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Abstract. This paper deals with the extension of the theorem of Marcinkiewicz
concerning interpolation of operations to include Orlicz spaces ag intermediate classes.
An abstract version of this result is also presented and several applications®are
digenssed, mainly to continuity properties of integral transforms.

Introduction. In this paper we extend the theorem of Marcinkiewicz
concerning the inferpolation of operations to include Orlicz spaces as
intermediate elasses. For operations of weak type (p;, p,), © = 0,1, this
question was considered by A. Zygmund [29] and for operations of weak
type (14, )y 1<p; < gy 00,6 =0,1, it was treated by W. Riordan
in his unpublished doctoral dissertation. In fact Theorem 2.3 is essentially
contained in Riordan’s work, but the proof given here is simpler, it applies

. to more general situations and the description of the intermediate Orlicz

classes is more explicit. Theorems 2.8 and 2.11, which exploit the avail-
ability of strong type, are apparently new although a special case is given
in [10]. The study of these extensions of the theorem of Marcinkiewicz
is of interest because they are not explicitly included in the abstract
theory of interpolation. .

The abstract formulation of the theorem of Marcinkiewicz is due
to A.P. Calderén ([4], [6], [8], [17]) and it makes use of the Lorentz
clagses L(p, q). The posibility of obtaining an interpolation result which
would simultaneously extend known results for L(p, ) and Orlicz spaces
hag been raised in the Problem 9b) of the June 1975 issue of the Notices
of the Amer. Math. Soc., vol. 22, page 199. Theorems 3.17, 3.20, 3.22,
3.25 give an interpolation theorem that contains an answer to that problem.
The appropriate sefting in this case is a generalization of the spaces A,(X)
([221). :

The results alluded to approach have numerous applications. We only
consider here some questions discussed in [11] and extensions of the
interesting resulty of [20] and [25] concerning integral transforms. The
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reader may also be interested in interpolation of operators with 'chaJnge
of measure ([23]), for some particular Orlicz classes this is done in [13].

It is a pleasure to acknowledge the interest Professor A. Zygmund
took in this paper and the conversations we had with Professor A. M. Jodeit,
Jr. concerning these topics.

1. Orlicz classes. In what follows the letters 4, B, C, D, F are reserved
for generalized Young's fumctions, that is, for functions 4 (¢) defined from
[0, o] into [0, oo, A(0) = 0, such that

(i) A is non-trivial, i.e., 4 5% 0 or A(f) % oo for 1e(0, oo];

(ii) A (2) iz left continuous. :

By the phrase “4(¢)) increases” we refer to those generalized Young’s
functions such that

(iii) A (#)/t increases in the wide sense.

The inverse of 4 is defined on [0, co] by

A7Mt) = inf{s: A(s) > 1},
It is easily seen that 4~! is a monotone non-decreasing function from
[0, co] into [0, co] which is right continuous and
(1.1) AAT D) <t<ATHA®W), =0,

Moreover,

inf@ = oo,

A(t) = sup{s: 47(s) <1},
If A(1)/t increases, for te[0, co) let

(1.2) A1) = sup(st—A(s)).
820

A1) is called the Young’s complement of 4. It is reéudily geen that 4 (f)/t
increases, and ‘

(1.3) T AT AT < 2,

If A(#)/¢ increases, we define the regularization A, of 4 ay

sup@ = 0.

0Kt << o0,

i
. (L1.4) Ao(t) = [(A(s)/s)ds.

Then 4, is convex, increasing, zero at zero and non-trivial (4, is positive
and finite in the same set as 4). Moreover,

(1.B) Ag(f) < A () < Ao(20).

Buch functions 4, are called Young’s functions and (1.4) shows that
inequalities involving 4 are equivalent to inequalities with the Young’s
function 4,. However, it is often convenient to use A instead of 4, since
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for example (4 AB)(t) = min(4 (), B(t)) satisfies (i)—(iii) but is not in
general convex when 4 and B are convex.
Let (M, ) be a positive measure space and let A be a generalized

Young’s function. Let f be a (complex valued) p-measurable funetion
defined on M, and set

(1.6) fla =inf{1c>o: [A(f(@)/E)du<1}.
M :

If A(4)/t increases we let

7" Ly (M, p) =L, ={f: lfonglb

where 4y = 4 if A is convex and 4, is given by (1.4) otherwise. It is
known that L, is a Banach space with ||f], = | fl4, the Orlicz space norm.

In case A iy a generalized Young’s function and fis a p-measurable
function, let '

L(f) = nt{E > 0: [ A(If()|/E)du< X},
M

and '

Ly(M,yp) =Ly ={f: L(f) < o)}

Then 1, is & metric and if 1> 1, then I, (Af) < AlAv(f). If A is a Young’s
function, then 1, and |||, determine the same uniform topology on L,
([20], Theorem 9.4).

The concept of regularization was introduced in [9], and Orlicz
spaces are studied in detail in [12], [20].

In what follows we assume that x4 is non-atomic and u(M)= oco.
These restrictions exclude sequence spaces and spaces of finite measure,
but the reader will have no difficulty in modifying the results that follow
to include such instances.

An operation g = Tf defined for f in L, (M, u) and taking values
¢ in Lp(N, ») is said to be bounded if there iy a constant K > 0 such that

(1.8) [ BITfw)I/E)dr<1
N

whenever

(1.9) [A(f@)au<1.
M

The smallest constant K above is called the norm of T and such operators.
T are said to be of (strong) type (4, B). When 4, B are powers we use the
exponents. Thus if A(f) =17 L, is I® and a transformation of type
(4, 4) is of type (p, p), ete. It is natural to call the function A given by

A@) =0 for 0<i<<l, A(l) =0 forit>1
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a power, sometimes we write 4 (i) = 1°. That L, = L* follows from the
definition of Orliez space. ’

To define weak type (4., B) we first recall the notation m(f, 1) for
the distribution function of a measurable function foon (M, u), to wit

{1.10) m{f, 3) = pl{we A: |f(2) > B), A>o0.

If 7 is & mapping of type (4, B), then for each 4> 0 we have

(1.11) m(Tf, 3) < 1/B(A/K)

whenever (1.9) holds.

In case (1.11) (but not necessarily (1.10)) holds When (1.9) holds
we say that T is of weak type (4, B) with norm < I,

If Ly = L® we agree that the notions of weak type and type coineide.

