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An extension of Duhamel’s integral to differential equations involving
generalized functions; the steady-state solution

by
GREGERS KRABBE (Lafayette, Indiana, U. S. Al)

Abstract. The two-sided algebraic operational calculus is applied to differential
equations of the form

GY+ary + .o +any™ =DbF+b, B+ ... +D,FM),

where I is a Schwartz distribution of unbounded support, arbitrary growth, and
arbitrary order; the coefficients are also arbitrary. Duhamel’s integral has lower
limit = — co.

Let @ be a fixed open sub-interval (such that 0¢0) of the real line.
Let B be the space of functions which are piecewise continuous in Q.
We shall define a linear injection fi—{}} of B into a space o of generalized
functions. If Be o, then B has an initial value [B], and a derivative dB;
if feP, theﬂn [{f}le = f(0—); if also f'e, then d{f} = {f’} when the
tunction f is continuous in the open interval Q. If f and ¢ are continuous
(in £2), then 8{f} = {g} if (and only if) f =g.

Often, the components of a physical system are governed by an
input-output differential equation of the form -

(1) GoY+ a0y + ... +a, 0™y = by F+b,0F + ... +b,0"F,

where Fe' and 0*Fed for 0<k<n; both (a, ay, “eey @) a0
{Do; by, ..., by) ave sequences of complex numbers; the input F could be
a distribution with locally finite support and (possibly) infinite order,

" F could be an arbitrary series of impulses (Dirac deltas) going from

—0c0 0 --co. The steady-state solution of such equations iz the main
concern of this paper. ‘

Given any sequence ¢, (0 <%k < m) of complex numbers, we shall
prove the existence of a unique solution y of (1) such that [8%y], = ¢, for
0 << & < m; thig solution is easily obtainable by our operational calculus
and is given explicitly by the simple equation in 6.1.

Let £ be an interval of the form (—oo, B) with 0 < f < oo; further,
let u and P be the polynomials

w(R) = ag+a,2+ ... +a,2"
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and

P(2) = by-+b2+ ... +b,2";

Equation (1) can therefore be written x(0)y = P(0)F. In 9.12 we de.fine
the steady-state solution [P(0)/u(0)]F of equation (1); the generalized
function F can be a series of impulses; in case n < m and F' = {f} (with
f piecewise continuous) then

' ¢
%’_(%}{f} = {—‘c[G(t—-m)f(m)dm} (Duhamel’s integral),

where G is the inverse Laplace transform of the rational function P/u.
In contrast to the classical situation, no difficulty arises when n = m.
Until further notice, suppose that £ = (—oo, o) and let all the roots
of the polynomial g have negative real parts. If « is a complex number
with real part = 0, then [P(9)/u(0)]{¢*} equals the frequency response
[P(a)/u(a)]{e™}. Tf the Fourier-transform procedure can be applied to
obtain a solution of (1), then this solution y equals [P (9)/u(0)]F (see 8.6);
however, the inverse Fourier transform can fail to exist in the simplest
cases: see Example 10.5, where m = 1 = n and F = {f} with f(t) = ¢ for
t< 0 (but f(£) = e* for t> 0).

1.1. Organization. Motivation and background are found in Sections
6 and 8 (entitled “The principal objective of this paper ”). Section 9 is
entitled “The main theorem”; Section 10 is devoted to applications;
Section 11 is entitled “A generalization of Duhamel’s integral”. Some of
the less eagy proofs are found in Sections 12-15.

2. THE OPERATIONAL CALCULUS

Henceforth, £ is an open sub-interval (a,, §) of the real line: we
suppose that —oo<{a; <0< B co. We shall denote by I'°°(Q) the
family of all the functions which are integrable in every compact sub-
interval of the open interval Q.

2.1. The space of test-functions. Let W be the linear space of all the
infinitely ditferentiable functions w such. that w*(0) = 0 for every integer
%> 0. As usual, @® is the kth derivative of the function w.

2.2. DEFINITIONS. An operator is a linear mapping of W into W.
If A is an operator, we denote by A-w the function that the mapping
A assigns 0 w. As usual, the product 4,4, of two operators is defined by

(2.3) A 4w =A4,-(4,rw) (for all w in W).

icm
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We denote by D the operator which assigns to each test-function
its derivative:

(2.4) D-w=w" (for all w in W).

If feIl°(Q), we denote by {f} the mapping that assigns to each
test-function w the function

i
ff(t—m)w’(w)dm

The mapping {f} is an operator, called the operator of the function f (see
[10], 1.28).

We denote by & the family of all the operators-4 such that

Af{w} ={4-w} for all w in W.

2.5. The space & is a commutative algebra (see [10], 1.38).

2.6. The transformation fr>{f} is a linear injection of I°(£) into
the linear space &:

(2.7) {fi} = {f} Ji=1a;

of course, the equation f, =f, means that the fune.tions f1 and f, are
equal almost-everywhere in the interval 2 (see [10], 1.34).

implies

2.8. Notation. Given an operator B, let Q( ) be the set of all the

’ pomts v in 2 such that the equations

(2) o =) =f(0) =f(z4) {f} =B

hold for some function f in I'°°(Q). If 7¢Q(B) there exists a function
fin I'°(Q) such that (2) holds; the number f(z) depends only on B and
7 (this follows directly from 2.6): we can therefore set B(7) = f(z). We shall
denote by B(f) the function 7+>B(7) which assigns the number B(z) to
any point 7 in £2(B).

2.9. DEFINITION. An operator B will be called functionable if the
function B(t) is defined somewhere (that'is, if the set £(B) is not void).

and

2.10. If B is functionable, then B(f)eI**(Q) and B = {B(#)}.
211. I B = {f} and feI'°(), then B(f) = f; moreover, if f(z—)
= f(z) =f(z+) for reQ, then B(r) o).
2.12. If B = {f} and if f is continuous in @, then B(z) = f(7) for

Tef.
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2.13. The operators A and T,. We shall denote by A the operafor

of the unit ramp funetion; from 2.11 it therefore follows that
A =7 for 7zef.

0 we denote by T, the operator of the characteristic function
oo); from 2.11 it therefore follows that

If aZx
of the interval (a,

0 when 1r<oa,

Ta(®) ;= 7> a.

2.14
(214 1  when

I a< 0 we set T, = {—To(a—17)}

2.15. The unit impulse DT,. If @, then the operator DT, is not
functionable (it is the unit impulse applied at the point z: see [10], 4.5).
The operator D was defined in (2.4). ‘

2.16. The unit constant 1. We denote by 1 the unit constant (defined
by L(z) = 1 for 7eQ); if ¢ is a complex number, then ¢l is the constant
function ¢; if 4 is an operator, then ¢4 is the product {¢1}4; moreover,
{1} is the multiplicative unit of the algebra :

(2.16.1) A{l} = A ={1}A.

2.17. An operator is ¢nwertible if the equation AB = {1} holds for
some element B in . If A is an invertible element of &, there exists
2 unique element A~! of & such that 447! = {1} = A7"4.

2.18. The opelator D is an-invertible element of «; in fact,

(2.19) : A ={1} and D7'=A ={}.

Therefore, DBA = {1}B = B for any B in «. Equatlons (2.19) are
proved in [10], 2.6 (also, in 12.20).

