation (20) with the initial condition
(22)
satisfies equality y(t) = y, for certain t depending on @.,y., then there is
o universal time t, such that for all @y, y,¢XY there is a control u()eX,
such that the corresponding solution of equation (20) with the initial condition
(22) satisfies the equality y(t,) = Yi-

Proof. By COorollary 2 there is a universal time #, such that, for
every a9, there is a control » such that the solution of equation (20) with
the initial condition (21) corresponding to the control w(-) satisfies (23)
2(t,) = 20

©(0) = @,
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Putting 2° =y, —8(¢,)»:, we obtain the required control.

Of course the existence of a universal time #, in system (5) implies
that :

(24). Uoex=7.

o<ty
If C; has only a countable number of values and (5) is controllable,
then (25) holds. An assumption of type (18) (or about & countable number
of values of C;) cannot be replaced by continuity, as follows from the
two examples given below, even in finite-dimensional spaces.
Exaverr 1. Let X =Y = C be a complex plane considered as
a two-dimensional real Banach gpace.

.
Let Gz = ¢ (‘“)1 Rez, where Rez denotes the real part of z It is
easy to verify that

(25) Y=U 0Xx

(B 2

and that for every ¢, < + oo

(26) Y % U CX.

ost<ty

On the other haﬁd, C; is continuous in the norm topology.

The next example shows that we can replace (26)
condition,

(27)

by a stronger

Y=n U cx,

<0 {<r< 00
and still inequality (26) holds.
3 _ ‘ i = (pbg) stni
Examrre 2. Let. X, ¥ be as before. Let Cz = ¢ Ree.
It is easy to verity that C; is norm-continuous. Of course, €, satisties (27 )
and (26).

References

[11 8. G. Krein, Linear differential equalion in o Banach space, Moscow 1967
(in Russian).

[2] 8. Rolewicz, Analica funkejonaina i teoria sterowania, PWN, Warszawa 1974,

[81 — On general theory of limear systems, Beitrige zur Analysis 8/9 (in priut).

[4] — ILinear systems in Banach spaces (o appear).

[5]1 J. Zabezyk, Remarks on the algebraic Riceali equation in Iilbert space, Appl.
Mathematics and Optimization (fo appear).

INSTYTUT MATEMATYCZNY POLSKIES AKADEMITI NAUK

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SOLENCES

Raceived May 30, 1975 (1022)

STUDIA MATHEMATICA, T. LIX. (1976)

Saturation for Favard operators in weighted
function spaces

Dedicated to Jean Favard on the occasion of the femth
anniversary of his death on January 21, 1965
by
L1
M. BECKER, P. L. BUTZER, and R. J. NESSEL (Aachen)

Abstract. This note continues the investigation of the operators

- k n [k 2
f(;) exp(-—;(———m)) -@(7}> 0, neN)

F} P=
f(x) Vo S p

introduced by J. Favard in 1944 for y = 1 as a discrete analog of the familiar Gauss—
Weierstrass convolution integral. These Favard operators give approximation on
the whole real axis R and are of special interest with regard to approximation in
locally convex spaces. The saturation problem for F)f on the Banach space

Xy = {feOR); (1+3P)"1f(m) = o(l), lz|>oc0} (NeN)

is solved by employing a theorem of H. F. Trotter (1958/59) on the convergence of
semigroups of.operators. Thus the family ef noncommutative operators {F); neN}
is associated with a family of commutative operators having the same saturation
class, in this case just the Gauss—Weierstrass integral. For this purpose asymptotic
estimates are derived which are needed for verifying the hypotheses of the Trotter
theorem. Finally, instead of the weight funetions (1+ #2¥)-1, -also the functions
exp (— fx?), B> 0, are considered.

1. Introduction. In this note we would like to study the Favard

operators

1 Lk n & 2
1.1 ()= (_) ex (.,m;(,_ _m))
(L1) fla) = kg}mf o R el o=

with y > 0, neN, the set of positive integers. These operators were in-
troduced by Favard [8], pp. 229, 239, in 1944 for » = 1 as discrete analogs
of the familiar Weierstrass operators

W%f(:)a):='l/—:—_;E ff(u)exp (—%(u—w)“)du.

3 ~ Studia Mathematica LIX.2

(1.2)
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