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Putting 2° =y, —8(¢,)»:, we obtain the required control.

Of course the existence of a universal time #, in system (5) implies
that :

(24). Uoex=7.

o<ty
If C; has only a countable number of values and (5) is controllable,
then (25) holds. An assumption of type (18) (or about & countable number
of values of C;) cannot be replaced by continuity, as follows from the
two examples given below, even in finite-dimensional spaces.
Exaverr 1. Let X =Y = C be a complex plane considered as
a two-dimensional real Banach gpace.

.
Let Gz = ¢ (‘“)1 Rez, where Rez denotes the real part of z It is
easy to verify that

(25) Y=U 0Xx

(B 2

and that for every ¢, < + oo

(26) Y % U CX.

ost<ty

On the other haﬁd, C; is continuous in the norm topology.

The next example shows that we can replace (26)
condition,

(27)

by a stronger

Y=n U cx,

<0 {<r< 00
and still inequality (26) holds.
3 _ ‘ i = (pbg) stni
Examrre 2. Let. X, ¥ be as before. Let Cz = ¢ Ree.
It is easy to verity that C; is norm-continuous. Of course, €, satisties (27 )
and (26).
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Abstract. This note continues the investigation of the operators

- k n [k 2
f(;) exp(-—;(———m)) -@(7}> 0, neN)

F} P=
f(x) Vo S p

introduced by J. Favard in 1944 for y = 1 as a discrete analog of the familiar Gauss—
Weierstrass convolution integral. These Favard operators give approximation on
the whole real axis R and are of special interest with regard to approximation in
locally convex spaces. The saturation problem for F)f on the Banach space

Xy = {feOR); (1+3P)"1f(m) = o(l), lz|>oc0} (NeN)

is solved by employing a theorem of H. F. Trotter (1958/59) on the convergence of
semigroups of.operators. Thus the family ef noncommutative operators {F); neN}
is associated with a family of commutative operators having the same saturation
class, in this case just the Gauss—Weierstrass integral. For this purpose asymptotic
estimates are derived which are needed for verifying the hypotheses of the Trotter
theorem. Finally, instead of the weight funetions (1+ #2¥)-1, -also the functions
exp (— fx?), B> 0, are considered.

1. Introduction. In this note we would like to study the Favard

operators

1 Lk n & 2
1.1 ()= (_) ex (.,m;(,_ _m))
(L1) fla) = kg}mf o R el o=

with y > 0, neN, the set of positive integers. These operators were in-
troduced by Favard [8], pp. 229, 239, in 1944 for » = 1 as discrete analogs
of the familiar Weierstrass operators

W%f(:)a):='l/—:—_;E ff(u)exp (—%(u—w)“)du.

3 ~ Studia Mathematica LIX.2

(1.2)
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Note that (1.1) is also related to the (e, 1) or Valiron method (cf. [18],
p. 143) of summability of a sequence {s,};—, defined by

sl 2
V}_ Zexp (——ft/ (;/k— -—1) )319 (y—>00).
7Y =0 b

Favard was able to prove the following result.
THEOREM F. Let f be continuous on the real awis R such that |f(x)
Aetp (Ba?) for positive constants A, B, and x<R. Then I, f(2) converges
to f(w) as n—>oco pointwise for every meR and even uniformly on any compact
subinterval of R.

Although the Favard operators do not seem to have been studied
by other authors, they deserve much more attention since they are an
example of a process giving genuine approximation on the whole real
axis. They will, moreover, turn out to be of particular interest with regard
to approximation in locally convex spaces.

In this paper we therefore continue Favard’s investigations, par-
ticularly discussing saturation for the family {F7}5, on the Banach
space (N eN)

13 Xy :={feC(R); f(a) = o(L+a™), \wl—m},
. Iflly o= N1+ f(@)] = Sup1(l+ww “f(x)

C(R) being the set of all cor?tlnuous functlons on R. The results will be
deduced as an application of a general theory in Banach spaces (and
even in certain locally convex spaces) elaborated in [2] and based upon
a theorem of Trotter [16] on the convergence of sequences of semigroups.
Thus, not only does the Weierstrass operator (1.2) serve as a guide for
what might be expected in connection with (1.1), but the results for
(1.1) are actually obtained by reduction to the known ones for (1.2) via
the theorem of Trotter. ‘ }

Whereas this abstract theory will be formulated in Section 3, Section
2 provides some fundamental estimates needed for the application of
the general theory to the operators (1.1) to be given in Section 4, at the
same time improving certain asymptotic estimates of Favard. Finally,
in Section 5 the operators (1.1) are considered on the more general spaces
(5.1), already envisaged by Favard’s result. However, from the point
of view of an abstract theory the situation seems to be less satisfactory
8o that the 1e.ult in this case should be proved by direct (and more elab-
orate) methods.