2.20. TuroreM. If B, and B, are fwnctwmble, then By A\ B, is function-
able and

(2.21) BAB, = {fBl(t—m)Bz(w) dm}.
[}
See 12.2. From 2.11 it follows th&t

(2.22) [B, AB,1(1) j B, (t —) By(w)de.
In particular,
0
[BiABl:(7) = —fBl(T——a:)BZ(m)dm

for v almost-everywhere in the interval 2n(—oc, 0); consequently, the
",Eunctmn [BiAB,](t) is not the usual convolution.

icm
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3. THE DERIVATIVE

3.1. DEFINITIONS. An operatoi 4 is said to agree with a function f on
an interval J if

for 7eJ and any w in W.

=ff(1-—m)w’(m)dw
0

3.2. If feI*(0Q), this means that
Ted,
we W.

3.3. We shall write 4 o f (or f < A) to indicate the existence of
a number a < 0 such that 4 agrees with the function f on the open interval
(@, 0).

[4-w](z) = [{f}-w](z) for

3.4. Let [] be the family of all the functions which are piecewise
continuous in some open interval of the form (x, 0). Thus, if 2e[X7], then
the limit

70 and <0

R(0—) Zlimh(r) as

exists, and there is a number a < 0 such that # is continuous in the open
interval (a,0). Piecewise continuity is called sectional continuity in

[4], p. b.
We shall denote by o the family of operators 4 in & such that
the relation 4 = » holds for some function h.in [

3.5. The derivative. If 42 there exists a unique number [4], with
the following property: the equation [4], = (0 —) holds for some function
h in [A] with h = 4 (zee [10], 5.0); we set

A DA _[41,D

3.7. Thus, if Aesf and A o & for tome element h of [#7], then
[4) = h{0—).

3.8. Suppose that feL'*°(2) and fe[#']; since {f} o f, it follows from
3.5-3.7 that [{f}]o = f(0—) and

(3.9) 0{f}y = D{fy—f(0

- Suppose that Be A’ ; if OB is fuwctwnable, then it is the operator of the
derivative of the function B(t); thus, B'(f) = 0B(t) (see 13.21).

3.10. Clearly, 0T, = DT, for all real values of # (see (3.9) and 2.13).

3.11. Suppose that feI'°(L) and let f’ be continuous in 2 except
possibly on a locally finite subset of £; further, suppose that f' L°°(Q).
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Therefore, f is continuous in some open sub-interval of the form (e, 0) n2;
since f'eL’°(Q), it also follows the existence of a limit f(0—); conse-
quently, fe[#]. If this function f is continuous in Q, then 9{f} = {f'}
(see [10], 5.5).

3.12. Let g be a function such that both g and ¢’ are continuous
in Q except possibly on a locally finite subset of ; further, suppose
that ¢’ eI'°(Q). If so, then geL™*(L2) and

={gt+ D l9(a+)—g(a—)]1DT,;

am—00

a{g}

this equation ean be proved by observing that the equation

f=9- Z”’ [g(at)—

a=—00

(a—)Tx(a, o)

(where g(a, o) is the characteristic function of the interval (a, oo))
defines a continuous function f satisfying 3.11. The proof requlres the
definition of convergence given in [10].

3.13. Let # be the family of operators of functions satisfying 3.12.
If AeF and it A(f) is continuous in £ it follows from 3.12 that

(3.14) DA = {A'( }‘1_"‘{—— t)}.

The correspondence 494 (of # into &) is the only linear mapping
such that (3.14) holds (when A(#) is continuous) and 4T, = DT, (for
all 2 in Q).

3.15. There is a linear injection R—{R) of a certain space of Schwartz.

distributions into '; under this injection, distributional = derivation
corresponds to the operation d; further, a distribution R is regular if
(and only if) the operator {R) is functionable (see Shultz [18], pp. 177
and 180); finally, the Dirac distribution corresponds to the operator
DT, (see-2.15).

3.16. If 4, and A, belong to o, then 4, A A, also belongs to 4 and
0T[4 NA,] = A 4, see 12.12.

4. HIGHER DERIVATIVES

As usual, 9°4 = 4 and "4 is defined (rvecursively, for n>1) by

the equation

(41) 04 = 3[6" 4] when O*dex for O<h<mn—1.

icm
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4.1.1. We say that 6”4 is definable if 0%d.e o for 0
If n> 0 we denote by [£,] the space of functions % in [2°] such that
e[ for 0 <% < m. The space o, will consist of all the operators
A in o such that A = h for some function h in. [#,]. Note that

A CH = i Ay = A
4.2. If Be " and 0Be X, then Be #;; more generally,
(4.3) if 0"B is definable and belongs to A", then Be A,
see (13.19) and (5.4).

<kgLn—1.

4.4. Conversely, if Be X, then 6"B is definable and belongs to .
Indeed, if the relation B o h holds for some function % in [2¢,], then

"B > h(’“) see 12.1.
4.5. If &k and r are non-negative integers, then
0*[0"B] = 0**"B  when #**"B ig definable.

4.6. Tf 9™y is definable it follows easily from (3.6) and (4.1) that

n—1

— D' [0*y 1 D" "

k=0

(4.7) oy = D"y
4.8. If yet', and 0™y = 0 it is easily verified (using 4.6 and 4.4)
that ¥ (%) is a polynomial of degree = n—1.

4.9. BXAMPLE. Let ¢, (—oco < k< o) be any sequence of complex
numbers. If a > 0 the series of impulses

Y= 2 ¢, DTy,

k=—~co

is such that @*ye o and [9*y], = 0 for any integer &3> 0. Of course,

y is not functionable.

5. THE SPACE #™

5.1. DEFINITIONS. An operator g is ¥ -functionable if it is the operator
of a function which is continuous in the interval 2. When m >0 we
denote by ¥™ the space of all the #*functionable operators g such that
the kth derivative g®(t) (of the function g(f)) is continuous in £ for
0Lk m.

5.2. If ge%™, then ¢ is the operator of the function g(?) which is m
times continuously differentiable; its mth derivative ¢™ (1) is continuous
in Q. Recall that g(?) is the only continuous function f such. that g = {f}
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and g(z) = f(z) for all v in £ (see 2.12); moreover, [g], = f(0) and ge "
If ge%' the equation dg = {¢'(t)} is immediate from 3.11.
5.8. Tf ge®™ then 0%g = {g® (1)} for 0< k< m.
5.4. DEFINITIONS. Given a polynomial ‘
p(2) = by+b2+ ... +b,2" (with b, 5% 0 and m > 1),
we write, if 0™A is definable,
p(0)A Loy A+,04+ ... +b,0™4;
we shall say that p(0)A is definable if 0™4. is definable.

5.5. If p(0)4 is definable and belongs to 4, then 4 e 2, (this wil
be proved in 13.15); from 4.4 it therefore follows that

Aedp if (and only if) p(0)A is definable and belongs to .
5.6. Suppose that ge%™; it results directly from 5.3 and 2.12 that
[2(0)91(r) = bog(7)+b2g' () + -+ +bpg™(7)
for all = in . ‘

5.7. Consequently, p(0)ge%® whenever ge¥™ If p(d)g is definable
and belongs to %° it can be proved that ge%™: see 13.21. Thus, if p(d)y
i3 definable, then the relation p(0)y = Re%° implies that the equation

, boy (1) + b1y (1) + ... +bpy™(7) = B(v)
holds for all v in £.
5.8. If p, and p, are two polynomials, then
(if p,p,(0)F is definable),

(5.9 PuO)[pa0)F] = ps2a()F

see (4.5), and .