2. Interpolation of operations. Some 20 years ago A. Zygmund supplied
the proof of the general form of the theorem of Marcinkiewicz for the
Lebesgue classes L?. Techniques used there are exploited to obtain Orlicz
clagses as intermediate spaces as well. '

An operation g = Tf of a clags of functions b on (M, u) into & class
"of functions ¢ on (N¥,v) is called a sublinear operation it it satisfies the
following properties: N

(i) It f = fo+f, and Tf; (4 = 0, 1) are defined, then Z'f is defined;

(i) T (fot+F0 < | Tfol 4 |Tf.| v-almost everywhere;

(iil) For any sealar & we have |T(kf)| = |k||Tf] v-almost everywhere.

We need one more definition. Given the points (a;, ), ¢ = 0,1,
0y # 0y, in the region 0 < f;, o; < 00, we set
(2.1) & = Bo—by

Qg — 0y
and
- 130/%"‘/31/“1_

(2-2) 1jag—1/a, .

Thus the equation of the straight-line passing through the points (o fy)
is given by y = em-+p. We can now state the interpolation theorem.
(2.8) TEEOREM. Let

1 . .
0<?=ﬁ1< =a;<oo, d=0,1,0 % ay fo /P
i '

L
Py
Sdpposo that a sublinear operation ¢ = Tf is simultamcously of weak types
{Psy @)y © = 0, 1, with norms M, and M,, »espectively.
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Assume that the generalized Young's functions A, B are given by
¢

A (1) =fa(s)ds,

0

i
B(t) = [b(s)ds,

where @ and b are monotone. Further assume that if | = gov gy < oo and
m = gy AGy, then B(i)[t' decreases, B(t)/l™ increases and

¢
m ds LHT
(2.4) ) B < hn B0
> ds
(2.5) ;[ B(s)ls < BB/

If U = oo, we assume there 45 a g > m such that B(t)/i? decreases.
If & and y are given by (2.1) and (2.2) and if

Bt = 47 (1) 1,

then T is of type (A, B) with norm K = K (kp, g, M;, ps, ;).
‘ Proof. With no loss. of generality we may assume that 0 < g,
< P31 < co. It is readily seen that L, < L+ L?1, In fact, if for feL, and
u>0 we seb f, =sgnf- (uAlf]) and f* =f~Ff,, then our assumptions
imply that f, is in Pt and f* in IPo. Therefore Tf is well defined for
fin L. . ‘
To calculate I = | B([T )l /2K) dv we use the well-known expression
. N

(2.6)

I = [ b(Aym(Tf, 2K dA

<

0%8 o%g

b(ﬂ)m(fl’fmKl)dl+fb(l)m(Tf",Kﬂédl =I;+1,
0

the last inequality being an immediate consequence of the definition of
the distribution function and the fact that T is sublinear.

We consider the case 0 < g, < ¢, < o0, thus m = g,,1 = ¢, and
g > 0.

In the above decomposition of f = f*--f, = Juy+Fu, We choose v as
the monotone function of A such that w~'(1) = B~'(4(1)). Two cases
arise: ¢, < oo and ¢y = co. First suppose that g, < oo. Since 7 is of
weak type (p;,¢;) with norm M, we have
(2.7) m(Tfyy KA) < (M1 foy)p) 5 /(E D)%

04 /0 g ﬁ-ds v 2 ;
= g [ m(fuy, 997 @A, i =0, L.
0
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= m(f, s) for u(d)<s and zero otherwise, it

ay/p /
(fx s/u (A)m(f, s) s”l-di)l 1dl}plq1,

where y is the characteristic function of the interval (0, 1). Therefore
by Minkowski’s integral inequality and the fact that b(l) @ B(A)/A
gince B(4)/A% decreases we obtain

f m(f,5)

< p(I K f

Since m(ful, 8) = m(fu, §)
follows that

BV < py (ML K™ {f
0

Ip1hz1

{ fm 1 (s (W) ”da}mmﬂi

s
s“’l{ f B(A

wl(s)
To bound the innermost integral we proceed as follows. By integral
conditon (2.5) and relation (2.6) we obtain

< (M, K)

L 9 }m/m ds
s

f B(2) ,1"1—-<IcqlB(u“l(s))/u"l(s)ql

u~1(s)
’ — Ity B(B™(A(3)"9)/B™ (A (s
< logy A () (s (Y741,
whenee it follows that

o0
lm-» 1 @
min <p1(M1/K)”1(g11“41)1’1/"1f (f, 8)s"A(s)* g 7)"351“%-
0
But since
. Als
' %i(l/ql—y) =1 and ———Ei-:g—;)-)

because A (s)/s¥0 increases, it follows that

Y51 2 ay/p
Ils(l’i) (3 ]1) 8 o ( [ mis,0 a(s>i‘1)‘ g
Do P )

The same idea will be used to bound I,, in this argument the letter ¢ will

denote a constant which may not be the same in different occurrences.

However, the final expression of ¢<C(My/K)%kgg,. Since m (fugr &) =
wm(f*, 8) = m(f, v+s), from (2.7) it follows that

SB[ ds\%lo _ 120/%
If“lqﬂ < G{f % (f X (u /S)/m’ f: §)s%0 “") ‘U'} 2
0 0
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whence by Minkowski’s integral inequality we obtain

w=lE)

{f B30 }W% s

Ip0l0 < cf m(f, )sP
J

By integral condition (2.4) and relation (2.6), it follows that

oo

1/
I%’O"—"Jsof m(f, s)sP0 A (s o ? o &5
0

Thus since &(l/qo——y) =1 and 4(s)/s << a(s)

, we finally obtain -
o

I, < c{fmm(f, s)a(s)ds}""’/ﬂ".
0

1/py
Let now K = 24% Moqi/aokzgqov o1la (ﬁf) Mlqlllglqu’fl. It then readily
follows that

r<#{f mtr0

=]

ds)p“/q" + (of m(f, s)a(s) ds)p‘/ql}

and consequently [A(f(#)])dp <1 implies that f B([Tf 9| 2E)dy <
: b

and T is of type (4, B) with norm < 2K. :
If ¢, = oo, the notions of weak type and type coincide. First assume
Py < . Since A (s)/s™r decreases, we have that

U g

1T fullo < Mﬂfu'm\M‘{plf 2()

ds)|im
(s)m(f, ) }

(%) Mo )/A(@a(l))"ﬁl{f a(sym(f, s)ds}lm1

0 0

< (l’i)lllelA‘l(B(A)’)/B(l)"’l.