The authors would like to thank W. Dahmen in connection with
the proof of Lemma 2.1. The contribution of the first author was sup-
ported by grant Nr. IT B7 — FA 5232/6132 from the ‘Minister fiir For-
schung des Landes Nordrhein-Westfalen’.
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2. Some fundamental estimates. Following the standard procedure
in the discussion of the approximation-theoretical properties of inter-
polatory analogs (Bernstein polynomials, Szész operators, etc.) we have
to derive precise asymptotic estimates for the quantities (#eR, neNN,
reP, the set of non-negative integers)

2.1 FI1(z): = N _r(k_ Y
(2.1) 71(0) V;?MZOOGXP( o[ ).

. 1 >k r n(k 2
2.9 T H _— —
(2.2) = kzm('n )exp( y(% m))

Now by a eclassical relation for the theta-function By (cf. [3], p. 26) one
has

(2.3) Fil(®) =142 ) exp(—nynk?)cos (2rnkz).

E=1
To estimate the right-hand side of (2.3) we need two lemmas.
Tmvwma 2.1. Let f,(t) : = (t/(ae) for a,t > 0. Then for any v, at+pf>0
e~ < folat8)y~?

Proof. Setting g(y) : = y**Pe~% for y > 0, it is easily verified that
g attains its maximum at (a+pf)/a so that for any y >0

ya—kﬁeww < ((a+ﬁ)/a)a+ﬁe~(u+ﬂ)‘
LeEMMA 2.2.

For any y >0, a,>0, and neN, -

S

Proof. By choosing y = nk?, & = yx® in Lemma 2.1 and summing

over &k one obtains
nw Zk““exp —nynk?) < frua(at B) n_f’ZL ¥,
=1 k=1
Thus, (2.4) follows for § > 1/2, which in turn implies (2.4) for any B>

TEBOREM 2.3. The following estimates hold uniformly on R for n—oco:

(2.4) exp (—myn?k?) = O(n~C+tM) (n—c0).

(2.5) FiL(e) = T%,(2) =140 (n2),
(2.6) T7,(2) = 0(n™),
(2.7) T3 4(2) = y/2n+0(n~).
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Proof. Obviously (2.5) follows f1om (2.3) and (2.4) for a =0, f = 2.
Differentiation of (2.3) gives

(2.8)  (FLL) (@) = (2n/y) Th1(a) = —dmn D)k exp(—nym2k?)sin (2nnke),
k=1

's0 that (2.6) is obtained from (2.4) for « =1/2, f# = 3/2. A further differ-

entiation yields

(2.9 (F)" (@) = —(@nfy) FL1(@)+ (4n*[y*) 17 (@)

[

(o]
—8mtne ) h2exp( —nymt?) cos (2nnica).
k=1

Thus

T2 (@) = (p[2n) F1(2) —2y*nt ) keexp( —nym?)cos (2mnka).

=1
This proves (2.7) with the aid of (2.5) and (2.4) for ¢ =1, § = 2.
Let [#] denote the greatest integer less than or equal to .

THEOREM 2.4. For every m, keN there are constants ¢, independent
of n such that for <R

[k/2]—1

It
(210)  T%4(0) =(—2—j—b—) (P @)+ ]

j=0

[kf2]—F
UK (2—%‘) T 254e, (@)

where e, = 1 for odd & and ¢, = 0 for even k.

Proof. First of all, (2.10) is valid for & = 1, 2 by (2.8), (2.9). Sup-
posing the equation to be valid for k¥ = 2m, we show that it is valid for
k =2m-+2 and so by induction for all even k. To this end assume

m—1

.Zm Mg
1) Tiante) = (L) @O @5 D o (ﬁ) T,5()

2n <
Je=0
to be valid. Then by virtue of
d 2n
(2.12) T (@) = —y—TZi,m (@) — Ty (@),

(2.13)

az 2m\* on
%T;,r(m) = (7) Tﬁ,r+z(w)—(21"4-1)71'%,,(50)+V(T—1)Tii,r—z(W),
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we have

