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‘Well embedded Hilbert subspaces in C*-algebras
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PETER LEGISA* (Ljubljana)

Abstract. A Hilbert subspace Y of a normed linear space X is a well embedded
Hilbert subspace of X if there exists a linear subspace Z < X such that X = Y®Z
and that the linear operator U@y (where Iz is the identity operator on Z) is an
isometry for every unitary operator U acting on ¥. We characterize such subspaces
in O*-algebras. .

1. Introduction. Recent advances in study of the structure of finite
dimensional Banach spaces have brought the definition of a well embed-
ded Hilbert subspace ([6], Definition 1 below). Let e.g. X be a finite
dimensional complex Banach space with such a basis that the norm of
any vector in X depends only on the absolute values of its components
in this basis. Then X is a direct sum of well embedded Hilbert subspaces
([5] and [6]). We characterize completely well embedded Hilbert subspaces
in C*-algebras with identity, showing that they are rather “uncommeon”
in a sense explained below.

2. Definitions and preliminary results. Let X be a normed linear
space (real or complex) and ¥ a linear subspace in X. We say that ¥ is
a Hilbert subspace of X if it is a Hilbert space in the norm it inherits from
the space X. A vector xeX is orthogonal to a vector ye X if |-+ ayll = |l
for all scalars a. .

DeriNrtIoN 1. A Hilbert subspace Y of a normed linear space X is
a well embedded Hilbert subspace of X if there exists a linear subspace
Z < X wsuch that Y@Z = X and that the linear operator U@ I, (where
I, is the identity operator on Z) is an isometry for every unitary operator
U acting on Y.

Remark. If X is a Hilbert space, every closed subspace ¥ in X is
a well embedded Hilbert subspace. In this case the space Z is the ortho-
complement of the space Y.

LomMA 1. Let ¥ and Z be as in Definition 1, ye¥; and zeZ. Then
y and z are mutually orthogonal.
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Proof. Set U = —Iy in Definition 1. Thus y and 2 are eigenvectors
corresponding to distinct eigenvalues of a linear isometry. Apply [2],
Corollary 3.

Our approach to the problem is based upon Kadison’s characterization
of linear isometries between C*-algebras with identities. We will use the
following (weaker) result: ’

Let A be a C*-algebra with identity 1 and T a linear isometry of A onto
atself. Then w = T1 is o unitary element in A and f = u*T preserves the
selfadjoints.

A nice elementary proof of Kadison’s result is given in [3].

A non-zero idempotent ¢ in a Banach algebra A is called minimal
if the algebra gdg is one-dimensional.

3. Well embedded Hilbert subspaces in (*-algebras.

THEOREM 1. Hvery well embedded Hilbert subspace in a O*-algebra
with identity is necessarily one-dimensional and is spanned by a central
minimal, projection.

Conversely, every central minimal projection in a C*-algebra A spans
a one-dimenstonal well embedded Hilbert subspace of A.

Proof. We prove the second statement first. Let yed be a central
minimal projection. Set ¥ = {#| ¥ = yz} and Z = {»| yx = 0}. Olearly,
X =Y®Z. If wed, then yo = oy = yoy =ty for some scalar ¢. Hence
Y is one-dimensional. In dimension 1 a unitary operator means multi-
plication by ‘a complex number of modulus 1. Let zeZ. Then ‘

6%y +2l* = (e~ y +2*)(*y +2)| = lly +2*2 = |y +2]*
for all real ¢ and the proof is complete. ‘
‘We return to the first statement. Let ¥’ be a well embedded Hilbert
subspace in a (*-algebra A with identity 1. Clearly, every closed linear

subspace of Y’ is also a well embedded Hilbert subspace of 4. We may
assume that dimd > 1.

Let Y be an arbitrary one-dimensional linear subspace of ¥’ zmd
Z a complementary subspace to ¥ such that ¥ and Z satisfy the require-
ments of Definition 1. For every real ¢, let T;: A-»4 be the linear operator:

Ty +2) = cy+z (yeX, zeZ).