0

But now y-+¢/p, = 0. Whence by (2.6) we have
1y
12 < (22) "
Do

and m(Tf,, K1) =0 provided K = (py/po)'"1 M,. We may bound I, as
before provided there is a ¢, ¢y < ¢ < oo such that B(s)/s? decreases.
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This is our assumption. Thus setting K = (pa/po)*"1Myv Mog"®l% it
follows that

©o

I< {f a(s)m(f, s)ds}p"/q“.
0
Thus T is of type (4, B) with norm < 2K.
If py = g = oo, then y =0 and 1/e = ¢o/p,. Therefore since

T Fulleo < My Ifulloo = Myu(2) = My A7} (B(A)70/%),

from (2.6) we obtain
1T ulleo < Mo 2

and m(Tf,, KA) =0 whenever K> M,. Set K = M;vM,k%g0.
As before it follows that 7T is of type (4, B) with norm < 2K. We must
now consider the case 0 < g, < o< 0. Thus & < 0 and if we set u™(4)
= B7'{4(A)"Y, then w(2) will be monotone decreasing. Whence if as
above we put I < I;+ I, the reader will have no difficulty in computing
a bound for I by interchanging the roles of I; and I, with I, and I, re-
spectively (see also the proof of Theorem 2.8).

The proof of the theorem iy thus complete.

In the mext results we use to advantage the assumption of strong
type replacing that of weak type. The reader will have no difficulty in
verifying that the behaviour of the constant K which gives the norm of
the operation in the intermediate spaces improves considerably. In. par-
ticular it remains bounded as we approach an endpoint where we have
of strong type. It is well known that this is not the case in Theorem 2.3.

(2.8) TEEOREM. Let 0 < f; = 1/q; << oy = 1[/p; < 00,% = 0,1, Py # D1,
g0 7 @1 and lét &, p be as in Theorem 2.3. Suppose that a sublinear operation
g = Tf is of weak type (Do, go) and of type (p1, q1), with norms M, and
M, respectively.

Assume that the generalized Young’s funotions A, B are given by

¢ ¢
= [als)ds, B(t) = [b(s)ds
0 . ]
with a and_ b monotone,” and that
BY(t) = A 0.
If 1=gqovg, and m = goAqy, then further assume that B(1)/# decreases
and B(t) ™ z"nareases If ¢, =1 suppose that
: ds
j (B (5)/%) — < T, B() 10
[
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and if @ = m suppose that

[ B
¢
Then T is of type (A, B) with norm K = K (kg My, 2is ¢3)-

Proof. We omit the case ¢; = co since it has already been covered
in Theorem 2.3. Out of the several possible cases according to the different
values of P, g;, Wwe assume that 0 < p, < p; < co and 0 < g, < gy < o,
the congideration of the other cases being similar. Thus ¢, =1, ¢, = m
and &< 0 and if we set «~'(4) = B~(4 ()", then »~! is a monotone
decreasing function of A. Let f = f,+f* Then if f is in L,,g=Tf is
defined and -

I=JBmwwmmm

ds
5%) — S g, B(8) 0.

< [ m(Tf,, Kb ou+f (Tf*, BEA)b(2)dL = I, +I,.
0

Y

Since B(4)/A% decreases, we have that b(4)1< ¢,B(4) and
~ ; ds\ b(A)A
I = — (q m(Tfy, 8)§% —) ————dA
! of ar \* mf w SIS (2K

0% [ d 2 ds\ B(2)
L —— J—— s
\%mjﬂ@fmm,ledz

iAK

. 2 ds B(2) |
m g | e n S

0

> > ds
g | o [, 9 T aEm
G H i §
= dJy+dJs.

s ds B
Let @A) = ¢y f (Tf, 8)8 1—8~—~1—(—)— Since 7' is of type (pi, ¢1), norm
A
M, and A (s)[sP1 decreases, we have that
[ u(%) d?}ql/-’pl B( )

(2.9) 3 s of mif, s)em =

P(A) <

ud)

< Malpaﬂm () ds }ql/pl B(7)

TRy OS] S
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Whence by the choice of u, the relation B~'(t) = #’A7'() and the fact since ’
b =1 D1\ @yfp—1
that egy/p.+ye =1, we have thab ' -B—(—M (—t—l-) . 1?1 = A ()M +Ys—aryle—ayiny gor(ayfpy ~141) - A ).
ACEYIS wim_ () \ 4 @)
(2.10) p(A) < MR (;1—) {f m(f, 3)“(3)‘“} S Thus J, < I.
0 ] Therefore combining the above estimates we have
Thus J; < Lo/ K9 ¢ 1
ince dJ; zl 44) >0, we have that Iy < .gl_“_,v_(L+L) = 2Lg,/q, K™,
Since (M ¢ Ku
LR ds | and
B gog, = [ ¢ [ wTf, 9sm—a(BR))
QO 0 K

’ oy , 2 p
I < I+ J, < 3, MG (%) U m(f, s)a(s)ds)qlmqll{ql.
) 0 ]
a
< f MG |f,5d (B(A)/2) The term I, is taken care of as in Theorem 2.3. Thus for an appropriate
0 constant K we have that I<1 whenever [A(f(@))du<1, and T is
M

=5 u(4)
- U@ f {pl f m(f, s)sP _djs_}allmd(B(A) 1A% of type (4, B) with norm < K. The reader will have no difficulty in
J J 8 supplying the proof for the remaining cases.
o) The proof of the theorem is thus complete.
. 3 ds ay/py, o0
=M¢111{p1f m(f, 8)8”1—;-} B(l)/’mlo - (2.11) TERoREM. Lot 0<1/g;< 1/pi<eo, i =0,1, ¢y ¢y, and
H let ¢ and y be as in Theorem 2.3. Suppose that a sublinear operation g =1Tf