2

2
Y
T3 amya (@) = (o] s T oy (@) + (40 1) 2= T2, () —
onl dw 2n d

2
—2m (2m —1) (—27;7) T3 om—a (@)

p |22 , m-l y \mI+2 g2

- am-+2

= (%) (Fr1yem* (@) + .Eo C5,9m (—‘2n) ey T3 5(@) +
i=

+(dm+1) o 4 Tilzm( ) —2m (2m — 1)( ) ip— )

p \2mte fa v m—j
=(%) (FR0) @)+ D 0om (%) T3 242 (®) —
j=0
—~1 N —1

' 1 m—:+1 m—j+2
TR ES PN R

j=0 J=1

X Tn,zj—z (m) +

2
m 1) L @) —2m(zm 1) (L) T sl

2m+2 ki m+1—j
. Y om+2 Y
= (———) (Fr1)em+3) (g) +2 Cj,am+2 (—é;) T7 (),
=0

2n
with appropriate constants ¢;,,,,. Differentiating (2.11) and using
(2.12) delivers the desired result also for odd k.
THEOREM 2.5. For every m, keN one has uniformly on R for n-—oo

T? (@) = O (n &Y,

In particular, T}, (0) = O(n™").
Proof. By (2.3) and Lemma 2.2 we have
k 0
r P1\B) [ ) kY ik _ 2
(M) (ELLP @) =0 (2" 3, f*exp (— g ))
= O(n~IE+DRY  (p_s00).
Ag Theorem 2.3 treats the cases k = 1,2 one may proceed via induction
using Theorem 2.4, thus
[lt/:!_];l y (i)~ .
Tialo) = 0140 + > c,-k(;—) 0(n3=%) = O (n=1+ D),
20
j=0

since [k/2]-+¢, = [(k+1)/2].
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3. General theory. The abstract background for our investigations. is
provided by a theorem of H.F. Trotter (cf. [167]; [17]) which asserts that
an approximation process {8,};* satisfying a Voronovskaja-type condition
i closely related to a semigroup of operators which, as we shall see, hag
the same saturation class as {S,}9°. These results are part of [2].

TasorEM T. Let {8,}5° be a séquence of bounded linear operators mapping
the Banach space X into itself, and let B be a closed operator mapping its
domain D(B) < X into X such that

(3.1) (Voronovskaja-type condition) there ewists a sequence {h,}>
of positive numbers with h,—0 such that for each feD(B)
L (1/h,)[8,f —f] = Bf,
N—>00 .
(3.2) (stability condition) there ewist constants M, K > 0, inde-
pendent of j, neN, feX, such that
18551l < MeXn £,
(3.3)  D(B) is dense in X, v
(3.4)  there emists A > K such that the range of AT — B is dense in X.

Then B generates a semigroup {T(t); t > 0} of elass (Cy) (cf. [5], p. 8) such
that for a sequence {k(n)}P° < N

(3.5) limh, - k(n) =t = ¢ —lim 8" = 7).

N—>00

For a proof of this theorem we refer to [11]; [16]. =

In the following D(B)X' denotes the completion of D(B) relative
to X (cf. [1]; [4]).

THEOREM 31 Let X, {8,372, {T'(t); 1 = 0}, and B be as in Theorem T.
Then the following assertions are ‘equivalent for feX:

T—>00

(3.6) I185f—fll = O(hy) ~ (n—>o0),
(8.7) IT@f—fll = 0@)  (t=0+),
(3.8) 1<DBY,

(3.9) feD(B) if X is reflewive.

For the convenience of the reader let us sketch certain steps of the
proof (see also [2]; [97]; [14]). ‘
(3.6)=(3.7). Let 120, {k(n)}* < N be such that lim Ry ke(m) =t
Then (3.2) yields o
(n)

[EARENIES D) WS (S f =)l < M- FHOn 2 18, f — F 1B ().
. L ’ ’

icm
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Thus letting n—+co (3.7) follows in view of (3.5), (3.6). In particular,
one hag the following “o”-result: If f<X is such that |8,f—fll = o(h,),
then |T(t)f—fll = o(t), and therefore feD(B) and Bf =0 by the classi-
cal semigroup-theory (cf. [5], p. 88).

(3.8) =(3.6). As D(B) is complete with respect to the norm [|gllps K
:= |lgl+ |IBgll, in view of (3.1) and the uniform boundedness principle
there exists a constant ¢ > 0 such that for all geD(B)

ll(]-/hn)[sngwg]” < C “g”D(E)'

Given feﬁx, by definition there exists a sequence {f,}i° < D(B)
bounded in D(B) and.converging to f in X. Thus there exists C;> 0
such that

nniformly for m, neN. Letting m—>oco delivers (3.6).