The set {7} is a one-parameter group of isometries. Write, as betfore,
u = Tl and f, = w;T,. We prove that 1¢Y¥Y and 1¢Z. It leX, then
= Tl =¢*1. Let zeZ be an arbitrary non-zero element. We choose
the scalar a so that 2*—ayeZ and compute

_ft(z*)

i

u; Ty(ay +2*—ay) = ¢~ (¢" ay + 2* — ay)

I

ay+e"(e* —ay).
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On the other hand,
Sil#*) = fi2)* = (] Tp2)* = (w'2)* = eP'z*

for all real ¢. This implies readily that #* = 0, a contradiction. If 1¢Z,
then 4, = Tl =1 and a similar argument leads to ¥ = {0}, a contradic-

tion. Thus 1 —y # 0 and 1 —yeZ for some non-zero y¢ Y. Since u, = Tj1
= ¢y +1—y and
1=t = 1y —y*+e(y —yy*) + e~ (y* —yy*)

for all real 7, we see immediately that ¥y = y* = y=.
Once more, let 2¢Z be arbitrary. Choose ae C so that z*—ayeZ.
Then

fe(e*) = w/ Ty(ay +2* —ay)
= (¢~ y+1 —y)(acy +2* —ay)

= 2%+ (ay —y2*) + 67" (y2* —ay).
Also
fl#®) = fila)* = (uf2)* = e*uy, = 2* —2*yi+eary.
Comparing the two results we see that 2*y = 0 = ay —yz*. But ay = (ay)y
= (y2*)y = y(2*y) = 0. Thus y2* =0 = yz = gy. This proves that ¥ is
central and minimal.

Suppose now that dim ¥’ > 2 (see the beginning of the proof). It follows
from our results that there exist at least two lineacrly independent central
minimal projections, say ¥,y <Y’ Since yy' =yy'y =y’ yy and both
¥,y are minimal, it follows that gy’ = 0. Thus [y+y'[1* = (¥ +¥")*

= |ly+9'|| and so [y~+y'] = lly—y'l = 1. The parallelogram law fmls

Remark. Using the generalization in [4] of Kadison’s theorem to
arbitrary (*-algebras, it is possible to prove Theorem 1 in the absence
of an identity in a C*-algebra, too. However, the only proof the author
knows. of is rather complicated (although elementary) and consequently
it will not be published here.
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Abstract. A complete description of non full rank in general g-variate minimal
stationary processes over discrete Abelian groups are given. This result subsumes the
minimality theorems of various authors in special cases.

1. Introduction. In his fundamental paper [1] A. N. Kolmogorov
introduced the important concept of minimal processes. Next the concept
have been extended to the g-variate case (cf. [2] and [6], Section 10).
The interpolation problem for g-variate stationary processes over groups
was studied by H. Salebhi and J. K. Scheidt [8] and by A. Weron [9], [10].

* Purthermore in those papers characterizations of g¢-variate minimal
processes are also given. In [8] a generalization of Masani’s minimality
theorem for full rank processes is obtained. Two characterizations of
non-full rank processes are given in [10], but unfortunately one of which
([10], Theorem 5.7) contains an error. In this paper a counter example for
this (see Example 5.3) and a correct statement of this theorem (see Theorem
4.6(d)) is given. Moreover, we will get a general theorem on characteriz-
ations of g-variate minimal (not necessary full rank) processes.

Section 2 is devoted to the preliminary results on the spaces
Loy —of square integrable matrix-valued functions and H,, — of
Hellinger square integrable matrix-valued measures. Section 3 treats
on g-variate stationary processes over a discrete Abelian group. Using
methods of the earlier work [10] on stationary processes over locally
compact Abelian (LCA) groups, we obtain an analytical characterization
of a subspace N, which is important in the minimality problem. In Section
4 we discuss the minimality problem and give some characterizations
of minimal processes. As a corollary we then deduce Kolmogorov’s and
Masani’s mininality theorems. Finally in Section 5 we give several
examples to show that conditions in the presented theorems are essential
ones as well as to illustrate them.

' 2. L, and H, ,'spaces. Let B be a o-algebra of subsets of a space

0 and let @ = [py), 1<1,j<¢, be a matrix-valued function on .
Troughout this paper all matrices have complex entries and C denotes
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