(5.10) a()F+2:(0)F = [pa+2,)(0) F
5.11. As in 5.4,

(it [Pa+p.1(0)F is definable).

p(2) = Z b,2".

=0

(5.12)

Let ¢, (0<% < m) be a given sequence of complex numbers; observe
that

m=1" m n—1

(D) 2 aD™ = 31 ¥ be, DR,

k=0 n=0 k=0

(5.13)

icm
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5.14. Notation. We set

m-—1 m n—1
(5.15) ” (D) Y ckD“"‘ =3 Nb,oD"":
k=0 =0 k=0

this is the result of deleting (from the right-hand side of (5.13)) all the terms
which do not contain positive powers of D.

5.16. From (5.15) it follows easily the existence of a polynomial
A whose degree is less than the degree of p and such that

[o@ S ccn] = 2aco).
k=0

5.17. TemorEM. Let p be a polynomial of positive degree m. If p(d)y
is definable, then
m—1

2(0)y = pD)y—p(D) >, [a"yJoD-’““f

k=0

(5.18)

Proof. Immediate from 4.6.

6. INITTIAL-VALUE PROBLEMS

We shall now deal with equations of the form u(d)y = P(9)F, where
4 is a polynomial of degree m > 1, and where P is a non-zero polynomial.
Most equations in system engineering have such a form; this has been
emphasized in Wunsch [19] (see also [13], p. 25, Berg [1], p. 76, and
Example 10.1). The subject of steady-state solution will be brought up
in 6.12. .

6.1. Suppose that P(9)F is definable and belongs to & (in view of
5.5, this means that Fe o, where n is the degree of P). Let ¢, (0 <k < m)
be a sequence of complex numbers. The initial-value problem

w@y =P@F with [6*y],=¢ for O0<k<m

has a solution ¥ in 4, (see 13.20): to solve it, we apply 5.17 twice:

+ ﬁ | ;— 6D

6.2. Consequently, this last equation determines the unique operator
y such that u(d)y = P(8)F and [0*y] = ¢, (for 0 <& < m).

6.3. Of course, the degree of P could exceed the degree of u.

n~1
P 1 al et
=SB ”P(D)i{;[a 7,0

;
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6.4. ExaMrLe. The input # could be the series of impulses in 4.9;
it could also be the operator

(6.5)

Ll

D10*(DTy)

k=0

which is such that [0"F], = 0 and 0"Fe# for any integer n = 0; it
corresponds to a distribution of infinite order; a simple differential
equation involving (6.5) is worked out in Zemanian [20], p. 164 with

the initial condition y(—e) =3, where ¢ is infinitesimally small (and-

positive).

6.6. Zero initial values at time zero. Let 1 be a non-zero polynomial
of degree n < m (as before, m is the degree of the polynomial ). The
operator

2
¢ — p D)

u(D)
Dbelongs to %' (see 13.6). If F is the unit impulse DT,, then [0*F], =
we can set P =2 in 6.1 to conclude that the equation

(D)
w(D)
determines the solution of the initial-value problem u(d)y = 1(8)[DT,]
© with [0*y], = 0 (for 0<% < m). The function (6.7.1) is the “response
to the unit impulse”; we have y(v)
T < 0: see [10], 3.7).

If F is functionable it follows from (6.7) and (2.18) that

A(D)
—F = GA\TF;
(D) A

setting ¢, = 0 in 6.1, we see that the equation

b [ S wra|

(6.7)

(6.7.1)

T, =T,@

(6.8)

(6.9) G/\F+

determines the unique operator y which satisfies the intitial-value problem

(610) w(@)y =Ar@)F with [yl =0 for 0<

It [0 F], = 0 for 0 < & < n (= degree of 1), then (6.9) becomes y = G A F';
if F is functionable it results from (2.21) that

fGt—

k<m.

©(6.11) F()da.

= G(7) for v> 0 (but y(r) =0 for-

icm
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This solution of (6.10) corresponds therefore to zero initial values (equi-
librium) at time zero; a similar solution is obtained by Wunsch [19] by
adjoining a different type of conditions (“natiirliche Anfangsbedingungen?).
See also Berg [1], pp. 76-77; in both [19] and [1] the interval £ is
[0, eo).

6.12. The road ahead. We shall consider steady-state solutions; to
that effect, integral (6.11) will be replaced by the integral
t

[Gt—a)F

the resulting solution (qf x(d)y == A(9)F), although considered physically
more appropriate by many engineering textbooks (e.g., [14], p- 330, [17],
pp. 221-222, [16], p. 21, and Van Der Pol [15], p. 156) does not always
correspond. to zero initial values at time —oo (see 9.22). We shall require
that F' agrees on (—oo0, 0) with a suitably integrable function.

(6.13) () dao

7. THE SPACE 3

Henceforth, 2 is an interval of the form (—
Let ¢ be the operator

o0, B) with 0 < B < oo

def

(7.1) 1= {1}-T,;
from (2.12) it therefore follows that
1 for <0,
(7.2) Ho) =1(2) =Ty(v) =1 =Ty(v) =
for 7> 0.

7.3. DEFINITION. B will denote the space of all the operators 4 in o
such that %4 is functionable and 1A (t)e[A].

T4. If Aesot, then A = lA—}-T A (from. (7.1) and (2.16. 1)) Let B
be a functionable opera,tor

{7.5) = {B(®)} (from 2.10);
it is éasily verified that
{7.6) B} =1B = {t VB(8)} (see Section 15);
consequently, 2.11 gives
(1.7) [2B1(t) = H(t)B(1),
whence .
7.8) [B](x) = for >0,
B(r) for t<0;
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that is, EB(r) = B(7) for v almost-everywhere in the interval (—oo, 0).
From (7.6) it follows directly that iT, =0 and
(7.9) - =t

7.10. THEBOREM. Suppose that Ae of and feI'(Q). The equation
14 = t{f} holds if (and only if) the operator A agrees with the fwnctwn fon
the interval (— oo, 0).

Proof. See 15.9 or [10], 3.24.

7.11. Suppose that 4 agrees with a function f on (—o0,0):
[A]AL*°(Q) it follows from 7.10 that t4 = I{f}; from (7.7

[4](t) = HB)f(0);

consequently, 14 (t)e[#"], whence A eB. Conversely, suppose that 4eB:
this means that the equation

&) 4 = {f}

holds for some function f in [ ]nI*°(Q); from (7.9) and (1) therefore:
14 = {4 =1{f}; consequently, we may conclude from 7.10 that the
operator A agrees with f on (—oo, 0); in particular,

(@) ' A > f;

if fe
) therefore,

since fe[#7], it follows from Definition 3.4 that 4de #4 and
@) [4], = f(0—

From (1) and 2.12 we see that {4 (1
=f(0—), we can use (1)—(3) to write

(7.12) A > [14](1) [4], = [tA](0—).

7.13. Suppose that 4B and T4(t)e[A,]; from (7.12) and 4.1.1 it
follows that 0”4 is definable and A4, ; in fact,

[B(0"A)](2) = (a"/@") [EA(2)].
7.13.1. As we saw in 7.11, if A B, then A eA; therefore, B < A"

7.14. Suppose that B is functionable. The operator B is the operator
of the pointwise product #(¢)B(t) (zee (7.6));
the function B(t) belongs to [].