The equivalence of (3.7), (3.8), and (3.9) follows by Theorem 4.1 -
of [4] (see also [6], p. 505).

4, Saturation for the Favard operators. The foregoing preparations
now enable one to study the approximation behaviour of the operators
(1.1), in particular to determine their gaturation class. In this section
the underlying Banach space will be X, as defined in (1.3), N N being
arbitrarily fixed. Let us commence with the stability condition (3.2).

Ty 4.1, For each N eN there emisis a constant My such that for
feXy ) k
(4.1) I flly < (1+ M yn ™) flly-

Thus {F2}? is a family of bounded Vinear operators of the Bamach space
X into itself satisfying the stability condition (3.2) with M =1, K = My,
by, =nh

Proof. We bave for s,ueR

. N1 ]
Lt(@tup™ ZZ\ (zzv) LA
l+.’172N S & i 1+w2N :

Sinee [l#]y < 1 for 0 < j < 2N, letting . = (k/n)—® it follows by Theorems
2.3, 2.5 that

K

B (L+ ™) ()]

1o 1+a®

i

aN—1 i
<imgr@i+ ) (F) e a0
’ DL’N—I

<1t0m+ Y () o <1 M
. G=0
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with some constant My uniformly for weR. Now let feX,. Then by
definition
1 f (@) < [flly 1B (1 +2*) ()]

so that there follows (4.1). Since 14 2 < €%, this implies
(4.3) WEZYAI < ™5 flyy

for all jeNV, completing the proof.

Next we note that {F%}{° constitutes an approximation process on
each Xy.

Lmvva 4.2. There holds lim |Fyf —flly = 0 for each feXy.

N—+00
Proof. Setting wy(Xy, f; #):= sup|fle+t) —f(o)|y for feXy, it
R tl<h

follows that limw,(X,,f; k) = 0. Therefore for any ¢> 0 there exists

T0-

8> 0 such that o, (Xy, f; h) <e for all |h| < . Now gplitting the sub-
sequent sum into two parts according to |(k/n) —a| < 6 and |(k/n)—o| > 4,
Theorems 2.3, 2.5 imply as in the proof of Lemma 4.1 that

. - ’f(—f;) — ()
Vymn

| B f (@) —
_f']—i::)mT‘]:(ivﬂg 1Sl |75, 1. () ,...11 +

1+ x

Je=—oc0
( n (70 )2)
Xexp|——\|— —2=
Yy \n

’f(%) + uan} exp (-2 (% %))

1
Vymn Z [M«ww

<Om™2)+ eF?1 (2)+

| Lo
+1\ |, 201 nlk  \? i
<0(s+i~—)+ ly (___( AR PR Sl
) Ve ‘ (3 —a) | 4 u/HN% (57
o . XL, g )]
. |
< o(e+ - )+2||f”1v5—2T%,2(97)+0(;1;) = 0(c+n)

uniformly for we<R.
The next step is the veritication of the Voronovskaja-type condition
(3.1), thus the determination of the operator B.
TeEEOREM 4.3. With B:=( 1/dz)? feXy; f
. ; P=(p[4) (d/dz)? and Dy(B):= {feXy;
J"eXy} one has for any feDy(B) : ) Vet Iy

(4.4) lim |l [F%f —f]1— Bf{ly = 0.

icm
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Proof. The Taylor expansion
1

fla-tu) = @) uf (@) + o f" @)+ (L= (@ uh) —" (@)1
0

and Theovem 2.3 deliver for w = (k/n)—

Frf(m) = f(@)+F(@)0(n~h)+f (2)0(n~) + (y/4n)f" (@) +f (@) 0(n®) +
1 >y [k 2 w(k 2
e D () e (5 o)) |
1 7{; .,
xof(l—t)[f (m-l— (Z——w)t) —f (w)]dt,
go that for feDy(DB) :

(1 -+ &™)~ ([T (@) — f(2)]— (v [4) " (@)}
< (Il =+ 1l + 1) O (™) + 8 (@),

it S 5
ket

i
1) - dt.
) T
Using (4.2) with % = ((Ic/n)——w)t one may proceed as in the proofs of
Lemmas 4.1, 4.2 to obtain
8(@) = O(e+nlf"ly 87T (@) = O(e +07Y.