. u(®) ds \a/1 is of types (p;, ¢,), ¢ = 0, 1, with norms M o and M, respectively.
Maptin f (B(2) /Aal)j_( f m(f, 3)31’1-—) A = Jy4-J,. Assume that the generalized Young's Junctions A, B are given by -
TR, a § i ¢
0 0 .
A(t) = d. B(t) = | b(s)ds
As in (2.10) and (2.11) it follows that J, < L. () of a(s)ds, B(t) of (s)
As for J, we have with a, b monotone, and that
J, | Maphe B7Ht) = A7V(#)1.
® ry aln-1 Ifl = andm = hen further that B(4)/# d
0 ﬂs_ 1 ; NP1 (4 fl=qyvg < oo andm = 9o A Gy, then further suppose that B (1) [t decreases
=f (B(Z)/HI)E(_r m(f, 887 3) m(f, u(A))u( ) & and B(0)[" increases. If 1 = oo suppose there is a 4, 4> m, such that
0 0 : B()[t* deereases. Then T is of type (4, B).
and setting u(4) =t it follows that The main ideas used to prove the theorem are already contained in
J, | M0 pie—tg, Theorem 2.8, The proof is therefore left for the interested reader to verify.
@ t s \Qu/py=1 0 3. The classes A(py, C) and interpolation. In this section we give
= f Bu= () /(w (8)) (fm(f , §)s7 T) m(fy = the abstract formulation of Theorem 2.3. We need to introduce some
1] 0 ) preliminary material firgt. :
F Bwi(n) [t \aime : £, 8)A(3) s\t m(f t)tplf_“_ (3.1) Rearrangement invariant spaces (ri. spaces). Let (M, u) be
<f W ) f m(f, s ! b a totally o-finite, positive measure space. Let f be measurable and suppose
0 ) ’ that m(f, 1) is finite for each 1 > 0. We can then define the NON~ENCreasing
oo : ds \aum1—1 . at rearrangement f* of f as
<[ 4w {fm( ’ s)‘“s)?} Ui (3.2) £ S intAs 0 m(f, ) <8}, inf@ = o.

6 — Studla Mathematica LIX.2
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The following broperties of f* are readily verified:

(1) T |fol < |fel, then fi<fis

(i) T ¢ =1, +ta, then (f+9)" (&) <f ()9 * (ta).
Tf the function f is locally integrable, then f* is integrable on every finite
interval and we define

The following properties of £** will be used. later:
M) 1) <F
(i) (1) = .sup{flf Jdu: p(B) <.
A Banach space X of real valued, Lebesgue measurable functions

on a posgibly infinite interval I = (0,1) is said to be a Sfunction space
if the following conditions hold:

1) It |fi< gl ae. and feX, then geX and lgl < Ifl;
i) T {f)2, X and |fll< M and 0 fo 7 f &, then feX and
Ifi< M.

A function space X is said to be a rearrangement invarient space
(ri. space) if whenever feX and f’ is any function on I equimeasurable
with f, then f' X and |f/| = |Ifl. Examples of r.i. spaces include the
Tebesgue LP-spaces, the Orlicz I ,-spaces and the Lorentz spaces A, M
and L(p, ¢). Also if X, ¥ are r.i. spaces, §0 i3 X—I—_ )
The fundamental functa,on px(t) of an r.i. space is defined as @x(1)
= |t yll, 0 < t, where yp, is the characteristic function of the interval
" [0,¢]. Let X' be the (Banach) space of all meagurable functions g on
I such that -
gl = sup{Uf(S)y(S)dSI: Ifl <1} < oo
Then again X' is & r.i. space and X' = X.
. Moreover, the following properties hold
() px(Wpx @) =1 (cf. (1.3)); .
(ii) px(#) is a continuous, increasing function, which is absolutely
o Apx(d
continuous on [e, oo) for each positive & with ——ﬂdxtﬁ < px
(iiij X has an equivalent r.i. norm |||, such that the fundamental
function @y (1) is concave and, moreover, px(l) < ¢x,(t) < ox(2t), 0 <t
< oo (cf. (1.5)). :

(1))t a.e.;
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The following two conditions are convenient to deal with the technical
difficulties which arise. We say that XeU if for some 0 < a <1 there
are positive constants 6 and 6 such that

(8.3) Px(% for

0 (/o)

We say that Xe% if for some 0 < p <1 there are positive constants
y and 6 such that

)px(v) < vju> 8.

(8.4) ox(0)lpx(uw) S O(ofu)’  #  oju<y
Sinee for the Orlicz class I, we have ¢r,(8) = 1/A7 (1) ([20], Lemma,
~2.6), (3.3) essentially reduces fo A1) /t“ decreases and (3.4) to A7 () /1F

increases.

Spaces X which are in U N can be renormed so that the fundamental
funetion @y satisfies

dpx (1)

(iv) e ox(t)/t.
Let A(X) = {f: f*(¢) exists and 1l = ff (t) dpx (f) < oo}, and
M(X) = (f: **(3) exists and [[f]px) = sup(f**(t)cox(t))s co}.

It is known that A(X)c X < M(X), with continuous embeddings.
Since for X = I? we have gx(t) = %, it follows that A(X) = L(p, 1)
and M(X) = L(p, oo). The classes 4(X) are described in [22] and [28],
for ingtance.

A sublinear operation T is said to be of weak type (X, ¥) if T maps
A(X) into M(Y) and there is a constant K such that

(8.5) sup {(TH* D er )} < ENfl gz -

The smallest constant K for which (3.3) holds is called the morm of T.
By Theorem 2.5 of [22] (cf. [6], Theorem 7, and [8], (2.8)) if ¥ < U, then
(3.3) bolds if and only if

(3.6) for any measwrable set B < M we have

sup {(T1z)* W) oz (1)} < Epx (u(B)),

where yy is the characteristic function of B and u(B) is its measure.

We now introduce the classes A(py,C) which will arise as inter-
mediate spaces when we interpolate operations of weak type (X, ¥),
% =0,1
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For a generalized Young’s funection O and the measure Space ((0, oo
atft) let Ly = Lg((0, o) dt/t) We then set

= {f: " B ox(0)

Alpx, O is in Lg},

and we put

flaegor = [f oxlo-

Tt is readily seen that if f and q are in A(px, 0), then so is f--g. It O() [t
increases, then ]f[,,(q,xo) = |f*pxlo is & norm on A(gx, 0), and with
that norm A(px, ) 8 & Banewh space (this statement is & particular
instance of Section 13.4 of [3]). If C(f) is concave, then we may sotb

=l dt
f (=9 (D ex(0) 7

(1]

a(f, 9)

For some functions €, (A(px, 0), d) becomes a complete metric space
(cf. [8], Section 2). Smce we shall not make use of these facts, we omit
further comments. The statement of our results will, however, involve
functionals clogely related to the definition of |f] yp,0)- Thus the following
is of interest to us.

(3.7) TEEOREM (cf. [6], Theorem 6, [22], Lemma 3.1). Let O be a Young’s
fumetion such that O()[t? decreases for some p; then

3 @t at
(38) [ ol @est) 5 ~ [folr™ we=) 7

provided there is a constant 6 (whiah we may assume = 1) such that

1 F ds
e (§)—< 0 t>0
(3.9) ] EOTSY ,
and ‘
(3.10) ox(t f (L s)) *<0, t>0.

Proof. Since F*(8) <™ (t), one of the inequalities iy obvious. TLet

i
2 poigas.