=f; since this gives 14.(0—}

and

7.15. Let B, be the space of all the operators 4 in & such that
14 = 0. Note that

B,cBcAcd.

therefore, BeB whenever

icm
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The space B, contains operators of infinite order such as (6.5); therefore,
B, is larger than Berg’s space of “distributions” [1], p. 104 and p. 108.
The space B, corresponds to the space @, of distributions with support
in the interval [0, oo).

7.06. As we shall see in 9.18.1, if F B, then the general solution
y of the equation u(8)y = A(0)F belongs to B;if FeB, this general solu-
tion y need not belong to B, . For example, the equation dy = DT, implies
that y(f) = e+ T,(¢) for some number ¢: since ¥y () = ¢, it follows that
yeB, but y¢B, when ¢ 7 0 (as we shall see, ¢ = 0 gives the steady-state
solution).

8. THE PRINCIPAL OBJECTIVE OF THIS PAPER

Let @ be a functionable operator. If FeB we write

(8.1) GRF def{ | g(t —2) [tF] (2) d}.

8.2. If 7 and G®F are functionable, then

i ©
(83) GAF+GQF =] [6(t—a)F(a)de} = { [ G(u)F(t—‘u)du};
—0 ] ]
the first equation will be proved in 11.1. Of course, Q is an interval of
the form (—oo, ) with 0 < f < co. A device which determines a cor-
respondence Fis[G AF+@G QF] is sometimes called a “filter of type II”

[2], p. 132 or a “one-port” [20], 10.2.
s T

8.4. The main theorem. Let p be a polynomial of positive degree,
let 2 be a polynomial of degree less than the degree of u. The operator
A(D)

#(D)

is functionable, and the function G(?) is the inverse Laplace transform
of the rational function A/x. By expanding A/u into partial fractions,
the function G(f) is obtained as a linear combination of a family
" (aeZ, 0 < n < m(a)) of exponential-monomials (see 9.2). Suppose that

(8.5) ‘ @=D

FeB; if
n(ar)
1) > fe-” "] (a)do | < oo,
asZ n=0

then G ®F is functionable and
(2) pOGAF+GRF] = A(0)F
— provided that A(8)Fe " (see 9.4-9.5 and 9.8).
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8.6. Particular cases. In this section we suppose that Q2 =
(—o0, 0) and that F is functionable; further, we suppose that the
polynomial -u is stable (that is, suppose that all the zeros of u lie on the
left-hand side of the imaginary axis). The equation (8.5) implies that
; 2
fe"““G(u)du = for
[
by hypothesis, u(a) = 0 implies Re(a) < 0. Thus, if F satisties (1) it
follows from 8.2 that the equation

i
(3) y ={ [@(t—a)F()dd}

implies £ (0)y = 2(0)F (provided that A(3)Fe ).

Condition (1) is satisfied when
(4) ‘ 0= hm e [LF](7)
this condition is therefore sufficient to ensure that (3) determines a solution
y of the equation

(8) w(d)y = A0)F
this is proved in Kaplan [8], pp. 284287, for the cage 4 = 1. The particular
solution (3) of (B) is often calculated by the Fourier transform technique:
the transform fo is applied to both sides of (5), the resulting algebraic
equation is solved for #: the inversion step congists in finding the inverse
Fourier transform of §; if F(t) and [1(0) F](2)

(8.7) Re(a) > 0:

for any &> 0;

1o Mi0) F (i) }

N
y =GAF+GQF = {hm fe S i)

Ntoo -
see [2], pp. 126-128, and [8], pp. 284-287.

However, when 4(9)F¢L'(—oo, co) the inversion step is not applic-
able to some equations governing very simple systems; for example, the
inversion step is not applicable to the equation dy-+y = 0F with I'(¥)

= (1) 6l + T,y (t) 6* (see 10.5); note that Condition (4) (and therefore
Condltlon (1)) is satisfied.

9. THE MAIN THEOREM

As in Sections 7-8, the interval £ is of the form ( — oo, 8). Throughout,
# is a polynomial of positive degree and 2 is a non-zero polynomial such
that the degree of 1 is less than the degree of u. Also,
(D)

9.1 o ¢ =D .
o1 ’ u(D)’

belong to L*( —co, oo), then -

icm°®
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9.2. Let Z be the set of roots of the polynomial x. There exists
a unique family =(a) (a<Z) of non-negative integers such that

#(a)

= Z Zc;”{e“tm},

eeZ m=0

(9.3)

where the ¢’ are complex numbers (they are uniquely determined by
(9.3))-

9.4. The numbers ¢} can be found by expanding A(D)/u(D) into
partial fractions; recall that {¢*t™} = D/(D—a)™*. The multiplicity of
the root a equals the integer 1 x(a).

9.5. Suppose that FeB and ge¥°; from (8.1) we see that

0

| 9t

—c0

On the other hand, it follows from (9.3

na)

= D' M r[{e ™ @ F1(0):

aeZ m=0

(9.6) [s@F](0) = — o) [IF](2)do = [ g(u)[IF](—u) du

) that
[¢ ®F1(0)

we shall denote by S[@] the space of all the operators F in B such that

n(a)

2D D e @ F1(0)] < oo.

a€Z m=0 .
9.7. Therefore, FeS[@G] if (and only if) Fe®B and if the integral
‘ aeZ,

0
[ &% [1F) (2) de 0<m<a(a).

00

ewxists whenever

9.8. Let P be a non-zero polynomial. The division algorithm deter-
mines uniquely two polynomials @ and A such that

P A
S =g+
7 Iz

here deg = degree of the polynomial. Suppose that Fe&G[G], where

(9.9) with  deg(4) < deg(u):

G = DA(D)/u(D); we set
P(0) _ au A(D)F DAD) o
910 o =0Ty ) ®
If P(9)F is definable and belongs to -, then
'—Pﬂ = : 14.6).
(9.11) ;4,(6)[”(6) ] P@)F (see 14.6)
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9.12. DEFINITION. We shall call (9.10) the steady-state solution of
the equation u(d)y = P(d)F.

9.13. Recall that [DA(D)/u(D)](t) is the inverse Laplace transform
£71(A/u) of the rational function A/u (see (8.6)):

T A
20 p ~quir+ AL]()I)))' + [8“(7)] ®F.

#(0)
9.15. As in (9.1), set G = DA(D)/u(D):

=)

therefére, Definition (9.10) can be written
20 p _qoyp+tepr+aem.
#(0)
9.17.1. Suppose that FeS[G]; consequently, GQ@F ¥ (by 14.1);
since Ge%® (by (9.3)), it follows from (11.4) that

[GAF+GQF]

also, we may let-7z—0 in (11.5):

19.14)
(9.16)
9.17)

belongs to B;

0

[BAF+E@TI0—) = [G(~2)[iF](s)da;

-0

from (9.17) therefore

[
P(o
|57] -e@m+ [6-aume .
(@) ", e ,

9.18.1. From 9.17.1 we see that (9.17) belongs to B whenever
deg(@) = 0 and F<S[G]; since (9.17) is a particular solution, it is easily
seen that the general solution also belongs to B (when @ = 0).