Thus the operator B is just the infinitesimal generator of the Wei‘er-
gtrass semigroup (1.2), which therefore is the associated semigroup aceqrdmg
to Theorem 3.1. Obviously Dy(B) is dense in Xy. Hence it remains to
ghow condition (3.4) to be valid. To this end it is a consequence
of the theorem of Stone—Weierstrass that the funections {m’ exp( — an?);.
a >0, je{0,1}} are dense in Xy for each NeN (cf. [1a], p. 25). Thus (3.4)

follows in view of .
LEMMA 4.4, For each a > 0,2 > 0, N < Nthere is a funcion F,,eDy(B)

such that for weR
(AL = B)F (@) = 1T 1(0) = (y/4) Fou(®) = alexp(—ar®) (§e{0,1})

S(»

Proof. Setting ¢(y) : = (ayy/A)+1 and

1701 z | o aibz)d
Fuso)i=7 Vm{wy)}exp( w1
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one has (j = 0)

p(,y ‘””2)«14
@ (y) v
2a_| ( wt)
— eXP | — Y — ——
Tl "2\ Y qv(:r/))(y’

L,
=7faﬂl/¢y

1]
1 f’ { dola®
o 5/2
/10 y)]

50 that
1 oy 7 ay/zz yata?/l
AT, () = f {Vq, L B
an?
X exp (——y-—- W)—)W/

am®

®(¥)

DO
a 1 '
=] -0 = LX‘) - = eXp( — aw?
of 5 l/ T ( y )dy exp (— ax?).
Hence F, , is a solution of the differential equation. In fact, I, , belongs
to Dy (B) since ’ ‘

0T (e < A7 f e~ Vdy = 271

and analogously, using the differential equation for ¥, ,,

B a(@)] < 2027 al, [F7,5(9)| < (4fy) (L+exp (—aa?)).
So far we have shown that the Favard operators satisty the conditions
of Theorem 3.1. So we can conclude

'J{H:EOREM 4.5. Let feXy for some N eN. Then the following three
assertions concef'nmg the Favard operators are equivalent:

{4.5) IELf—flly = O(n™)  (n-+oc0),
(4.6) feDy(BY*Y,
(4.7) If(@+h)~2f(@) - Fla— )|y = O(h2)  (h—0).

Proof. (4.5)«(4.6). This is given by Theorem 3.1.

—
(4.8) =(4.7). Take FeDy(B)*¥, ie., there exists a sequence {f,}®
< Dy(B) bounded in Dy(B) and converging in Xy to f. Then for zeR

icm®
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and >0
B2 B2
a0 =2fn(@) +fae—mI< [ [ i+ s+tidsat
—hiz —hJ2
hf2 Rf2
< Wil f (L4 (@4 s -+ 0N dsdt
~nhf2 —h/2
. 2 h 2N +2 zarN‘{z h 2N +2
= 1 e 12 +o—h)
(2N +1) (2N +2)
1 Y N
— e nel1 o (2 +2) 21 N —2
Wl [ + (2N—)——-—l)(l\7+l) ; 2j @’h )
and hence
Ifm(@+h) =20 (@) + [ (@ —D)lly = O(R%)  (h->0)
uniformly for meN. Letting m—oco delivers (4.7).
(4.7) =>(4.6). Let feX, satisfy (4.7) and define
g e
fh(w):=%2— fla+s+t)dsdt (B> 0).
—hf2 ~hf2 .
Then f;—f in X, since
hi2 hi2 .
@) —f@ly <7 [ [ W@ts+0)—f@lydsidt < onXx, fi

—hl2 —h[2

Furthermore by assumption
1filly = R7%If (@ + D) —
so that {f,; k> 0} is also bounded in Dy(B), thus fe_DN

5. Functions of exponential growth. So far we have treated the Favard
operators on the Banach space Xy, for any fixed NeN, thus at most
polynomial growth of f at infinity is allowed. Obviously the results,
derived separately in eaech Xy, may be taken together and expressed

equivalently in terms of the inductive limit X := U Xy. In this event
NeN

one may use the generalizations of Theorems T and 3.1 to locally convex
spaces as presented in [13]; [15] and T2], respectively. In this connection
let us only point out that the relevant stability condition in the locally
convex setting is satisfied by the example of Section 4 since the Favard
operators are order-preserving in the sense of [10], ie., F? maps Xy into
itself (this was already used implicitly in [2] when treafﬁmg the Szész
operators on the corresponding polynomial weight spaces on [0, o0)).