Therefore since gx(s)px(s) = s,' we have that

g(t) =" (Hex(t) =

d.
ff (s)pxl(s ‘Px'( )"S‘

g(t) =
px (0
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and by Jensen's inequality and (3.7) it follows that

f ol

But since O(?)/t” decreases, we have that C(fz) <
changing the order of integration we obtain

0o ) <rg—s )9x(6)) P (0) -

< 6°C(t). Thus by inter-

> it e
J o) <o J 07" O ) p9) [ (1/p0) 2.8

<o | O(f*(swx(s))%f.

The proof is complete.

To prove a similar result when € is concave we shall make use of the
following lemma.

(8.11) LemmA. Suppose that f a/nd @ are monofone, positive functions.
Further assume that f is decreasing and that ¢ is imcreasing amd concave.
Let 0 be « concave generalized Young’s function. Then for t> 0 we have

d 1
(3.12) ff _i nzo ( f (f(s) ¢(s)_—)
and
1 F a
(3.13) f fio)p(s) 2 < 21n20~1(Tn-2—i/2f o) ).
t
Proof. Let I(¢ fO f(u)p(u)) i Then for s <t we have
0

> 0(f(s)p(s/2) n2

IOUuw w) 2
82

sinee both O(f)/t and @(t)/t decrease. Thus for s >t we have
seple) < 02 (100
In2 '

Let now D(t) be the increaging function given by
C(t)D(t) ==t.
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Then
ds

t |2 s
[10002 = [ o) (fnse) T

0 <D (0‘1 (132 I(t)))I(i) = —1%—2—0“1 (—I%I(t)):

as we wished to show.

Similarly, let J(¢ f O (f(w) qa(u)-——. Then for &3> /2 wo have

2

> [ otptwie(w) 2 > 0(7as)p(s)n2

and
F2s)p(e) < 0 (—1;}-2— J(t))-
Thus

o o d.
[ 10002 = [ e
i 7]

as|
<2 [ fespw2
if2

NE ol @
<2D(0 I(E—2—J(t)))ﬂl 0f2u)p(w)

In2

ff(s 211120-1( 52 fo 0lf( )3’1‘_)

s, 82

< 2D (0‘1 (—J( )))J( ).
Therefore

This i the desired econclusion.

(3.14) TEmorREM. Let O be concave. Then (3.8) holds provided there is

a constant & > 0 such thai
(3.18) O(st) < 60(s)0 (%), 8,0,
and for some y >0

o0

(3.16) f 0‘(1n2/2¢x,(s))%8- < 9/0px (), *>0.
[]

¢
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Proof. Let g(f) be ay in Theorem 3.7. Then we apply (3.12) with
@(8) = 8 to obbain

« £

2 dt 1 2 {2 o ds\\ @

0 0

28 ~ [ In2 ds di
4“1;;2“0 ( )fO ($)9x(8) Olpx (s) ———

20x (1) ]
‘Whence inverting the order of mtegmtxon and by (3.16) it follows that

j?o olgn) &

This proves our result.

We ghall now prove the interpolation theorems. The agsumption
that the spaces in question are in UNZ is now made for the remainder
of the paper, this simplifies some of the proofs.

(8.17) TumoruM. Let T be a sublinear operation simultaneously of
woal types (X, X;), with norm Ky, i =0,1. Let gx,, gy, denote the cor-
responding fundamental functions. Set n(t) = ‘7’.Xo( ) ox, (), (t) = gz, ( /(py'1<t
and suppose that n onmd & a/ro strictly monofone increasing assuming
values from 0 Yo oo. Put y(t) = 9~ (£(t). Thus v is striclly monotone
inoreasing taking values from 0 to oco. Assume that X is r.i. space with
Sundamental function x such that gxlpx, decreases and ¢x|px, inoreases,
Let ¢y, the fundamenial function of a r.i. space Y, be given by ¢z (f)
= px(p(®) oz, (t /tpx,,( (t)). Further assume that

¢

S)px 3)

(3:18) [ o) lox(®) % < g Dt
0
and that
(3:19) [ eelsor, )= <priler,m, 1>0.
t

We also assume that for the posime constant 0,

f‘]’xl GqJXI (),

aotually this condition holds because X, i8 in UnL. Furthermore
assume that

ds
(318 f P, ()ox(9) T <ox Dlpx®); >0,
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and )
! ds
(3.19) [ox@)pr )= <orlon®, >0

0

Then, if O is a Young’s function such thai C()[¢* decreases for some
p < oo, there is a constami K independent of f but depending on K, 0,
elo. suah' that

[ otz iest
0

Proof. For a positive number « consider the decomposition of f given
by f =f,+f* where f, =f if |f| <w and zero otherwise. Tt ig known,
and easily seen, that

" Sy it
1) (t)<l0 it

dt

dt o
) <E [ ol tex) -

1< m(f, w),
i > m(f, u),
and i
% if -
ey it

t<m(f, u),

AEUES
(Ful" (1) t t>m(f, u).

; . w [ at
It is also readily seen that if f O(f*(t)qax(t))7< oo, then £, is in 4(X,)
0

and f*is in A(X,). Thus T if defined. Set u = f*(‘!/) (t)). Since T is of weak
type (Xo, ¥,y) with norm K, it follows that

0 % t) dS
T < K, 22 a5
(27" (el < Foo XI5 f(f“) )iz, (8)
w(t)
py(l) Px,(8) ds
< K, e ==
ff () ( )(m(,&) o) 5 = 0

By Jensen’s inequality and (3.13) it follows that
[ (%)

2 . d . o (‘9) de db
oI () ey () 2 < O o f* (8) o () P2 P2\S) ds db
f ( ’ f of ol ©)ex() o e

Pr(f)
P,y (1)

Px(s) s

- fw O(Kof*w)wX(s)){ /

ﬂ } Px,(8) ds
v~(s)

< (LvED) ‘f o(f ) el

[

icm
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on account of (3.19), the definition of ¢y, and the fact that C(¢)/#* decreases
for p < oco. Also since T is of weak type (Xi, ¥,), norm K,, we have

(T, ¢ 97y( ds
F ) < T 0 f (£ (), (51—
Py (t) 0 ¥ s Py (t) o ox,(8) ds
K Ky—== | t LSy g £ A * et Ml
<ILX f Plv oo+ Eey [ 50l L2053
By (8.14) we have that
3
1,0 < 022 ), (0(8) < 67w (D) pxlp(t)
. Py, (1)
ince as it is readily seen also
oy (t) t))
{(Pyl( ‘le(w
Then it follows that
2
L) S 55 01