9.18.2. If F and G ®F are functionable, it results from (9.17) and
(8.3) that

(9.18)

P(d)

’ 2
(9.19) Y g =Q(6)F+{ fG(t—w)If’(m)dwl-

#(9) )
in particular, if FeG[G] and P(9).F e &, it follows from (9.11) that (9.19)
defines a solution of the equation wu(d)y = P(4)F.
9.19.1. Let u, P and @ be the polynomials
w(2) = aot a2+ ... +a,2",
Pey = by+bi2+ ... +b,2",

icm
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and
Q) =Q+Que+ ... 1@,

Suppose that Fe<%™ and FeS[@]; Definition 5.1 gives P(0)Fe%’:
if we set y = [P(9)/u(d)]F it therefore follows from (9.11) that n(0)y
= P(0)Fe%"; from 5.7 it therefore Tesults that y<%™ and the equation

(9.20) y(r) = ZQkF(k)(r)+f G (u) F(r —w)du
k=0 0

(for all = in ) follows from 5.7 and (9.19); since ye%™, it implies that
@Y (7)+ ry' (1) + . + 0y ™ (7) = b F(z) + ... +b, F™(q)
for all v in Q. )

9.21. The classical cases. Let ., be the space of all linear combinations
of operators of the form {e™t™}, where m > 0 and Re(a) = 0. Let &, be
the space of all the operators ¥ in B such that

0 =lime"[tF](r) (as 7} —oo)

for every ¢ > 0. Note that &, contains all functions of slow growth [20],
p- 104. In this Section 9.21 we suppose that 4 is a stable polynomial
(see 8.6). It iy easily seen that

&1 © &y = GLDUD)u(D)].

In the very special case where F(t) = ¢* with Re(a) > 0, we have Fesy;
Equation (9.20) becomes

'P(a) al __ par i —au

|2 ] = o+ [ emewad),
where G = DA(D)/u(D); from (8.7) therefore

__‘P_@ aby . pat Z(a) —_ P(a) aly .

we) = [ot+55a7] wta) &Y

the last equation is from (9.9). Obviously, the general solution of the
equation u(0)y = P(d){e*} differs from P(a) {¢“}u(a) by a transient
term.

9.22. If & # 0 it follows easily (from the above) that

P(3) Plio) | [ . P(fiw))
M(iw)km(wHMg pli) }

#(0)

2 — Studia Mathematica LIX.1

{sin ot} = ‘
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9.23. The frequency response.When ¢ = 4o With —oco < @ < oo then
P(a)e®u(a) is called the frequency response; the case P = 1. is trea;tofd
in Doetsch [5], pp. 54-56 and p. 174; the case deg(@Q) = 0 is found in
Wunseh [19], p. 996.

9.24. Equilibrium at time = —co. When F(—o0) = 0 the stea:cl.y-ﬁtate
solution of u(d)y = P(3)F ecan sometimes be obtained by imposing the
condition 4 ( —oo) = 0 (neither of these limits exist in 9.22). For example,
the steady-state solution of the equation

(1) Oy + 40y -+ 3y = 20°F +60F 4 6F

with F(f) = 1/(1+#)™ has been obtained in DoleZal [6], pp. 111-112,
by imposing the condition y(~occ) = 0. Instead, let us suppose only that
F is a functionable operator such that IF(f)e[#’s] (which, by 7.13,,
guarantees that the right-hand side of (1) is definable); from 9.18.2 and
(1) it follows that

t
20
=lo_ ="  |P=2F- t—ax) F(x)d:
y_[z 02+4a+3]F oF {_ia( )P (x) w},
where, by (9.16),
2s
_ -1 P -t 3 —a¢
Gf{ﬁ (sz+4s+3)} {—e7+30 }’
so that '

t t
y(t) =28(t)+¢™ [¢"F(a)dw—3¢™ [ &°F(w)do,

which is the result that the DoleZal procedure would yield in case
F(—o0) = 0. To ensure that this is indeed a solution, we require that

| _fe”lf’(m)dw’—}-l _fe“’”F(w)dw|< 00,

which is precisely the condition FeS[G] (see 9.7).

10. FOUR EXAMPLES
10.1. Given two numbers L and R, the equation
(10.2) Loty -+ Roy +y = oF

governs a simple electric circuit; suppose that Fe®B and LF (t)e[A",] (this
1
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ensures that 0F is definable and belongs to #': see 7.13). In case L =1
and B = 2, the steady-state solution of (10.2) is given by Definition
(9.10):

(10.3) y 9 DF

D=y

o~ - -0

To ensure that (10.3) is a solution of (10.2) we require that FeS[G],
which means that

I[{t"e "} @ F](0)] < oo for
see 9.7. Our hypotheses FeGS[G] and IF (t)e[H,] are satisfied when

; +GQRF,

where

n=20,1:

F =f+ D (DT =f+ 3 D*DT,,

k=0 k=0
where fe%' and fes; (see 9.21); operator (10.4) is not functionable and
does not correspond to a distribution of finite order. In case F is function-
able, (10.3) becomes

i
y(1) = [[1—(t—a)]6+*F (a)dw

—00

(10.4)

(see 9.18.2),
in view of 9.7, the existence of the integrals
0
[a"FF(@)dw  (for n =0, 1)
—_—00 h
is sufficient (and necessary) to ensure that y is a solution of our equation

(10.2). Compare with [14], p. 383.

10.5. The case I = 0 and B = 1. In view of 9.15-(9.17) and (9.9),
the steady-state solution of the equation dy -y = 0F is
DF
D41

1
=_F——-——-- = At
F 6+1F F

o ffe) -

— provided that |[{¢~*} @ F](0)| < oo. If F is functionable, then (1) and
(9.19) give :

1) Y

‘where

a9
=1 —¢eF,

i
(2) y(t) = F(t)—e™" [ ¢“F(a)da,

—00
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and the condition |[{¢~*}®F(0)] < co means simply that ¢'F(t) is in-
tegrable over (—oo, 0). )

Finally, consider the case (i) =1(?) e +oTo(t)e® with a> 0,
b> 0, and ¢ is a complex number. We now have [{e~1 @ F1(0)] < oo (as
required); also, both F and 0F belong to B; Equation (2) yields y (0 +) —
—4(0—) = ¢ and
ac—be

HE 4 To() o = Tolt) 2,

o= a
y(t) =
where A = a+1 and B =b-+1; in case b =2 and a = ¢ = 1 the Fourier
transform procedure gives no answer, because the “inversion step” fails
nor does the inverse two-sided Laplace transform exist: see [12], p. 255).

10.6. The anti-derivative. To find the steady-state solution of dy = F
(when Fe®B), set P =1 and u(0) = 8 in (9.9)~9.10):

'F ‘Ef%zﬂ - %‘ +HI}®F = D' F+{1}QF;
moreover, from (9.18) it follows that '
[
(3) [0 F], = [{}®F)(0) = [ [1F]()de;

recall that 0(0~'F) = F when FeGS[{1}], which means that {[{1} ® F](0)]
< o0, which in turn means that the integral in (3) exists. In particular,
if F is the unit impulse DT,, then (3) gives d'F =T, (since !F = 0).
This clears up & question which was very unsatisfactorily treated in the
textbook [9], pp. 146-152.

10.7. Examrre. Suppose that Fe®B and 1F(t)e[A ;] (see 7.13). The
steady-state solution. of the equation Gy = *F+F is given by

92 +1

¥ = -F = 0F+07'F;
it is required that FeS[{1}] (as in 10;6). For instance, I could be operator
(10.4) when fe#%* and f(t)e L (o0, 0).

11. A GENERALIZATION OF DUHAMEL’S INTEGRAL

11.1. TaeoreM. Let I and G be functionable operators. If the operator
G QF is functionable, then
2
GAF+GQF = | fG(tﬂm)F(m)dm}.