#)+fle—n)ly = 0(1),

By*x.
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These observations together with Theorem I itmnediateiy lead to
the problem of how to discuss the Favard operators on more general
(locally eonvex) weight spaces. For example, the Weierstrass operators
(1.2) have been considered on (ef. [1]; [7]; [12])

(1)  Xy:= Qoxz,ﬁ =:ﬁoo (FeOR); iy = e~ Fla)| < oo}

This space deserves much more attention in view of the more general
weights as well as of its more interesting locally convex space structure.

To consider the Favard operator (1.1) on X, let us obsgerve that
(compare with (4.2))

(5.2) le=F (@-+u)|| < e lle= = ()],

Thus with (X4, f; ) 1= ;}11; (@ -+8)—f(@)ll; it follows that for each
<.
feX; and f> 0 (cf. [12], p. 11)

(5.3) 01(Xyp, f3 1) < 26" =5 f ()],
(54) lim w,(X, 4, f3 h) = 0.
04

This implies that {#7}3* forms an approximation process on X,. Indeed,
TrEOREM 5.1. For any fe X,, B> 0 we have

lim|e™""[ 77 f(w) - f()]]| = 0.

N=+00

Proof. Given feX, and >0 we may proceed as in the proof of
Len|1ma 4.2. Thus (5.3), (5.4) and Theorem 2.3 deliver for n > 2y8

lo~ = LB (@) — F (@) 1< 111 P21 (@) —1 | +

+

o (56

-2 211 fllgse - n\ (% 2
< 0 (072 + O (&) -+ —=E2 oxp ([ 8 — 2} =
ownonr e 5 mf3)ie-)

=0m+e+ 072N (@) = O(e+n"Y)  (m—>o0)

uniformly for m<R. Note that as a consequence of the exp (pu?)-factor

in (5.2) we have to use T%, instead of Ty ,.

f&s & counterpart to Theorem 4.3 we have the Voronovikaja-type
condition. '

re=—— 04, 2 Ji|l— —a
Vymn |, Wy

)
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THBOREM 5.2, With B 1= (y[4) (d/dx)® and D(B) := {feX,; ', [ ¢Xs}
one has for any feD(B) and §>0

Lim lle™* {n [ L f(w) — f(@)]— Bf (@)} = 0.

The proof is guite the same as for Theorem 4.3, using (5.3), (5.4)
and replacing the weights (L+a?¥)™ by exp(—f2?) and T7,(x) by
T2, (4).

As the result of Lemma 4.4 also carries over to X, we have veri-
fied all conditions of the locally convex counterpart to Theorem T
except the stability condition. In this respect, one may strengthen (5.2) to

o= f (04 0)]| < P~ g~ f ()]

or any 0 < ¢ < f. Thus F, maps X, ; only into X, , with o < §. Indeed,

since for any a<l?

1 - n—a [k 2 7 2
—e y’ exp (— (~ —w) ) :]/ Fre1(x),
Vo 7 \n n—a

it follows that (feX,, 0 <f)
1%l < IfIV A (B, o) 1L (w)],

where A (8, o) :=n/(n—poy/(f—o)). To formulate a stability “condition
to be satisfied by {F2}°> on X,, in view of &, = n™" one is led to choose
o 1= B/(L-+n"Y) which would imply (cf. Theorem 2.3)

1 .
IF2 flls < 1 larasa=n ]/m [14 0]

Since Lim (1--n~1)k® = ¢/, for this choice of o a k(n)-fold iterative

T 00 Y
application of F}, would keep the weight in | fllgasn—1 to be positive
as m—»o00, whereas this would imply & multiplicative factor

T fy/oe ot
[V - [V wties

which does not converge as m-»oo.
Thus it teems that the locally convex versions of Trotter’s Theorem

(ct. [18]; [1B]) established so far essentially only work for contraction
semigroups with a possible multiplicative factor exp(Kh,), where K ig
independent -of the seminorms (cf. (4.3) where My depends upon N).

\
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So it seems that the abstract theory of Trotter’s theorem in locally convex
spaces is mot yet satisfactory from the point of view of applications.
However, using the classical direct methods as employed in [12]
it should be possible to obtain (using very long calculations)
TEEOREM 5.3, Let feX,. For the Favard operators the following as-
sertions are equivalent:

(5.5)  for each > 0: i]e"“’z[lf’,’; (@) —f(@)] = 0(n™Y)  (n-»oc0),
(5.6)  for each > 0: e~ [f(@+h)—2f(@)+Fl@—M]l = O(h?) (h->0).

GI

Once this is shown characterizations via the relative completion
(ef."Theorem 4.3) may be taken over from [1].
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