Indeed, since @y, increases and quo(s)/s decreases, we have

t
Ile@lexty®) =7 *(’I’(t))‘l’xo(’/’(t))%—((—t))—
(]’y(t) 1 & * _(‘_Zi
SR £ 14(6)9x,(25)
‘ ‘ w{t)
| 2 2
S T2y, (0 f I =S (U}

Now to bound J (£) we use again Jensen’s inequality. By Jensen’s inequality,
(8.18") and (3.19") we have

oo e «px1<s) _gp(t) ds a
T .t , ds &
uf 0K, (1) ) 0 Wf) O W)
. u—l(s
-~ . px, (8) 7 oy (t) _@ ds
[ O(f" () px(s)) J e s

d
(5)) -

<X [ o(f6ox

J
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Tn view of the above estimates and the sublinearity of I' it follows that

@ . > dt
[ oz wee) 5 = [ (g
- ¢

#* uy % d
< f O(RICTAR)® ()4 (M () (1) =

<x| [ of(@a* test f oz ets) .
0

In view of the above inequalities the proof of our theorem is complete.

(8.20) TEmOREM. Let T, O, ¢x,) Prys Ox) Pry 1y §, ond y be defined as

4n Theorem 3.17, but assume that now & decreases. Thus v also 18 a monotone

decreasing function from oo to zero. Further assume that (3.18) and (3.18")
hold and that we also have

|
d
(819") [ or@pe,6) =< pr®lpr, @), t>0
omd 0
3 d
3197 [ pr@)fen O <grMen®, t>0.
i

Then there is a constant K such that
3 at » ot
[ otz wer)F<x [ ol Wox)S
04 0

The proof being analogous to that of Theorem 3.17 is omitted.

(8.21) CoOROLLARY. If we are either in the situation desoribed in
Theorem 3.17 or Theorem 3.20, then there is a constant K such that

Tl awy,00 < K1l agg.0r-

We now prove a similar result for the case when ¢ iy a concave gen-
eralized Young’s function. :

(3.22) TemornM. Let T, Pxy Prgr Px) Py 1y & and p be defined as in
Theorem 3.17. Let 0 be o concave generalized Young's function such that

O(st) < 00(8)0(8), 8,120,
and 1

P or(s) | ds
(3.23) f 0(9,1,0(3)) ¥10(gx, (D oz (1),

©
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and
12
Pr(s)
(3.24) fO( z ) < y10(pr, (8) fop (1)
¢ \or(s)
Then the conclusion of Theorem 3.17 holds.
Proof. It will be sufficient to show that
0 w(t) oo
prt) [ . ds) ( g dt
O(Wj (8 s»——»———{— I(s) —_
of oy | om0 f Pt i Px,(5) ) =

a.
crri<E [ O(f*wwx(s))—?’
0

for then the conclusion will follow as in Theorem 3.17.
Let

¥(t)
d
[ 7 @es o=

0

g(t)

Then. by (8.12) it follows that

R () ’
In2 2 "ds In2 . 2
s <50 (g | 0@ o) ) -5 (1)
Thus by (3.15) and (3.23) it follows that
© | or() n? ¢y )\ 2 a
Kof 0.(99;,@) ) 6f ( )1n2 i
#x,) (2 W(t))"ﬂ@
<o fo(f S)<Px(8)0'( ()Jmo( )T
2 . s
oy f O(f*gx(o))
Let h(t) = fm F()ex,( s)-———. Then by (3.13) it follows that

w(t)

‘d _ 1
fo(f )ox, (8 )——5—)=211120 1(Tn-z—J(t)).

1
-1
h(t) < 2In2C (——-—2
wd)2
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In view of (3.15) and (3.24) we have that

© [ ox() it pri)\ 1 @
[ o(qDYl(t) h(t))—i—géaf 0(21n2 —Flﬁ(t))a—-m I ()=
s g, ()| (0) \ @ d
< ol o] M ) 0(21 g Prlt) )_w_i
2, (F*(8)px(s) ((px(s) Oj n2 o) T
S%y 2 " ds
<~@—2-21n20f O(f*(5)px(s) —

since we have Of(py, (s)/px(s)) < O 2y, (26)/ox(25)) < 20 (px, (28) fpx (25)).
This completes the proof of the theorem.

To close this:'section we state the analogue to Theorem. 3.20
(3.25) TemorEM. Let T, Px;r Prys Pxs Pwy My € and p be defined as in

Theorem 3.20. Let O be & concave generalized Young’s fumction such that
O(st) < 80(8)0(t), 5,80, and

1)\ d
[ o(%){@/o (P, 0 (1)
H 0

and

o (px(s) ) ds . .

uf0(¢y1(3))T<7/0(‘p?1(6)/(}917(5)).

© x i o ,

Then [ 0(2) (t)qu(t))jTt SE[ O((f) W px(®) _dti
! 0

The proof is analogous to that of Theorem 3.22 and is therefore
omitted.

i 4: App]ica_ltions. A particular instance of Theorem 2.8 is the following
sibuation: 7' iy a sublinear operation of weak type (1,1) and of type
(p,p) for some p> 1. If A()fs increases, 4 (¢)/# decreases and

¢
‘ A (s) .

(4.1) af - do = 0 (4 (1)),

then T' is of type (4,.4). This is also Theorem 4.8 in [L0]. In fact this

result is relatively simple. Since & = 1,9 =0, we then have #(A) ==

and B(i) = A(¢). However, this result cannot be applied to .4(%)

= t/\-t”,' and consequently to L, = I*4I?, because (4.1) fails to hold.
But in its place we have

i
(42) [ o(—qifl),

0
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where
Of) = (L+tlogte) atP,  A() << 0C(),

and Ly = Llog*t L+ L?.

The reader will have no difficulty in modifying the proof of Theorem
2.8 using (4.2) instead of (4.1) to obtain the following result.

(4.3) TuroreM. Let T' be a sublinear operation of weak type (1,1) and
of type (p,p) for some p>1. Then T maps LlogtL+IL* continuously
into L}~ I7.

Thig is one of the main results in [11], I. In the same vein suppose
that 1'is a sublinear operation of weak type (p,, qo) and of type (p4, ¢1),
with p, < py and ¢, < ¢;. Further assume that if 4, B are as in Theorem
2.8, then there are Young’s functions C(t) and D(#) such thab

¢

f io(ﬁ *df =0(CM/™), B(t)<00(),

[

and that
O [tA” ()Pl A™P(t) = O(D(1), A(t)< 6D(8).