—00

(11.2)
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Proof. SincelF () = F(#)ior & < 0 (by 7.8), it follows from Detinition
(8.1) that

GQF = { foCr"(t——a;)F(w)dw};

from 2.20 therefore, -
i 0 °
GAF+GRF = {f G(t——w)lf“(w)dm}—}—{ fG(t—m)F(m)dm};

o

Conclusion (11.2) is now an immediate consequence of the linearity of
the mapping f—{f} (see 2.6).

11.3. TEBOREM. Suppose that FeB. If both G and G @ F are functionable,
then

N 11
(11.4) HAAF+GQF] = {l(t) [ @t —o) [1F](a) d=}

and

.

(115) [GAF+G®F)(1) = [G(r—a)[iF1(@)de for ©<0.

Proof. From 7.9 it follows that

t
(4) GALF = H[GNIF] = z{ [ @t —a)[tF)(2) dm};

0

the last equation is from 2.20. From (4) and Definition (8.1) therefore
¢ 0
HEAF+GQF] = t{fG(t~m)[w](m)dm}+z{ [ 6(t—a) ¥F)(2) da} .
0 . —0 -

Conclusion (11.4) is now immediate from (7.6); Conclusion (11.5) comes
from (11.4) and (7.8). )

12. SOME PROO¥S

We shall begin by proving 4.4 in the special case n = 1; the proof
generalizes easily.

12.1. TuroreM. Let B be an operator. If B = he[A'y], then 0B > .

Proof. Since he[X,], there exist two numbers x, < 0 such that
1% is continuous in (#, 0) (for k = 0, 1). Since B = h, there exists a number
o < 0 such that both % and %' have continuous extensions to the closed
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interval [a, 0] and B agrees with the function % on (a, 0): for any vin W
and any t in (a, 0) we have (smce veW)

f) = — fh(t—m)'u”(w)dw (see 3.1);
. ¢
integrating by parts, we obtain
(5) B () —v (R0 —) = ——fh (t— )0’ (i) das.

Since the left-hand side of (5) equals [DB —h(0 —).D]-v(t), we have proved
that 0B agrees with A’ on the interval (e, 0).

12.2. Suppose that freL'*°(2) (for k =1, 2). The function

fu= f fult—a)fs(0)do

belongs to I'°°(2) (see [10], 0.19) and
(12.4) {fIN{fs} = {fis}  (see [10], 2.16).
12.5. Next, to prove that B\ Bye A whenever Bye o (for k =1, 2).

12.6. Suppose that he[#] (for k =1,2): there exists a number
&5 < 0 such that both &, and k, have a continuous extension to the closed
interval [%,,,0]. Let f, be the function defined by fi(u) = My(w) for
Zyp < % < 0, while f,{0) = A(0—) and fp(u) =0 for u <Ly, O 4> 0.
Note that f,eI'°°(2); the relations ‘

(12.3)

(12.7) frae X
and
(12.8) f12(0) =0

are easily obtained by noting that the usual reasonings (as in [4], p. 258
or [7], pp. 34-43) apply equally well when the interval [0, oo) is replaced
by an interval of the form [w,,, 0] with @, < 0.

12.9. In particular, if A, is the unit constant, we have

'
fiz = fhg(m)dm
.0

12.10. LisMMA. If hye[A] and by, = Byesd (for & =1, 2), then
(12.11) fiz = ByABs.

Proof. In view of Definition 3'.1, our hypotheses imply the existence
of a number a,, < 0 such that B, agrees with %, in the interval (a,s, 0):
let ¢ be the largest of the two negative numbers a,, and z,, (see 12.6).

icm°

Egwtension of Duhamel’s integral 23

Let f, be the function defined in 12.6 ; clearly, fi(z) = hy(z) for re(a, 0)
and therefore B; agrees with f, on (a, 0): from 3.2 it therefore follows
that the equation :

(1) H{fi}-wil(7) = [By w1 ()

holds for any w;, in W. Let w be any element of W; since A{f,}e &, the
equation

(2) wy = A{fe}-w
defines an element w, of W; substituting ¥ = 1 and (2) into (1), we obtain
A (AL} -0)1() = [By-(A{fe}-w)1(z);
from (2.3) it therefore follows that
[{fINA{SD) - w](z) = [(BiA{f}) w](z for
so that (12.4) and (2.5) give
3) : ({1} ](7) = [({fo} ABa) w](7)-
On the other hand, the equation
(4) ‘ wy = ABy-w
defines an element w, of W; substituting (4) and ¥ =2 in (1):

(when a << v<0)

a<T<<0,

(8) [{fe}- (AByw)1(v) = [By (ABy-w)1(7);
combining (3) and (5), we can use (2.3) to obtain
(6) [{fie}-w](z) = [ByAByw](z) (for ¢ <7<0)..

Since w is an arbitrary element of W, Conelusion (12.11) follows from
(6) (using commuta,tivity: see 2.5).

12.12. TaworEM. If Bye X (for k =1, 2), then B;A\B, also belongs
to A'; moreover,

(12.13) d[B;A\B;] = D[B;AB,;] = B, B,.

Proof. In view of 3.4, the hypotheses Bye £ implies the existence
of hy, in [#7] such that h, = B, (for k =1, 2); from 12.10 it therefore
follows that f,, = By ABs; the conclusion B; ABye X" is now immediate
from (12.7) and Definition 3.4; further, from (12.11) and 3.5 we see that

[BIABZ]D = flz(o)

(the last equation is from (12.8)); from Definition (3.6) therefore
d[Bi\B;] = DB; A\ B, = BB, (the last equation is from 2.18).

[BiAB:lo =0 and

=0
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12.14. Remarks. If B, is the operator {1} of the unit constant
then By > 1 and the relations )

?

i
(12.15) AB; = {I}3AB; = f ho(a)dar
0

follow from (2.16.1), 12.10, and 12.9 (of course, we suppose that B, o h,
e ). From (12.15) it easily results that

(12.15.1) ABae Ay,
From (12.13) we also have
(12.16) d(AB,) = B,.

If B, is functionable, it follows from (12.4) that

(12.17) AB, = { f B, () do}.

12.18. If » is an integer > 1, then
(12.19) A = {1},

The proof (by induction) is based on the equations

AMIZAA,@:{(J‘:_’!‘M}:{?;%”:

the middle equation is from (12.4)-(12.3).

12.20. If 0 < v v, then "N = D"\ = AN

Indeed, since A\’e%” (see 5.1), the conclusion is immediate from
(12.19) and 5.3.

12.21. Temua. If o, (0 <7< n) is a finite Samily of complea numbers

such that
n
20,1)' =0,

=0

(12.22)

then ¢, =0 for 0<r < n.

Proof. Right-multiplying by A™* both sides of (12.22), it follows
from 12.20 that

n n
Zcr_Dr/\n+1 — Z‘cr/\n+l—r =0,

=0 a0

;;vhence Ot e 24 ... Fopt™(n+1)! = 0; the conclusion is now at
and.
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12.23. Lexma. If > 1, if ye ', and 0"y = D™y, then 0 = [%y],
for 0< k<.
Proof. Immediate from 4.6 and 12.21.

12.24. LeMvA. Suppose that Rye . If m is an indeger = 1, then

(12.25) A" Rye A

Moreover,

(12.26) 0™(A\"R;) = R,

and

(12.27) [0*(A™R)l, =0 for 0<k<m.

Proof. Since A™Rye X, for m =1 (by (12.15.1)), we proceed by
induction. If A*R,e o for k> 1, then AR, o hye[£7], s0. that (12.15)
(with B, = A¥R,) gives

t
ARy = ATA*R,] = [ hy(w)da,
0

whence AF'R,e .. This completes the induetion proof of (12.25).
To prove (12.26), suppose & > 1. Since A¥c* = A, it follows from (12.13),
that

a(/\k+le) = 6(/\"/\R2) = /\kRz§

therefore

(7) FHNITIR,y) = 0¥ [0( A" R,)] = 0*[A*R,].
Thus, if

(8) *(A\*R;) = R,

it follows from (7) that 9**'(A**'R,) = R,; since (8) holds for % =1
(by (12.16)), this completes the induction proof of (12.26).
In view of 12.20, we can write (12.26) in the form

(9) I (A\"R,) = D™(A\™Ry).
Conclusion (12.27) is now direct from (9), 12.23, and (1‘2.25).
12.28. Remark. In view of (12.19), equation (12.26) can be written

tm—l

recall that Rye . If R, is also functionable, we can use (2.21) to write
the preceding equation in the form
t

o =)t
Ry = {f—-—-—(m_l)! Rz(w)dw}.
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13. AN EXISTENCE THEOREM

Henceforth, x is a fixed polynomial
w(@) = ag+ a2+ ... +a,d",

where a,, 7 0 and m > 1. Our aim is to prove the existence of a solution
of the equation u(d)y = B, where B is a given element of o£7; of course,
B need not be functionable. In cage B is functionable (and such that
B(t) is continuous in 2), this existence theorem. is well known. Presumably,
the theorem could be derived from distribution theory, but it would still
remain to prove that any solution belongs to .

We shall denote by #* the space of all the elements g of 4° such
that the function g(i) is infinitely differentiable. Thus, ¥*° < ™ for any
integer m = 0.

In this section, g denotes the element of #* such that

for k<m-1,

0
. 0)g =0 d #(0) =
(s.1)  u(0g and  g7(0) la“‘ for k& =m-—1;

m
from (5.3) therefore
(13.9) (g1, = IO 1 for k<m-—1,
[12 for k=m-—1.
18.3. Remark. If p is a polynomial
(13.4) (&) =by+by2+ ... +b,2"
it follows from (5.18) and (13.2) that

N p(0)g9 = p(D)g—a,'b,D.

13.6. TuroREM. The operator u(D) is an invertible element of the
algebra of ; its inverse belongs to o. If A is a polynomial of degree v < m,
the equation

(13.5)

ot DA(D
(13.7) = DAUD)
(D)
implies Ge¥>,
(18.8) G =2(d)g,
and
(13.9) w(0)G =0.

Proof. Set p =1 in 13.3: since v < m, it follows that b,, = 0;
therefore, (13.5) gives

(13.10) A(0)g = A(D)g.
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Set p = u in 13.3: therefore, b,, = a,,, whence (13.5) implies

(13.11) u(d)g = u(D)g—D. ,
Since u(d)¢g = 0 (by (13.1)), equation (13.11) implies that
(13.12) uw(D)g = D.

Left-multiplying by A both sides of (13.12), we obtain u(D)[Ag] = {1};
since Age 2 (by (12.15.1)), the operator u(D) is invertible and belongs
to 7; from (13.12) therefore,

D ger
13.13 = 2 -1
(13.13) 0=y = D@,
Combining (13.13) with (13.10):
DA(D)
13 .14 A0)g = =
) ()9 (D)

the last equation is from (13.7). Since ge%™, it follows from 5.7 that
Ge%™. In view of (13.14), it only remains to prove (13.9); to that effect,
note that, by (13.14),

#(0)G = p(9)[4(0)g] = A(9)[u(d)g] = 0:
the middle equation is from (5.9), while the last equation is from (13.1).

13.15. TumorEM. Let u be a polynomial of degree m=1. If Bet,
then .

(18.16)

moreover,

(18.17) [0*(B/u(D)]o =0 for 0<k<m

and

(13.18) #(0) (B/u(D)) = B;

also,

(13.19) if u(0)y is definable and belongs to A, then ye A .
Proof. Setting p(9) = 0™ in 13.3, we obtain

D

1 g = D™g—a7lD = D™ ——rv —a ' D:
1) o™y = D™g—a;'D D) antD
the last equation is from (13.13). Since ge%, it follows from 5.3 and (1)
that .

. 1
2 ™ = 1D 4 ——— D™,
2) g m (D)
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Left-multiplying by BA™ both sides of (2):

/\m+1g(m) = »—a"lB_D/\m—H—l- ( ) Dm+1/\m+1
from 12.20 and 2.18 therefore,
np (m) _. —a='B m__l_ .
A"BAY m B ZD)
that is,
(3) % = A™B,, where B,=a;'B+BAg™.

Since Be o (by hypothesis), and since g™ ¢ o, it follows from 12.12
that B,e #: conclusion (13.16) now comes from (3) and (12.25). Since
Bye A, conclusion (13.17) results from (3) and (12.27).

We can set p = u and y = B/u(D) in 5.17 to obtain (13.18) from
(18.17): note that u(d)y is definable (by (13.16) and 4.4).

It remains to prove (13.19). By hypothesis (see Definition 5.4) we
have 0%ye A for 0 <k < m; from B5.17-5.16 it follows the existence of
a polynomial 1 of degree less than m such that

. w(D)y —Di(D) = pu(d)y,
whence
u(@)y  DA(D) B
= — = —@:
e T3 v T R7)

the last equation is obtained by setting B = w(8)y and G = DA(D)/u(D
Since Be # (from our hypothesis #%ye #) and since Ge%™ (from 13. 6)
the conclusion ye A, now comes from (13.16).

13.20. THEOREM. Suppose that Be " and lot ¢ (0 <
quence of complew numbers. The initial-value problem

u(0)y =B [6k?/Jo = (for 0
has a solution y in A,
Proof. Let F be the element of ¥ such that

(5) p(0)F =0 [0*F], =
recall that [0*F], = F®(0) (see 5.3). Set

k< m) be a se-

with k< m)

and

(6) y “-—a-’——+r
k(D)

From (6) and (13.18) therefore

B
Ny = u(d) —— = B.
w(@)y = p( )M(D) +0=2B
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On the other hand, the equations

[0*yle = [ak (B )] +[0FF]y = 04-¢; = ¢,

are from (6), (5), and (13.17). The conclusion ye £, comes from (6) and
(13.16).

13 21. TumoREM. If Be A" and 0B is functionable, then Be%® and

= [0B](t). Let u be a polynomial of degree m > 1; if u(d)y is definable
am,d belongs o 4°, then ye¥™.