Then T maps Lp- Lt into L%+ L%,

If we set A(f) =1tPo AtP1, then the reader will have no difficulty
in verifying that 7 maps L?(log* L)/ + L1 continuously into L%+ L.
This it one of the main vesults in [11], IT.

‘We shall return to this remark shortly.

(4.4) Practional integrotion. Let 0 < a <1 and let

()
If(®) = . f Ty dy.
R'n,

We call I.f the (Riese) fractional integral of f of order a. One of the
interesting applications of [29], Theorem 6, is precisely the fact that
I, is a linear operation of weak type (1, 1/(1— a)}. In fact this more general
result holds.

(4.5) ImMMA. Let ) be o measurable subset of B"; then 1= (T o™ (3)
< K| B, where \B| == Lebesgue measure of B. Therefore by (3.4) I, maps
Lip, 1) continuously into L(g, o) for 0 < 1/g =1/p—a<l, p>1

Proof (due to A.P, Calderén). We shall compute (L xm) ™ (T)
= yup {Bj Izz(@)da}, where |BI<(t. As is readily seen

I= [ILgp)de = [ 15@)L,xs(e)do = [ 22 Las(v) dy.
2 .

Given @ in R among all sets § with |8} = ||, then I yg(w) is largest
when 8 = {y: l@—y} < k| B[, where k is chosen so that |S| = |E|.
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Therefore

ay
IaxE(m) <

o) =

[ A— e
1n Im‘yln( <ok E

Iu Xs(m) =
|e—-yI< k| B|

for some constant §. Thus we have I < ¢|B|[H#|% and interchanging the
roles of B and F it also follows that I < 6 |Bj [B|* Thusforany 0,0 < 01,
we have

I< (818 1B)7)(61BI* 18"~

<
< 8| B[ | pa-dta,

whence it follbws that

(4.6) (Tozm)*™ (1) < 8 |B|HHAe Dl =0,
Given p > 1, let 6(1—a) = 1/p—1. Then (4.6) hecomes
B0 (1,y)™ (1) < O1B[2,

and the lemma follows. :

Thus I, is a mapping of weak type (p, ¢) with 0 <1/¢ = 1/p—a < 1.
By Theorem 2.3, then I, is also a mapping of type (p, q) when p > 1.
Therefore, by Theorem 2.8, I, is of type (4, B) with B~1(#) = A~ ()i~

,
provided A (¢)/t? decreases and fA (8)/s2ds = O (A.(1)}i).

A similar result is given in [18], and interesting applications in [26].
For the particular case of fractional integration, Theorem 2.8 gives
a best possible result. Indeed, if I, maps L, into Ly with norm X, then

K
AT g —(S—B"l(t), for some constant 8> 0. To see this assume
that [B(|L.f(%))/E)dy <1 whenever [A (f@))de< 1. Let @ be a ball,
let 2¢@ and let f(z) = 477 (1/1Q])x(®) = ugg(w). Then
dy
1,f(2) :%JW’ > us|Qp,

and since [A(|f(#)))do <1, we have that

1> [B(Lf()/E)dy > [ B(Ifw)/
@

> 1Q1B(ud1Q]°/K) = Q| B (647" (1/1Q1)Q1°/X).
Whence multiplying by 1//Q} and taking inverses wo obtain the desived
conclusion gince # = 1/|Q| is arbitrary.

Let us return to the remarks following (4.3). We st there p, =1,
o =1/(1~a),py>1and g, = 1/(1/p,— ). Then I, maps L (log* L)™==- L“’1
into L%—I-L‘ll This iy essentially a result of A Zygmund (xee [19]).

&) dy
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The classes A(px, 0) are suited to make statements about the range
of operations more precise and the results obtained extend simultaneously
results about Lorentz classes and Orlicz spaces. This is due to the relation

[ A(r*m)a =!j m(f, t)a(t)dt
0 0

In fact if Z'ig & sublinear operation such as in Theorem 2.3 and 4, B
are given by (2.6) and 0 ir a generalized Young’s function such that it
iy either convex or it is concave and satisfies the appropriate conditions
(with @y replaced by B™!, ete.), then
[
dt
[ oo ©)3

ol

Tror the particular case of the fractional integml I,, we have the following

< [ olamrm) L.

i
result. Let O be:zu Young’s function, let A (#)/¢ be increasing and [A(s)/s*ds
0

= O(A(t) /t) and A (5)/t* decreases for some p, > p > 1. Then

[ ofeaz@zp
0

Of course we also have.

(4.7) )ﬁ?< KfG(A“‘(s)f"(s>)3"2,i
0

3 " . ds F . ds
(48) bf O((Lpy @4 =a10) - <X [ 0(f* @147 1) -

Algo when O is concave (4.8) will hold provided

T Ost) < 80(s)0(8), 8,120
and
f 0(1/sA-1(1/s))%5< y[O(tA7 (1]5))
i
and
3

J O(L/s"®1.472 (1]s) %i < p[O(BPr A7 (L)1)
0
These conditions can be readily checked for given functions 4, C.
‘We shall now apply our vesults to integral operators. We begin with.
a simple case, an extension of Young’s convolution theorem.
(4.9) TamorEM. Let f be a u- measwable fmwtion such that f is on M (X),
d.e., sup (px(OF™(©) <k Let Tg( ff 2—y)g(y)du(y). Suppose that
>0
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oy (l) oz (1) increases, gz (8) [tpx (8) decreases. Then for a Young's function
C, T maps Alpy, 0) into Algz, 0), where pz(8) = @z (1) /px (1)

Proof. Tt will suffice to show that for a u-measurable set B of finite
measure we have

(4.10) P2 ()™ (8) < Oy, (1)

where gz, (¢) = px( @0 and @y, (8) = Jpx(®)? and 0 < 0 < 1, for then the
theorem will follow by interpolation.
Now

(T (t) = sup { [ 1T n(0)] s u(B) <.
But since
[T dn) < [ [ 1) zp(@)lf(@— )] (o) du(y)
B

< (w(B) w(BYE A f( Wﬂ(E)
< It ()7 (2
< () th[px (w(B)) px ()™
Thus
Px (6 (L) ™ () < T (B) fopx (w( D))’

and (4.10) follows.
Choose 0< 0;, 0, <1 appropriately and interpolate. In this case
p(t) = 77 (£(1)) = ¢ and therefore

Pr(t)
‘Pygl(t)

The proof is thus complete.