Proof. Set ¥ = 0B; from Definition 3.6 it follows that F = D[B —
—{[Blp1}]; left-multiplying by A both sides of this equation, we have

AF =B—{B],1} (from 2.18);

from (12.17) therefore,

i
= {[Bl1+ [ F(a)da);
(1]
ince F(t)¢L°(2), it now results from 2,12 that
t
B(t) = [Bly+ [ F(a)dw
0

whence B'(7) = F(v) = [0B](r) for almost-every 7 in £.
Set B = u(8)y: our hypothesis implies that Be%’; as is well known,
there exists an operator y, in ¢™ such that (in view of 5.6)

u(dy, =B y®(0) = [Fy,], = [0"y], (for 0 <

rom 5.17 it therefore follows that x(D)y = u(D)y,, which implies y = ¥,:
ince y,e%™, we have our conclusion ye%™.

and k< m);

13.22. TumorEM. Let h be a non-zero polynomial of degree < m, where
m is the degree of u. If Fe " and if h(3)F is definable and belongs to ',

then
h(D)F
gl
O )
Proof. From 5.17-5.16 it follows the existence of a polynomial 4 such
that deg (1) < deg(h) and

(13.23) ] = 1(d)F.

h(0)F = h(D)F —DA(D);
consequently,
, h(D)E  h(OF G — DA(D) )
(13.24) ) +@, where 2 D)
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Since deg(4) < deg(h) < m, it results from (13.24) and (13.9) that
h(D)F] [h(t))lf’]
0 [——— = u(0 +0 = h(0)F;
©(0) 2(D) w(8) 2(D) ;
the last equation is obtained by setting B = h(9)F in (13.18).

14. CONCLUDING SECTION

It remains to prove that the operator (9.10) satisfies the differentia
equation (9.11). As in Sections 7-11, the open interval Q has the form
(—o0, f); further, u is a polynomial of degree > 1.

14.1. TrrorEM. Let A be a polynomial whose degree is smaller than
the degree of w. Set
DA(D)

(14.. G = .
(14.2) (D)

If FeS[G], then QR F €™ and
(14.3) #(O[GRF] =0.
Proof. Let Z be the set of zeros of u; as in 9.2, let n(a) (a<Z) be the
family of integers m(a)> 0 such that
' =(a)

G = Z Z ar{e®tm,

aeZ m=0

(14.4)

where the ¢7} are complex numbers. Our hypothesis FeG[G] means that
Fe®B and

n(a) 0
(14.5) 2’ f e~ (LT (% )dml < co.
aeZ n=

Take any a in Z and let 0. m < m(a). Bet g = e™i™; consequently,

(8) g(7) = €™ for wef.

If k> 0 it follows from Definition (8.1) that

0
(9) PR = [ gM(t—a)tF)(2)dw

In view of (9)—(8):

0
(10) 9OF () = [(t—a)"e" e [1F)(a)do;

icm

Eaxlension of Duhamel's integral
therefore,

JRF(t) =

fj (T) e“‘t”‘[~£ e

v=0

(11)

from (8) and (11) we may therefore conclude that

(12) {* ™ QF  belongs to €.
Since 0 < m—y < m < m(a), the existence of the number
(13) Fla, m—y) < fe““”( Y™ [EF] () dos

follows from (14.5). Equation (11) can now be written

(14) mer = 3 (") 7, m—s ey,

On the other hand, it follows from (9) that

080 = [ (%) so-aumeas;

from (8) therefore,

»
m

(] % .
15) gWeF@) = Z (T) f [(gt-) e“it’"]e-“(—w)’"-”[m](m)dw

v=0

From (15) and (13) therefore

prons - S el s

ye=0

whence, by (8) and 5.3,

(16) 10T = 3 (7)F(a, m—») [0 {eem)).

fr
From (14) and (16) we may now conclude that
(17 P @F] = [} ] @ F .
Now for the concl}lsion. From (14.4) we see that
= D ot {e i o FY;
am

(18) G R F]

— )™ [LF] () do];

@
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from (17) therefore,
MG RF] = D (" ®F
a,m

— ak[zazl {ea! zm}] QF;

another application of (14.4) therefore gives
M[GQF] = [0*G]®F for any integer k> 0,
whence
w0 [GRF] = [u(0)G]F =0:

the last equation is from (13.9). This gives Conclusion (14.3). The con-
clusion G @ Fe ¥ comes from (12) by setting & = 0 in (18).

14.6. TaEOREM. Let P be ¢ non-zero polynomial. Let @ and A be the
polynomials such that
(14.7) Plu=Q+Au and deg(d)< deg(u)-

Suppose that FeG[DA(D)[u(D)]; if P()F is definable and belongs to

Ay then
P(0)

. —=F| =P0)F.
(14.8) u(%[ﬂ(a) ] @

Proof. Let n be the degree of P, let m be the degree of w, and let
7 be the degree of §. Since P (9)F is definable and belongs to £, it follows
from 5.5 that ’

(19) Fet,.
Since deg(4) < m < m, it results from (19) that Fe o, where ¢ is the

degree of A: therefore, 1(9)F is definable and blongs to 2 (see 5.5):
consequently, we may set 2 = 1 in 13.22 to obtain

A(D)F]
20 0 = A(0)F.
L wo |45 =0

On the other hand, (14.7) gives

(21) P=pQ+i and n=mtr;

it therefore follows from (5.10) that

(22) PO)F = pQ(8)F +2(0)F = u(0)[Q(9)F]+A(0) F:

the last equation is from (19), n = deg(u@), 5.5 and (5.9). From Definition
(9.10) we see that

P(d)
““”[m*

F] = M(a)[Q((3)F]+#(6)[i(DEL

- N[GERI]:
MD)]W()[ & F]
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from (20) and (14.3) therefore

P(9)
#(9) [WF] = w(0)[Q@)F]+A(0)F+0 = P(d)F:

the last equation is from (22), This concludes the proof of (14.8).

15. APPENDIX

This section is devoted to proving (7.6) and 7.10. Let B be a func-
tionable operator. The equation

(15.1) T,B = {To(t)B(t)}
is proved in [10], (6.2). From (7.2) it follows that
OB} = {B(t)—T,(t)B(#)} = B—T,B = [{1} -T,1B:

the middle equation is from (7.5) and (15.1); the last equation comes
from (2.16.1); Conclusion (7.6) is now immediate from (7.1). Thus, we
have also proved that

(15.2)

-
.

B(t)E(t) = IB(1).
It remains to prove 7.10.

15.3. Recall that A o if (and only if) A{w} = {4 -w} for all w in
W (see Definition 2.2). .

15.4. Levua. If Re o and we W, then
(15.5) [B-w]()E(7) = FR-w](v) for zel.
Proof. From 15.3 we see that

{B-w}(r)4(x) = [R{w}](x)i(z) = IR {w}](v) = ER-w}(v):

the middle equation is from (15.2); the last equation is from 15.3 (with
A = [R). Conclusion (15.5) now comes by observing that
{4 w}(v) = [4-w](s) for any operator 4 (see 2.12).

15.6. Tumorzm. Suppose that Ae of and feZl°°(Q). If A agrees with
f on (—c0,0), then

(15.7) 14 ={f}.
Proof. Take any w in W. By hypothesis,
(15.8) [4-w](s) = [{f}w](z) for

3 — Studia Mathematica LIX.1

7<0:
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see 3.2. From (15.8) and (7.2) it follows that
[4-w](0)¥(z) = [{f}-w](z)¥(z) for
whence a double application of (15.5) now gives
[td-wl(z) = {f}-wl(7):
since 7eQ and we W, we have obtained (15.7).

15.9. Proof of 7.10. In view of 15.6, it suffices to verify that (15.7)
implies (15.8). To that effect, note that (15.5) gives

(15.10) [R-w](7) = [tR-w](v) for
Therefore, for = <0,
[4-w](7) = [F4-w](v) = HH{fHwl(z) = [{f}wl(7);

the middle equation is from (15.7); the last equation is from (15.10).
We have obtained (15.8) as a consequence of (15.7).

Teld,

7<0.
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