When restricted to Orlicz spaces the theorem implies L,%Lg < Lg,
where O~*(t)t = B~Y(t).4~*(¢). This is due to O’Neil [18], Theorem 2.5,
where the fractional integration results ave obtained as convolution
results by noting that f(w) = 1/]@|" 9 satistien f** () < kt*,

A more general type of transformation is given by

= f (@, y)f(y) v (y)
N

Pz(8) =

()’zal(t) = @y () /px(0)

(4.11) Tf(w)

from »-measurable function finto w-measurable functions Tf (@) defined
for we M. k(w,y) is a u Xy measurable function defined on M x N.

This is a particular instance of the ro-called “bilinear opervators”
of O'Neil and it satisfies a fundamental inequality, also due to O’N eil,
‘which we now show.
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(4.12) LmmMa. If T is given by (4.11), then

o

(ZFY™ () < [ B (ts)f*(s) s
[

Proof. Assume that f(y) = yz(y), where E is a p-measurable set
of finite meusure, Then if B is a y-measurable set of measure < ¢ we have

S (@) 1T se(@) dp (@) < [ 15(@) [ 16(@, 9)]2(y)do(y) du(@)
HBP(E)
S pB IR (w(B)(B) = [ ¥ (s)ds

0

tv( 1) -5
< [ W(s)ds =t [ B (1s)(x5)"(s)ds
[ 0

because (xz)*(5) = 0, (5)-
Consequently

(Tym)™ f K" (t5) (xz)" (5) ds

For general funetions f the result follows readily from this inequality.
See [20], pp. 202-203. )
(4.13) CoronrArY. Let

spy (1) < bpy(st)px(s)  for all s,1>0.

Then if C(t)ft increases we have

TS| stops0r < OWlar ] o
Proof. By (410) we have

ds

@1 (TN ewl) <8 [ B ) gnl (5)px(e) —

0
o 3 c'{s
= 6 [ W) paof (/o) —
0
Therefore by Minkowski's inequality it follows that

i ds
Il < 8 [ B (5)pa(s) I (5] Do (s] Vo
0

= 0]|f*97xi[0 ||k”,1(z)-

7 — Studia Mathematica LIX.2
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This extends some results of [20] and [16], Theorem 3. A similar result
for € concave follows by interpolation from the statements

) ”Tf”M(Y) < 01l agz) 1 fllagey »
(i) LS azcr) < 0% gz 1l azzy
(i) 1Zflacry < OWFlLagzy [ fllagzy -
Indeed (i)-(iii) are easy consequences of (4.12) (cf. [16], Theorem 2).
The following lemma also follows easily from (4.12).

(4.15) LimMmA. Let T be given by (4.9) and let spp () <
Then

Oz (5%) px(s).

WTF* prlp < y consiant,
where 1/p 41 = 1[r-+1/s.

Indeed the proof follows with the aid of Holder’s inequality (cf.
[20], 10.1).

Similar results hold for the general A(gy, O) classes.

We conclude the applications given in this paper with a generaliz-
ation of (4.13). For the L” classes this is done in [25] (see also [277]).
Similar results have some interesting applications, see for instance [1].

(4.16) THmOREM. Let A,B,C,D be generalized Young’s Sfunctions
such that

l[k** Pz ”Lrﬂf ‘pX”Ls)

ds 1

s5)  A(t)’

similarly for B, C, D.
Let T' be defmed as in 4.11 and assume that the kernel &k has the followmg
properties (mized weak type), to wit:
pllwe M= |b(w, y)| > 1)) <1/4 (te(y),

1/B(t);

where
v({yeN: p(y) > 1)) <

and further assume thot

v({ye: [B(@, y)) > #) < 1/0(t/y (@),
where
ullze M: p(@) > ) <1/D(1).
Then if 8 is v-measurable.
AT (L[ D(1))

1 "< TLp@)
(4.17) FHI2e)™ (1) < B"l(l/'ll(s)) A ¢! (1/%'(8))

icm
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Proof. Let Q he a p-measurable set with u(Q)< ¢ Then

J (T @) du(0) < I = [ ()
J :

Now for any 6> 0 we have

sz

[ 2s(@)iio(o, y)|dv (y) dp(a).

o

= [ v({yes: k(a (@, )] > 1)) du

0

V(@ y)|dv(y

2]
< [v(8) dt+f1 (t/p (@) dt < 6v(8) +6/0 (5 () = .
0

Bo if we set & = ()0~ (1/»(8) )} we obtain
T < 2p(@)w(8) 07 (10(8)).
Consequently
I<v($) 07 1p(8) [ rol)p(@)du(a).
Also as above it follom‘ that
[ xa@yp(@)du(s) < 2D (1)),

That
(Tys)*™ (1) < 8D

now readily follows from (1.3). That (4.15) holds is obvious, and the
proof is complete.

We have thus shown that 7' is an operation snnultaneomly of weak
type (X(,, ¥,) and (X, ¥,), whe1esz _l/B‘l(l/ )y ey (1) = 1[4 (1 /1),
¢x, () = 1/07*(1ft) and o, ( 1/1) (1/8), for instance.

A particularly mterestmg (‘me is when the Young’s funetions involved
are powers. In this case if A(t) = ", B(f) = %, C@t) = ", D(t) = 17,
then I' iy of weak types (sp, #,) and (’Vl’, $;). Thus

A1 (8))

1/re=1/s Solro—1/8
R 1 et
I/a —«l/,, So—1y

and if A7) satisfies the hypothesis of Theorem 2.3 we then have that
for a Young’s function C,

F it P dt

f O (A=Y (Tf) )i-< K j O (4™ )z (1) -

b i

Statements of this nature generalize [25], Theorem 2, and also remove
some of the restrictions imposed in the original proof.
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Additional remark. After this article was subwmitted for publication
the author received a personal communication from Messrs M. Milman,
and R. Sharpley informing him that they were in the process of compleling
an article on interpolation of bilinear operations on r.c.x. that conxiderably
improves the results announced in [16] and consequently containg, among
other interesting results, the applications given in Corollary 4.13 (when
C@) =%, p = 1) and Lemma 4.15. R, Sharpley also considers vewults
gimilar to (4.7) and (4.8) (Fractional inteyration in Orliez spaces, 1o appear
in P, A. M. 8.) and M. Milman applications of operators of the type defined
in (4.11) to the study of qualitative theory of integral equations (Stability
results for integral operators, preprint).
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